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Minimising the energy consumption of tool change and tool path of ma-1 

chining by sequencing the features 2 

Abstract: A considerable amount of energy is consumed by machine tools during the 3 

run-time operations such as tool change and tool path. The value of this part of energy is 4 

affected by the processing sequence of features of a part (PSFP) because the tool path 5 

and tool change plan will vary based on the different PSFP. This paper firstly aims to un-6 

derstand the relationship between the PSFP and the energy consumption of tool change 7 

and tool path during the feature transitions. Then, a model is introduced for the single ob-8 

jective optimisation problem that minimises the energy consumption of machine tools 9 

during the feature transitions which include all the tool path and tool change operations. 10 

Finally, optimisation approaches including depth-first search and genetic algorithm are 11 

modified and applied to find the optimal PSFP which results in the minimisation of the 12 

energy consumption of feature transitions (EFT). In the case study, the optimal and near-13 

optimal sequences of features, in terms of the minimum EFT, of a 15 features part which 14 

is processed by a machining centre have been found. The optimal PSFP achieves a 15 

28.60% EFT reduction, which validates the effectiveness of the developed model and op-16 

timisation approaches. Besides, a 27.95% time reduction of feature transitions benefits 17 

from the EFT minimisation. 18 

 19 

 20 

 21 

Keywords: Energy; Machine tools; Tool change and tool path; Feature sequencing; 22 
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1. Introduction 1 

To save cost and become environmentally friendly, reducing the energy consumption of production 2 

facilities is a new target for modern manufacturing companies [1]. Machine tools are widely used as 3 

the basic production facilities [2] in the manufacturing industry [3], and they are highly energy-4 

intensive during production [4]. The statistics from the U.S. energy information administration 5 

showed that the electricity consumption of machine tools occupied above 10% of national consump-6 

tion [5]. Therefore, reducing the energy consumption of machine tools (EMT) is a reasonable and 7 

significant routine to promote the manufacturing sustainability and alleviate the energy crisis [6]. 8 

Reducing the EMT is the goal of this paper. To achieve this goal, previous approaches have been 9 

developed to understand and characterise the EMT [7]. For example, Dahmus and Gutowski [8] and 10 

Kordonowy [9] broke the EMT in machining to three levels: the standby power, the run-time opera-11 

tions power and the actual cutting power [10]. The machine tools consume only the standby power 12 

during the idle mode [11]. This refers to the state of machine tools that the main power, computer 13 

panel and emergency stop are all switched on without load on any motors [12]. Run-time operations, 14 

including tool change and tool path (multiple axial feeding), enable the selected cutter to move to the 15 

right position to begin the actual cutting for the next step. By executing these operations, the power 16 

level of machine tools further increases because servo motors and spindle motors are all loaded. Fi-17 

nally, the actual cutting requires a further additional power [13]. Most existing research on reducing 18 

the EMT has been focused on actual cutting energy consumption [14] and standby energy consump-19 

tion [15]. However, the understanding of characteristics of run-time energy consumption is limited in 20 

existing research, and the approaches to reduce this part of energy consumption have not been well 21 

explored. Especially, run-time energy consumption accounts for more than 35% of the total EMT 22 

during production [16], and it has energy-saving potentials. Thus, our research on reducing the EMT 23 

is focused on the run-time operations. 24 

Adjusting the processing sequence of features of a part (PSFP) is an effective approach to reduce the 25 

EMT [17], and this approach is adopted in our paper. It has been proved that actual cutting energy 26 

consumption of a machine tool can be reduced by adjusting the PSFP [14]. However, existing re-27 

search ignored run-time energy consumption when adjusting the PSFP [18]. Actually, the value of 28 

run-time energy consumption of a specific machine tool is also affected by the PSFP because the tool 29 

path for the cutter to reach the part for processing a specific feature and the corresponding tool 30 

change plan can vary when its preceding feature on the sequence is different [19]. This causes vary-31 

ing values of feeding power, feeding distance, feeding speed, and tool change time and power, 32 
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thereby resulting in the different value of total run-time energy consumption. It is the innovation of 1 

this paper to develop the mathematic relationship between the PSFP and the value of run-time energy 2 

consumption and then find the most energy-efficient PSFP. 3 

Based on the above, our study firstly aims at understanding and characterising the EMT during run-4 

time operations including tool path and tool change. Three sub-models have been developed to de-5 

scribe energy consumed by a machine tool while executing rapid and normal feeding activities and 6 

tool change. Based on the sub-models, a model to depict energy consumption during the tool change 7 

and tool path between processing a specific feature and its pre- or post- features has been further de-8 

veloped. This part of energy is defined as the energy consumption of feature transitions (EFT). The 9 

single objective optimisation in this research is to minimise the total EFT for processing a part by 10 

searching for the optimal PSFP. Depth-first search and genetic algorithm are modified and used as 11 

optimisation approaches. Based on a case study, the proposed model has been validated and the op-12 

timisation approaches are effective in finding the optimal or near-optimal processing sequences of 13 

features of a part (PSFPs). In this study, it is assumed that all of the required processing for a part can 14 

be finished on a single machine tool. If a part requires more than one machine tool to finish all of its 15 

features, the features to be processed on the same machine can be sorted and sequenced to reduce the 16 

EFT. 17 

In the remainder of this paper, the literature review is presented in the next section. The description 18 

of the research problem and the model for minimising the EFT are given in Section 3. In Section 4, 19 

the working procedures of depth-first search and genetic algorithm for solving the aforementioned 20 

optimisation problem are described. A case study is conducted to demonstrate the developed model 21 

and optimisation approaches in Section 5. In Section 6, the effectiveness of this approach on the EFT 22 

reduction in multi-machine environment and a multi-objective model considering the EFT are dis-23 

cussed. Finally, a brief summary and future work are given in Section 7. 24 

2. Literature review 25 

Research has been developed to understand the relationship between the PSFP and the EMT. For 26 

example, Sheng et al. [14] developed a model to depict how the feature sequence of a part with three 27 

features (a groove, a hole and a planar face) to influence the value of cutting energy consumption. 28 

Wiener [20] investigated the EMT models for complex parts with more than 14 features. Srinivasan 29 

and Sheng [21] considered the manufacturing constraints such as the precedence relationships be-30 

tween features within a specific part. Further, a method to automatically identify features of a part 31 
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and generate energy-saving operations was developed by Yin et al. [18]. However, only the cutting 1 

energy consumption of machine tools has been considered in the aforementioned works while the 2 

EFT including the energy consumption of tool change and tool path has been ignored. Thus, the EFT 3 

model based on the PSFP is supplemented to bridge this knowledge gap. 4 

Considerable amount of research has been focused on modelling the costs of tool change and tool 5 

path based on the PSFP. These can be used as references for our study to model the EFT. For exam-6 

ple, Al-Sahib and Abdulrazzaq [22] and Abu Qudeiri et al. [23] studied the tool path cost based on a 7 

hole-making process. The corresponding problem for minimising the tool path cost by feature se-8 

quencing was formulated as a special case of travelling salesman problem, and the drilling time 9 

model was developed as well [24]. Kolahan and Liang [25] re-modelled the previous hole-making 10 

process by realising that the relevant cost minimisation problem was more complex than the travel-11 

ling salesman problem because the cost associated with each drilling operation was both sequence-12 

dependent and position-dependent. This single objective optimisation problem has also been formu-13 

lated as a 0–1 non-linear mathematic model with consideration of tool air-cutting time and tool 14 

switch time [26]. For the tool change cost, a single objective optimisation problem for minimising it 15 

by feature sequencing was developed subjected to various manufacturing precedence constraints [27]. 16 

Bhaskara Reddy [28] proposed a feature precedence graph to identify manufacturing precedence 17 

constraints. 18 

In above modelling research on the costs of tool change and tool path, there are mainly three limita-19 

tions which weakened the accuracy of models: (1) It has been assumed that the costs for all tool 20 

change operations on a specific machine tool are same. However, in the reality, the tool change cost 21 

varies based on the number of station intervals rotated. (2) The tool path time was the single parame-22 

ter to calculate the tool path cost. However, the tool path cost is affected by both the tool path time 23 

and the tool path cost per unit time. The latter one is a variable, changing its value based on process 24 

parameters such as feeding speed. (3) The data used for calculating the costs of tool change and tool 25 

path were subjectively assumed instead of experimentally measured on site. In the modelling work 26 

for the EFT, these weaknesses have been overcome by using the experimentally measured power 27 

data of machine tools and developing more precise models.  28 

Both deterministic algorithms and meta-heuristics have been used as optimisation approaches to 29 

minimise the costs of tool change and tool path based on the PSFP. These can be used as references 30 

for our study to minimise the EFT. Normally, deterministic algorithms such as dynamic program-31 

ming and branch-and-bound were employed to find the global optimum. However, these solutions 32 
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are more applicable for the small-to-medium sized problems with number of features less than 20. 1 

The computation time they consumed to find the global optimum sharply increases when solving the 2 

large sized problems [29]. Comparatively, meta-heuristics are able to provide the local or global op-3 

timum within much less computation time [30]. Therefore, they become increasingly popular to 4 

solve feature sequencing problems. Both types of solutions have been tested in our article. Specifi-5 

cally, depth-first search and genetic algorithm are selected as the optimisation approaches. When 6 

employing these approaches to minimise the EFT, several technical difficulties need to be overcome, 7 

such as the search tree generation for the EFT model. Finally, the optimisation results and computa-8 

tion time of developed approaches are validated and compared in the case study. 9 

According to the relevant literatures reviewed, it can conclude that the EFT including energy con-10 

sumption of tool change and tool path based on the PSFP has not been analysed and modelled. Fur-11 

ther, optimisation approaches for reducing the EFT through adjusting the PSFP have not been ex-12 

plored yet. These knowledge gaps have negative impacts on the realisation of our goal to reduce the 13 

EMT. To bridge them, this paper develops a novel model to reflect the mathematic relationship be-14 

tween the PSFP and the EFT. Based on this model, depth-first search and genetic algorithm are first 15 

adopted to search for the PSFPs that result in the minimum EFT. The proposed solutions for model-16 

ling and optimising the EFT are main novelties and contributions of this paper, and they are intro-17 

duced in the following sections.  18 

3. Problem statement and modelling 19 

The notation used in the problem statement, algorithm description and throughout the paper is as fol-20 

lows: 21 

  

Feature sequencing problem݅, ݇,݆ indices for features of a part, positions in a PSFP and feeding 
activities in a feature transition ܨ௜ ݅-th feature of a part ܨ஼ a finite set of ݊  features of a part, ܨ஼ ൌ ሼܨ௜ሽ௜ୀଵ௡ ݊ a finite set of ܨ  ൅ ʹ features of a part within machining envi-
ronment, ܨ ൌ ሼܨ௜ሽ௜ୀ଴௡ାଵ, ܨ஼ ؿ -଴ a virtual feature to denote the start position of tools in machinܨ ܨ
ing ܨ௡ାଵ a virtual feature to denote the end position of tools in machin-
ing ܵ௞ ݇-th position of a sequence ܵ a finite set of ݊ ൅ ʹ positions in a PSFP, ܵ ൌ ሼܵ௞ሽ௞ୀଵ௡ାଶ ݉ number of feeding activities in a feature transition 
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Energy consumption ܧிௌ total EFT based on a specific PSFP [J] ܧி்ሺி೛ǡி೜ሻ EFT from the feature ܨ௣ to its post-feature ܨ௤ [J] ்ܧ஼ሺி೛ǡி೜ሻ energy consumption of tool change in the feature transition 
from ܨ௣ to ܨ௤ [J] ்ܧ௉ሺி೛ǡி೜ሻ energy consumption of tool path in the feature transition from ܨ௉ to ܨ௤ [J] ܧி்ሺௌೖǡௌೖశభሻ EFT from the feature at the ݇-th position to the feature at the ݇ ൅ ͳ-th position of a sequence [J] ܣ a finite set of energy consumption of ݉  feeding activities ܣ ൌ ቄܣ௝ሺி೛ǡி೜ሻቅ௝ୀଵ௠  during the feature transition from ܨ௣  to ܨ௤ , 

(Ͳ ൑ ݌ ൑ ݊, ͳ ൑ ݍ ൑ ݊ ൅ ͳ, ݌ ്  ௝ሺி೛ǡி೜ሻ energy consumption of the ݆-th feeding activity of the featureܣ (ݍ
transition from ܨ௣ to ܨ௤ [J] ο ௝ܺ௣௤, ο ௝ܻ௣௤, ο ௝ܼ௣௤ relative distances between the start and end coordinate posi-
tions of X-axis, Y-axis and Z-axis in the ݆-th feeding activity of 
the feature transition from ܨ௣ to ܨ௤ [mm] ݔ௝ିଵ௣௤ -௝௣௤ start and end coordinate value of X-axis in the ݆-th feeding acݔ ,
tivity of the feature transition from ܨ௣ to ܨ௤ [mm] ௌܲோ௝௣௤  spindle rotation power in the ݆-th feeding activity of the feature 
transition from ܨ௣ to ܨ௤ [W] ݊ௌோ௝௣௤  spindle rotation speed in the ݆-th feeding activity of the feature 
transition from ܨ௣ to ܨ௤ [rpm] ௑ܲி௝௣௤ , ܲ ௒ி௝௣௤ , ܲ ௓ி௝௣௤ feeding power of X-axis, Y-axis and Z-axis in the ݆-th feeding 
activity of the feature transition from ܨ௣ to ܨ௤ [W] ݒ௑ி௝௣௤  feeding speed at the X-axis in the ݆-th feeding activity of the 
feature transition from ܨ௣ to ܨ௤ [mm/min] ݒ௝௣௤ feeding speed in the ݆-th feeding activity of the feature transi-
tion from ܨ௣ to ܨ௤ [mm/min] ௝݂௣௤ feed rate in the ݆-th feeding activity of the feature transition 
from ܨ௣ to ܨ௤ [mm/r] ்ܲ ஼௣௤ power of tool changer in the feature transition from ܨ௣  to ܨ௤ 
[W]  

  
Time consumption ݐ௑ோ௝௣௤ ௒ோ௝௣௤ݐ , ௓ோ௝௣௤ݐ ,  rapid feeding time of X-axis, Y-axis and Z-axis in the ݆-th feed-
ing activity of the feature transition from ܨ௣ to ܨ௤ [s] ݐ஺ோ௝௣௤  axial rapid feeding time in the ݆-th feeding activity of the fea-
ture transition from ܨ௣ to ܨ௤ [s] ݐ஺ி௝௣௤  axial feeding time in the ݆-th feeding activity of the feature 
transition from ܨ௣ to ܨ௤ [s] ்ܶ ஼ሺி೛ǡி೜ሻ tool change time in the feature transition from ܨ௣ to ܨ௤ [s] ிܶௌ total time consumption of feature transitions based on a spe-
cific PSFP [s] ி்ܶሺௌೖǡௌೖశభሻ time consumption of feature transitions from the feature at the 
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݇-th position to the feature at the ݇ ൅ ͳ-th position of a se-
quence [s] ்ܶ ௉ሺி೛ǡி೜ሻ time consumption of tool path in the feature transition from the 
feature ܨ௣ to its post-feature ܨ௤ [s] ܤ௝ሺி೛ǡி೜ሻ time consumption of the ݆-th feeding activity of the feature 
transition from ܨ௣ to ܨ௤ [s] 

  

Machine tool related parameters ௑ܲோ, ܲ ௒ோ, ܲ ௓ோ rapid feeding power of X-axis, Y-axis and Z-axis [W] ௓ܲோ௎ , ܲ ௓ோ஽  upward and downward rapid feeding power of Z-axis [W] ܣ௑ி, ܣ௒ி quadratic coefficient in the X-axial and Y-axial feeding power 
models ܣ௓ி஽ ௓ி௎ܣ ,  quadratic coefficient in the Z-axial downward and upward 
feeding power models ܤௌோ monomial coefficient in the spindle rotation power model ܤ௑ி, ܤ௒ி monomial coefficient in the X-axial and Y-axial feeding power 
models ܤ௓ி஽ ௓ி௎ܤ ,  monomial coefficient in the Z-axial downward and upward 
feeding power models ܥௌோ constant in the spindle rotation power model ଴ܲ standby power of a machine tool [W] ݒ௑ோ, ݒ௒ோ, ݒ௓ோ rapid feeding speed of X-axis, Y-axis and Z-axis [m/min] 

  
 1 

Considering a part, all of its ݊ actual features can be denoted as a finite set ܨ஼ ൌ ሼܨ௜ሽ௜ୀଵ௡ . While ma-2 

chining the part, the total EFT is not only affected by the sequence of the actual features but also the 3 

start and end positions of tools. Hence, they are defined as two virtual features for the part, denoted 4 

by ܨ଴ and ܨ௡ାଵ, respectively. In this machining background, there is a finite set of ݊ ൅ ʹ features 5 ܨ ൌ ሼܨ௜ሽ௜ୀ଴௡ାଵ for an ݊ -features part. The ܨ஼ is a subset of the ܨ) ܨ஼ ؿ  In terms of optimisation, the 6 .(ܨ

aim is to determine the optimal PSFP which results in the minimisation of the total EFT under prece-7 

dence constraints.  8 

As illustrated in Fig. 1, a part with two features (ܨଵ and ܨଶ) is used as an example to show different 9 

PSFPs can result in different values of the total EFT. The two features are to be processed by two 10 

different drilling tools. The start and end positions of tools are virtual features which are denoted by 11 ܨ଴ and ܨଷ, respectively. Therefore, ܨ଴-ܨଵ-ܨଶ-ܨଷ and ܨ଴-ܨଶ-ܨଵ-ܨଷ are the two PSFPs which can be 12 

used. Tool paths of the two PSFPs are labelled by blue solid lines and red dashed lines, respectively, 13 

in Fig. 1. A typical tool path is consisted of several feeding activities. For instance, the tool path 14 

from ܨଵ and ܨଶ includes four feeding activities: ܴଷ, ܴ ସ, ܴ ହ and ܰ ଺. “ܴ” and “ܰ ” here are used to rep-15 

resent rapid feeding and normal feeding. These are the two potential feeding approaches to complete 16 

a specific feeding activity.  17 
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Fig. 1. A 2-feature part that has two feasible processing sequences. 1 

Fig. 2. Power profiles of two sequences: (a) ܨ଴-ܨଵ-ܨଶ-ܨଷ; (b) ܨ଴-ܨଶ-ܨଵ-ܨଷ. 2 

The corresponding power input model of a machine tool when processing the part according to the 3 

aforementioned two sequences are shown in Fig. 2(a) and (b), respectively. The input power which a 4 

machine requires over time is defined as a stepped function represented by the solid black line in Fig. 5 

2. It can be divided to constant power (standby) [9] and variable power [31]. The standby power is 6 

denoted as ܲ଴. The variable power level during tool path is the sum of power of axial feeding and 7 

spindle rotation. The power of tool changer is also a variable. In Fig. 2, the areas filled with blue and 8 

red slashes and nets represent energy consumption of the machine during tool path; the yellow grids 9 

areas represent energy consumption of the machine during tool change; the blank areas represent 10 

energy consumption during actual cutting. Thus, the total EFT based on a specific PSFP is the col-11 

oured areas in either Fig. 2(a) or Fig. 2(b). The EFT from finishing cutting the feature ܨ௣ to the be-12 

ginning of cutting its post-feature ܨ௤ on the sequence can be expressed as: 13 

ி்ሺி೛ǡி೜ሻܧ ൌ ௉ሺி೛ǡி೜ሻ்ܧ ൅  ஼ሺி೛ǡி೜ሻ                                                        (1) 14்ܧ

where ܧி்ሺி೛ǡி೜ሻ, ்ܧ௉ሺி೛ǡி೜ሻ and ்ܧ஼ሺி೛ǡி೜ሻ (Ͳ ൑ ݌ ൑ ݊, ͳ ൑ ݍ ൑ ݊ ൅ ͳ, ݌ ്  are the energy consumption 15 (ݍ

of feature transitions, tool path and tool change, respectively, from the feature ܨ௣ to its post-feature 16 ܨ௤. The developed models for ்ܧ௉ሺி೛ǡி೜ሻ and ்ܧ஼ሺி೛ǡி೜ሻ are presented in Sections 3.1 and 3.2. By compar-17 

ing the sizes of the coloured areas in Fig. 2(a) and (b), it shows that different PSFPs may result in 18 

different values of the total EFT. 19 

Following the example above, this research aims at searching for the optimal processing sequence of 20 

features for an ݊-feature part in terms of the minimisation of the total EFT. Considering there are 21 ݊ ൅ ʹ  features for an ݊ -feature part in machining environment, a finite set of ݊൅ ʹ  positions 22 ܵ ൌ ሼܵ௞ሽ௞ୀଵ௡ାଶ is employed to indicate the positions in a sequence. ܵ௞ indicates the ݇-th position of a 23 

sequence. For example, ܵ௞ ൌ  ௣ is located at the ݇-th position of a sequence. 24ܨ ௣ means the featureܨ

For any part, ܨ଴ is located at the ͳ-st position (ܵଵ ൌ ݊ ௡ାଵ is located at theܨ ଴) andܨ ൅ ʹ-th position 25 

(ܵ௡ାଶ ൌ  ௡ାଵ). Then, the objective function for minimising the total EFT based on a specific PSFP 26ܨ

 can be expressed as: 27 (ிௌܧ)

ிௌܧ ݁ݏ݅݉݅݊݅݉ ൌ σ ி்ሺௌೖǡௌೖశభሻ௡ାଵ௞ୀଵܧ                                                       (2) 28 
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where ܧி்ሺௌೖǡௌೖశభሻ is the EFT between processing the feature at the ݇-th position and the feature at the 1 ݇ ൅ ͳ-th position of a sequence, which can be calculated according to Expression (1). Constraints of 2 

the model are developed according to the precedence constraints among features [29]. A feasible 3 

PSFP, namely, a feasible solution for the mathematic model, must satisfy all of the constraints. The 4 

total EFT for the corresponding PSFP is set to infinity “λ” once any feature and its pre- or post- fea-5 

ture in a sequence violate any constraint. 6 

3.1. Modelling tool path energy consumption 7 

It can be assumed that a tool path in the feature transition from the feature ܨ௣ to the feature ܨ௤ con-8 

sists of ݉  sequential feeding activities. Then, the energy consumption of the ݆-th feeding activity can 9 

be denoted as ܣ௝ሺி೛ǡி೜ሻ. The tool path energy consumption portion of the EFT in a feature transition 10 

 equals to the sum of energy consumption of all feeding activities, which can be expressed 11 (௉ሺி೛ǡி೜ሻ்ܧ)

as: 12 

௉ሺி೛ǡி೜ሻ்ܧ ൌ σ ௝ሺி೛ǡி೜ሻ௠௝ୀଵܣ .                                                             (3) 13 

Considering there are two possible feeding approaches (rapid and normal) for the ݆-th feeding activ-14 

ity, two types of models for ܣ௝ሺி೛ǡி೜ሻ are provided in Sections 3.1.1 and 3.1.2. 15 

3.1.1. Energy consumption of a rapid feeding activity 16 

During a rapid feeding activity, the X-axis, Y-axis and Z-axis of the machine tool feed from the start 17 

to the end coordinate position with their maximum feeding speeds [16]. Therefore, the values of 18 

feeding time of the three axes are probably different. The rapid feeding power is consisted of rapid 19 

feeding power of X-axis, Y-axis and Z-axis, standby power and spindle rotation power [32]. Thus, the 20 

energy consumption of the ݆-th feeding activity (ܣ௝ሺி೛ǡி೜ሻ) can be modelled as follow when using the 21 

rapid feeding approach: 22 

௝ሺி೛ǡி೜ሻܣ ൌ ሾ ௑ܲோ ௒ܲோ ௓ܲோሿ ൈ ௑ோ௝௣௤ݐൣ ௒ோ௝௣௤ݐ ௓ோ௝௣௤ݐ ൧୘ ൅ ൫ ଴ܲ ൅ ௌܲோ௝௣௤ ൯ ൈ ஺ோ௝௣௤ݐ                   (4) 23 

where ሾ ௑ܲோ ௒ܲோ ௓ܲோሿ is the axial rapid feeding power vector, and ௑ܲோ, ܲ ௒ோ and ܲ ௓ோ represent the 24 

rapid feeding power of X-axis, Y-axis and Z-axis, respectively. ܲ௑ோ and ܲ ௒ோ are constants for a spe-25 

cific machine tool. For the Z-axis, the power used to drive the upward and downward rapid feedings 26 
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are different, which are denoted by ௓ܲோ௎  and ܲ ௓ோ஽ , respectively. ൣݐ௑ோ௝௣௤ ௒ோ௝௣௤ݐ ௓ோ௝௣௤ݐ ൧ is the axial rapid 1 

feeding time vector, and ݐ௑ோ௝௣௤ ௒ோ௝௣௤ݐ ,  and ݐ௓ோ௝௣௤  are the rapid feeding time of the three axes. The vector 2 

can be calculated by: 3 

௑ோ௝௣௤ݐൣ ௒ோ௝௣௤ݐ ௓ோ௝௣௤ݐ ൧ ൌ ൤ο௑ೕ೛೜௩೉ೃ ο௒ೕ೛೜௩ೊೃ ο௓ೕ೛೜௩ೋೃ ൨                                               (5) 4 

where ݒ௑ோ, ݒ௒ோ and ݒ௓ோ are the maximum feeding speeds [m/min] of the three axes. ο ௝ܺ௣௤, ο ௝ܻ௣௤ and 5 ο ௝ܼ௣௤ are the relative distances between the start coordinate position (ݔ௝ିଵ௣௤ ௝ିଵ௣௤ݕ , ௝ିଵ௣௤ݖ , ) and the end 6 

coordinate position (ݔ௝௣௤, ݕ௝௣௤, ݖ௝௣௤) of the ݆ -th feeding activity, as shown in Fig. 1. Thus, ο ௝ܺሺி೛ǡி೜ሻ ൌ7 หݔ௝௣௤ െ ௝ିଵ௣௤ݔ ห, ο ௝ܻሺி೛ǡி೜ሻ ൌ หݕ௝௣௤ െ ௝ିଵ௣௤ݕ ห and finally ο ௝ܼሺி೛ǡி೜ሻ ൌ หݖ௝௣௤ െ ௝ିଵ௣௤ݖ ห. 8 

During the feeding activity, the machine consumes standby power ଴ܲ  and the spindle rotation is also 9 

on-state. These two portions of energy consumption also need to be counted in. Comparing several 10 

available models [32] to calculate spindle rotation power, the linear model proposed by Lv et al. [33] 11 

provides the highest accuracy which is 95%. Thus, this model is employed to calculate spindle rota-12 

tion power of a machine tool in the ݆-th feeding activity (ܲௌோ௝௣௤ ) as: 13 

ௌܲோ௝௣௤ ൌ ௌோܤ ൈ ݊ௌோ௝௣௤ ൅  ௌோ                                                           (6) 14ܥ

where ݊ ௌோ௝௣௤  is spindle rotation speed [rpm] in the ݆-th feeding activity; coefficient ܤௌோ and constant 15 ܥௌோ can be obtained by linear regression based on experiment data [33]. Finally, ݐ஺ோ௝௣௤  is axial rapid 16 

feeding time for the ݆-th feeding activity which is the maximum among the rapid feeding time of 17 

three axes that ݐ஺ோ௝௣௤ ൌ max ሼݐ௑ோ௝௣௤ ǡ ௒ோ௝௣௤ݐ ǡ ௓ோ௝௣௤ݐ ሽ. 18 

3.1.2. Energy consumption of a normal feeding activity 19 

During a normal feeding activity, the feeding route is a straight line from the start to the end coordi-20 

nate position [16]. Normal feeding power is the sum of feeding power of the three axes, spindle rota-21 

tion power and standby power [32]. The energy consumption of the ݆-th feeding activity (ܣ௝ሺி೛ǡி೜ሻ) 22 

can be modelled as follow when using the normal feeding approach: 23 

௝ሺி೛ǡி೜ሻܣ ൌ ൫ ௑ܲி௝௣௤ ൅ ௒ܲி௝௣௤ ൅ ௓ܲி௝௣௤ ൅ ௌܲோ௝௣௤ ൅ ଴ܲ൯ ൈ ஺ி௝௣௤ݐ                                        (7) 24 
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where ܲ௑ி௝௣௤ , ܲ ௒ி௝௣௤  and ܲ ௓ி௝௣௤  are feeding power of the three axes (normal feeding). The models for ௑ܲி௝௣௤ , 1 

௒ܲி௝௣௤  and ܲ ௓ி௝௣௤  are similar. For instance, following Lv et al. [33], ௑ܲி௝௣௤  can be expressed as:  2 

௑ܲி௝௣௤ ൌ ௑ிܣ ൈ ሺݒ௑ி௝௣௤ ሻଶ ൅ ௑ிܤ ൈ ௑ி௝௣௤ݒ                                                  (8) 3 

where coefficients ܣ௑ி and ܤ௑ி can be obtained by quadratic regression based on experiment data. 4 

The feeding speed at the X-axis in the ݆-th feeding activity (ݒ௑ி௝௣௤ ) can be calculated by: 5 

௑ி௝௣௤ݒ ൌ ௝௣௤ݒ ൈ ο௑ೕ೛೜ටቀο௑ೕ೛೜ቁమାቀο௒ೕ೛೜ቁమାቀο௓ೕ೛೜ቁమ                                                 (9) 6 

where ݒ௝௣௤ is the feeding speed in the ݆-th feeding activity that ݒ௝௣௤ ൌ ݊ௌோ௝௣௤ ൈ ௝݂௣௤, where ݂௝௣௤ is the 7 

feed rate [mm/r]. In this scenario, the feeding time of all axes, spindle rotation time and standby time 8 

are the same, which is the axial feeding time ݐ஺ி௝௣௤ ஺ி௝௣௤ݐ , ൌ ටቀο௑ೕ೛೜ቁమାቀο௒ೕ೛೜ቁమାቀο௓ೕ೛೜ቁమ௡ೄೃೕ೛೜ ൈ௙ೕ೛೜ . 9 

3.2. Modelling tool change energy consumption 10 

The energy consumption of tool change is affected by the tool change time and tool change power 11 

[34]. The tool change power is the sum of standby power and power of tool changer [16]. Thus, the 12 

tool change energy consumption portion of the EFT between processing the features ܨ௣  and ܨ௤ 13 

 can be expressed as: 14 (஼ሺி೛ǡி೜ሻ்ܧ)

஼ሺி೛ǡி೜ሻ்ܧ ൌ ൫ ଴ܲ ൅ ்ܲ ஼௣௤൯ ൈ ்ܶ ஼ሺி೛ǡி೜ሻ.                                                (10) 15 

The time consumed for changing tools is ்ܶ ஼ሺி೛ǡி೜ሻ, and ܲ ்஼௣௤ is the corresponding power level of the 16 

tool changer. The values of them depend on the number of tool stations rotated for changing tools 17 

[35]. 18 

In the next section, two solution algorithms and how they have been modified for searching the op-19 

timal PSFP are presented.  20 

4. Solution algorithms 21 

Depth-first search and genetic algorithm are applied to search for the optimal PSFP. Depth-first 22 

search is selected as one of the solutions because it is able to find the global optimal solution accu-23 
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rately. Comparatively, genetic algorithm normally consumes less time to reach the optimal or near-1 

optimal solution, however, finding out the global optimum is not guaranteed. Hence, experiments are 2 

delivered in Section 5 to compare the performance of the two algorithms in solving the aforemen-3 

tioned problem in terms of the solution quality and computation time.  4 

4.1. Depth-first search 5 

Depth-first search (DFS) is an enumeration searching method using the tree traversal technique, 6 

which visits the current path as far as possible before backtracking and trying the alternative path in 7 

the search tree [36]. The computation time consumed by DFS can be effectively reduced by a prun-8 

ing approach to avoid the unnecessary path visit. A flowchart of typical DFS is shown in Fig. 3. At 9 

the beginning of the algorithm, a search tree that can cover all possible paths is generated and a fea-10 

sible path is randomly selected as the initial upper bound. The nodes of the search tree are visited 11 

according to the depth-first searching strategy [37]. If the visited node is not eligible, the algorithm 12 

prunes and backtracks to the previous node. If the visited node is eligible and it is the end node, the 13 

upper bound will be updated. Then, the algorithm prunes and backtracks to the previous node. If the 14 

visited node is eligible but it is not the end node, the algorithm continues to visit the next node. After 15 

pruning and backtracking, the algorithm will check whether the stopping conditions have been met or 16 

not. If the stopping conditions are met, the latest upper bound will be reported, and the algorithm 17 

stops; otherwise, the next node will be visited. The stopping conditions can be that all nodes of the 18 

search tree have been visited. 19 

Fig. 3. A flowchart of depth-first search. 20 

4.1.1. Search tree generation for the EFT model 21 

At the beginning of the algorithm, a search tree that can cover all possible PSFPs is generated. For an 22 ݊-feature part, a search tree with ݊ ൅ ʹ levels is generated. In the search tree, a node denotes a fea-23 

ture and the level denotes the position in the sequence. Therefore, a node at the ݇-th level of the 24 

search tree indicates a feature at the ݇-th position of the sequence. The root node at the ͳ-st level and 25 

the node at the ݊ ൅ ʹ-th level represent the virtual first and final features ܨ଴ and ܨ௡ାଵ, respectively. 26 

A complete path in the search tree represents a possible PSFP. Considering a 3-feature part, a search 27 

tree with 5 levels is generated. A complete path labelled by bold blue lines in the search tree repre-28 

sents a possible PSFP ܨ଴-ܨଵ-ܨଷ-ܨଶ-ܨସ, as shown in Fig. 4.  29 

Fig. 4. The search tree for a 3-feature part. 30 
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4.1.2. Conditions of an eligible node and pruning 1 

An eligible node meets the following three conditions: (1) The node has not been visited in the cur-2 

rent path. (2) The node satisfies all of the precedence constraints. (3) The current path value is 3 

smaller than the upper bound after visiting the current node. The current path value is the sum from 4 

the root node to the current node. The corresponding nodes will be pruned if any condition above is 5 

not met, as illustrated in Fig. 4. 6 

4.2. Genetic algorithm 7 

Genetic algorithm (GA) is a heuristic search technique, which imitates the process of natural evolu-8 

tion by combining the survival of the fittest to create offspring [38]. The offspring replaces weak so-9 

lutions in each generation and finally the optimal or near-optimal solutions to the optimisation prob-10 

lem are generated [28]. A flowchart of standard GA is shown in Fig. 5. At the beginning of the algo-11 

rithm, an initial population with a size of ܰ chromosomes is randomly generated as the first genera-12 

tion. In the following generations, chromosomes are selected to breed a new generation through a 13 

fitness-based process measured by a fitness function [39]. The fitness function is defined as the ge-14 

netic representation and measures the quality of each chromosome in the population [40]. The chro-15 

mosomes with a higher fitness have more probabilities to be selected. The next generation of chro-16 

mosomes are generated from these selected chromosomes through the GA operators of (1) Crossover: 17 

an exchange of segments between the chromosomes and (2) Mutation: a random modification on the 18 

chromosome [28]. This generational process is repeated until a stopping condition has been met [41]. 19 

The stopping condition can be the specified maximum number of generations reached.  20 

Fig. 5. A flowchart of genetic algorithm. 21 

4.2.1. Encoding scheme and fitness evaluation 22 

In this research, a PSFP is encoded to a chromosome by integer coding [42]. Each gene in the chro-23 

mosome corresponds to a specific feature. For example, a PSFP ܨ଴-ܨହ-ܨ଻-ܨଷ-ܨ଺-ܨଵ-ܨସ-ܨଶ-଼ܨ  can be 24 

encoded as a chromosome [057361428]. The gene 3 represents the feature ܨଷ. If the gene sequence 25 

of a chromosome violates the precedence constraints between features, the corresponding chromo-26 

some can be corrected by exchanging and adjusting the positions of illegal genes in the sequence. 27 

The fitness of each chromosome is evaluated by a fitness function which is the reciprocal of the total 28 

EFT for a PSFP that ݏݏ݁݊ݐ݅ܨ ൌ ଵாಷೄ ൌ ଵσ ாಷ೅൫ೄೖǡೄೖశభ൯೙శభೖసభ . 29 
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4.2.2. Selection, crossover and mutation operators 1 

The selection operator aims at selecting the chromosomes in the current generation to reproduce off-2 

spring. The proportional roulette wheel selection is used for this research. More details of this selec-3 

tion operator can be referred to Razali and Geraghty [43]. 4 

The partially mapped crossover (PMX) is adopted as the crossover operator [44]. For instance, given 5 

parents ܤଵ ൌ ሾͲͷ͹͵͸ͳͶʹͺሿ and ܤଶ ൌ ሾͲͶ͵͸ͷʹͳ͹ͺሿ , PMX generates children ܤଵᇱ  and ܤଶᇱ  by the fol-6 

lowing procedures. 7 

Two points are randomly chosen as the crossover points according to the length of the chromosome, 8 

and then the segments between the two points of ܤଵ and ܤଶ are exchanged to generate two new 9 

chromosomes ܥଵ and ܥଶ, as below:  10 ܤଵ ൌ ሾͲͷ͹ȁ͵͸ͳͶȁʹͺሿܤଶ ൌ ሾͲͶ͵ȁ͸ͷʹͳȁ͹ͺሿ େ୰୭ୱୱ୭୴ୣ୰ሳልልልልልልሰ ଵܥ ൌ ሾͲͷ͹ȁ͸ͷʹͳȁʹͺሿܥଶ ൌ ሾͲͶ͵ȁ͵͸ͳͶȁ͹ͺሿ. 11 

After the above operation, there are probably some genes repeated in the new chromosomes. To cor-12 

rect this, the repeated genes outside segments between the crossover points are replaced according to 13 

the partially mapped method. For example, genes at the ʹ-nd loci and the ͷ-th loci are repeated and 14 

genes at the ͸-th loci and the ͅ-th loci are repeated in the chromosome ܥଵ. The ʹ -nd loci and the ͅ-th 15 

loci are at the outside of segments between the crossover points. Thus, the genes at the ʹ-nd and the 16 ͺ-th loci are replaced by the gene 3 and the gene 4, respectively. Finally, the two child chromosomes 17 

are obtained as: 18 ܤଵᇱ ൌ ሾͲ͵͹͸ͷʹͳͶͺሿܤଶᇱ ൌ ሾͲͷʹ͵͸ͳͶ͹ͺሿ. 19 

The swap mutation is adopted as the mutation operator which means two arbitrary genes of a chro-20 

mosome are selected and swap the values [45]. Following the above example, ܤଵᇱᇱ is the final child 21 

chromosome of ܤଵ after applying a mutation on ܤଵᇱ  as: 22 

ଵᇱܤ ൌ ሾͲ͵ ͹ ͸ͷʹ ͳ Ͷͺ൧୑୳୲ୟ୲୧୭୬ሳልልልልልሰܤଵᇱᇱ ൌ ൣͲ͵ ͳ ͸ͷʹ ͹ Ͷͺ൧. 23 
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5. Case study 1 

A prismatic part named part A with 15 actual features is used as the case study. Within the back-2 

ground of this research, 17 features are considered for this case, which are ܨଵ (plain), ܨଶ (stair), ܨଷ 3 

(groove), ܨସ (depression), ܨହ (notch), ܨ଺ (notch), ܨ଻ (hole), ଼ܨ  (hole), ܨଽ (hole), ܨଵ଴ (hole), ܨଵଵ (hole), 4 ܨଵଶ (hole), ܨଵଷ (hole), ܨଵସ (hole) and ܨଵହ (hole) and 2 virtual features ܨ଴ and ܨଵ଺, as shown in Fig. 6. 5 

The feature ܨଵ is required to be machined prior to any other features (ܵଶ ൌ  ଵ). A machining centre 6ܨ

(XHF-714F) is employed as the processor for part A. The experiment set-up for power data collec-7 

tion of XHF-714F is the same as that in Hu et al. [17]. The relationships between the number of tool 8 

stations rotated, power of tool changer and tool change time of XHF-714F are listed in Table 1. 9 

Standby power and axial rapid feeding power are shown in Table 2. All the data in the aforemen-10 

tioned two tables are obtained by experiment measurement. Coefficients which are obtained by re-11 

gression based on experiment data for models of spindle rotation power and axial feeding power are 12 

listed in Table 3. The speed of axial rapid feeding is obtained from the manual of XHF-714F, as 13 

shown in Table 4. Besides, each tool station and its corresponding cutter, and each cutter’s corre-14 

sponding features are presented in Table 5. Tool station #1 is used as the start in the experiment. The 15 

origin of coordinates O (0, 0, 0) is located at the centre of top surface of the part’s blank. Coordinate 16 

point G (-80, -80, 60) is used as the start and end position of the tool, and the position for tool change. 17 

Fig. 6. A prismatic part with 15 actual features and 2 virtual features. 18 

Table 1 The relationships between the number of tool stations rotated, power of tool changer and 19 

tool change time of XHF-714F. 20 

Table 2 Standby power and axial rapid feeding power of XHF-714F. 21 

Table 3 Coefficients in power models of XHF-714F. 22 

Table 4 Axial rapid feeding speed of XHF-714F. 23 

Table 5 Relationships between the tool station number, cutters and features. 24 

To prove the effectiveness of the proposed optimisation approaches in reducing the EFT, the follow-25 

ing comparison is conducted. A PSFP produced by the classical sequencing technique Left-to-Right 26 

(LTR) [22] serves as the benchmark to represent the existing approach to arranging the PSFP without 27 

the energy-saving consideration. The benchmark PSFP generated by LTR is ܨ଴ˉܨଵˉܨଶˉܨସˉܨଵଶ28 

ܨ଼ˉ଻ܨˉଵଷܨˉ ଵ଺ܨˉଵସܨˉଵହܨˉ଺ܨˉହܨˉଽܨˉଵ଴ܨˉଵଵܨˉଷܨˉ . The aforementioned depth-first 29 
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search (DFS) and genetic algorithm (GA) used in this research are developed on Dev C++ 5.11.0 1 

software with the programming language C++. The parameters of the computation facility used for 2 

experiments are as follows: Intel (R) Core (TM) i7-2630 QM CPU with 2.00 GHz frequency; 4.00 3 

GB RAM; Windows 7 (64bit) operating system. 4 

For this 17 features part, considering the two virtual features are fixed as the first and final ones on 5 

the feature sequence (ଵܵ ൌ ܵ , ଴ܨ ଵ଻ ൌ  ଵ଺), there are 256 possible pairs of features. In the following, 6ܨ

the value calculation procedure for the EFT between processing ܨଶ and ܨହ (ܧி்ሺிమǡிఱሻ) is used as exam-7 

ple to show how to use the models in Section 3. 8 

Based on above and Expression (1), ܧி்ሺிమǡிఱሻ is expressed as: 9 

ி்ሺிమǡிఱሻܧ ൌ ௉ሺிమǡிఱሻ்ܧ ൅  ஼ሺிమǡிఱሻ்ܧ
where ்ܧ௉ሺிమǡிఱሻ and ்ܧ஼ሺிమǡிఱሻ are energy consumption of tool path and tool change, respectively, during 10 

the feature transition from the feature ܨଶ to its post-feature ܨହ, which are calculated as follows. 11 

(1) Calculation of ்ܧ௉ሺிమǡிఱሻ 12 

As shown in Fig. 6, there are five feeding activities in the feature transition from ܨଶ to ܨହ. The proc-13 

ess parameters of them are listed in Table 6. According to Expression (3), ்ܧ௉ሺிమǡிఱሻ is calculated by: 14 

௉ሺிమǡிఱሻ்ܧ ൌ෍ܣ௝ሺிమǡிఱሻହ
௝ୀଵ  

where ܣଵሺிమǡிఱሻ,…, ܣହሺிమǡிఱሻ are energy consumption of the first to the fifth feeding activity, respec-15 

tively. Here the calculation of ܣଵሺிమǡிఱሻ is used as an example. 16 

Table 6 Process parameters of five feeding activities in the feature transition. 17 

Normal feeding is used for the first feeding activity. Thus, Expression (7) is employed to calculate its 18 

energy consumption as: 19 

ଵሺிమǡிఱሻܣ ൌ ሺ ௑ܲிଵଶହ ൅ ௒ܲிଵଶହ ൅ ௓ܲிଵଶହ ൅ ௌܲோଵଶହ ൅ ଴ܲሻ ൈ ஺ிଵଶହݐ . 20 
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According to Equations (9) and parameters in Table 6, the values of feeding speed at X-axis, Y-axis 1 

and Z-axis in the first feeding activity are: 2 

௑ிଵଶହݒ ൌ ʹʹͲͲ ൈ ͲǤʹ ൈ ȁିଷ଻ିሺିଷ଻ሻȁඥȁିଷ଻ିሺିଷ଻ሻȁమାȁସ଴ିଷ଴ȁమାȁିଵହିሺିଵହሻȁమ ൌ ͲmmȀmin, 3 

௒ிଵଶହݒ ൌ ʹʹͲͲ ൈ ͲǤʹ ൈ ȁସ଴ିଷ଴ȁඥȁିଷ଻ିሺିଷ଻ሻȁమାȁସ଴ିଷ଴ȁమାȁିଵହିሺିଵହሻȁమ ൌ ͶͶͲmmȀmin, 4 

௓ிଵଶହݒ ൌ ʹʹͲͲ ൈ ͲǤʹ ൈ ȁିଵହିሺିଵହሻȁඥȁିଷ଻ିሺିଷ଻ሻȁమାȁସ଴ିଷ଴ȁమାȁିଵହିሺିଵହሻȁమ ൌ ͲmmȀmin. 5 

Then according to Equation (8) and coefficients in Table 3, the values of feeding power of all axes 6 

are: 7 

௑ܲிଵଶହ ൌ ͷ ൈ ͳͲି଻ ൈ Ͳଶ ൅ ͲǤͲͶͻ ൈ Ͳ ൌ ͲW, 8 

௒ܲிଵଶହ ൌ െͳ ൈ ͳͲି଺ ൈ ͶͶͲଶ ൅ ͲǤͲͶ͵ ൈ ͶͶͲ ൌ ͳͺǤ͹͵W, 9 

௓ܲிଵଶହ ൌ െͳ ൈ ͳͲି଻ ൈ Ͳଶ ൅ ͲǤͲͶ͸ͳ ൈ Ͳ ൌ ͲW. 10 

According to Equation (6) and coefficients in Table 3, spindle rotation power is: 11 

ௌܲோଵଶହ ൌ ͲǤͲͺ͸ ൈ ʹʹͲͲ ൅ ͳͶǤ͹͸ ൌ ʹͲ͵Ǥͻ͸W. 12 

Standby power is: ܲ଴ ൌ ͵͹ͳǤͲW. 13 

Axial feeding time for the first feeding activity is:  14 

஺ிଵଶହݐ ൌ ଺଴ൈඥሺିଷ଻ିሺିଷ଻ሻሻమାሺସ଴ିଷ଴ሻమାሺିଵହିሺିଵହሻሻమଶଶ଴଴ൈ଴Ǥଶ ൌ ͳǤ͵͸Ͷs. 15 

Based on above, energy consumption of the first feeding activity in the feature transition from ܨଶ to 16 ܨହ is: 17 

ଵሺிమǡிఱሻܣ ൌ ሺͲ ൅ ͳͺǤ͹͵ ൅ Ͳ ൅ ʹͲ͵Ǥͻ͸ ൅ ͵͹ͳǤͲሻ ൈ ͳǤ͵͸Ͷ ൌ ͺͲͻǤͷ͹J. 18 

Similarly, energy consumption of other four feeding activities can be calculated as:ܣଶሺிమǡிఱሻ ൌ19 ͳͺͷǤͳͳJ, ܣଷሺிమǡிఱሻ ൌ ͳͲʹͻǤ͸ͶJ, ܣସሺிమǡிఱሻ ൌ ͳ͵ʹͳǤʹͷJ, and ܣହሺிమǡிఱሻ ൌ ʹͶʹǤͺ͹J. 20 

By summing up energy consumption of the five feeding activities, the value of ்ܧ௉ሺிమǡிఱሻ is: 21 
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௉ሺிమǡிఱሻ்ܧ ൌ ͵ͷͺͺǤͶͷJ. 1 

(2) Calculation of ்ܧ஼ሺிమǡிఱሻ 2 

According to Expression (10), ்ܧ஼ሺிమǡிఱሻ is calculated by: 3 

஼ሺிమǡிఱሻ்ܧ ൌ ሺ ଴ܲ ൅ ்ܲ஼ଶହሻ ൈ ்ܶ ஼ሺிమǡிఱሻ. 4 

According to Table 5, the corresponding cutters for ܨଶ and ܨହ locate at tool station #1 and #2, re-5 

spectively. Thus, one interval of the tool station rotation is required. According to Table 1, power of 6 

the tool changer is: ்ܲ ஼ଶହ ൌ ͺͶǤͺW, and tool change time is: ்ܶ ஼ሺிమǡிఱሻ ൌ ͳ͹Ǥ͸s. Therefore, ்ܧ஼ሺிమǡிఱሻ ൌ7 ሺ͵͹ͳǤͲ ൅ ͺͶǤͺሻ ൈ ͳ͹Ǥ͸ ൌ ͺͲʹʹǤͲͺJ. By summing up ்ܧ௉ሺிమǡிఱሻ and ்ܧ஼ሺிమǡிఱሻ, the EFT from ܨଶ to ܨହ is 8 

calculated as: ܧி்ሺிమǡிఱሻ ൌ ͵ͷͺͺǤͶͷ ൅ ͺͲʹʹǤͲͺ ൌ ͳͳ͸ͳͲǤͷJ. The value of ܧி்ሺிమǡிఱሻ and other 255 EFT 9 

values are listed in Table 7. 10 

Table 7 Energy consumption of feature transitions between features in the part. 11 

Based on the data in Table 7, the EFT for the benchmark PSFP is 145894.3J. Comparatively, the 12 

developed DFS achieves the global optimum of the minimum EFT, which is 104162.7J, with compu-13 

tation time of 42.13 seconds. The corresponding PSFP is ܨ଴ˉܨଵˉܨଶˉܨହˉܨ଺ˉܨଷˉܨସˉ଼ܨ  ଵ଺. The searching process of DFS is presented in Fig. 7. 15ܨˉଵଵܨˉଵହܨˉଵସܨˉଵଷܨˉଵଶܨˉ଻ܨˉଵ଴ܨ ଽˉ14ܨˉ

Therefore, 28.60% [(145894.3-104162.7)/145894.3] EFT can be reduced by using DFS compared to 16 

LTR technique.  17 

The parameter values used in GA are obtained by tuning, and their values are as follows: population 18 

sizeൌ ͳͲͲ, crossover probabilityൌ ͲǤͻ, mutation probabilityൌ ͲǤͲͷ, and generationൌ ͵ͲͲ. By run-19 

ning GA for several times, it can also achieve the global minimum EFT (104162.7J) with computa-20 

tion time of 2.42 seconds. The corresponding PSFP is the same as that produced by DFS. A search-21 

ing process of GA for the optimal solution is shown in Fig. 8. However, in most of the runs of GA, it 22 

can only achieve the near-optimal solutions for this case. For example, a near-minimum EFT that GA 23 

can get is 104179.8 J. The corresponding PSFP is ܨ଴ˉܨଵˉܨଶˉܨସˉܨଷˉܨ଺ˉܨହˉܨଵ଴ˉܨଽˉ଼ܨ  ଵ଺. It also consumes less computation time (2.48 seconds) to get 25ܨˉଵଵܨˉଵଶܨˉଵଷܨˉଵସܨˉଵହܨˉ଻ܨ 24ˉ

the near-optimal solution. A searching process of GA for a near-optimal solution of this case is 26 

shown in Fig. 9. 27 
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Fig. 7. The searching process of depth-first search for the optimal solution. 1 

Fig. 8. A searching process of genetic algorithm for the optimal solution. 2 

Fig. 9. A searching process of genetic algorithm for a near-optimal solution. 3 

According to the optimisation results, for this case, GA usually returns a near-optimal solution while 4 

DFS always obtains the global optimum. Thus, compared to GA, DFS is superior in finding the most 5 

energy-saving PSFP. Although the solution quality of GA is probably little inferior to that of DFS, its 6 

computation time is about 94.11% [(42.13-2.48)/42.13] lesser than that of DFS. Moreover, when the 7 

number of features in a part is increasing, the computation time of DFS probably increases sharply 8 

and becomes intolerable. In this situation, GA is preferable to be employed to get the near-optimal 9 

PSFP within reasonable computation time. 10 

6. Discussion 11 

The case study has shown that 28.60% of the EFT can be reduced by using the single objective opti-12 

misation, which validates the effectiveness of our approach in single machine environment. However, 13 

in the real manufacturing circumstance, a part usually requires more than one machine tool to finish 14 

all of the processing. Thus, the performance of our approach on the EFT reduction in multi-machine 15 

environment is discussed and validated in this section. In addition, it is not reasonable to only reduce 16 

the EFT without considering other objectives including the machining time, quality and cost, which 17 

can cause machine tool tardiness and product quality problems. Thus, a multi-objective model con-18 

sidering the EFT is developed, and then the effect of the EFT minimisation on other objectives is 19 

demonstrated and discussed. 20 

6.1. EFT reduction in multi-machine environment 21 

If a part requires more than one machine tool, its features to be processed on the same machine can 22 

be sorted and sequenced to reduce the EFT. For example, it is assumed that the part A in Fig. 6 re-23 

quires two machine tools including a CNC milling machine and a CNC drilling machine to finish all 24 

of its features. Specifically, a CNC milling machine is employed to process the features including ܨଵ 25 

(plain), ܨଶ (stair), ܨଷ (groove), ܨସ (depression), ܨହ (notch) and ܨ଺ (notch); a CNC drilling machine is 26 

employed to process the other features including ܨ଻ (hole), ଼ܨ  (hole), ܨଽ (hole), ܨଵ଴ (hole), ܨଵଵ (hole), 27 ܨଵଶ (hole), ܨଵଷ (hole), ܨଵସ (hole) and ܨଵହ (hole).  28 
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Two benchmark PSFPs generated by the LTR technique for the CNC milling machine and the CNC 1 

drilling machine are ܨ଴ˉܨଵˉܨଶˉܨସˉܨଷˉܨହˉܨ଺ˉܨଵ଺ and ܨ଴ˉܨଵଶˉܨଵଷˉܨ଻ˉ଼ܨ  ଵ଺. It is assumed that the parameters of two machine tools are the same as that of 3ܨˉଵସܨˉଵହܨˉଽܨ ଵ଴ˉ2ܨˉଵଵܨˉ

XHF-714F, thus the data in bold font in Table 7 can be utilised for the EFT calculation. Then, the 4 

EFT for the two benchmark PSFPs is 20918.2J and 105335.9J, respectively. In total, the benchmark 5 

EFT for part A is 126254.1J (20918.2+105335.9) in two-machine environment. Comparatively, the 6 

optimal PSFPs generated by DFS for the two machine tools are ܨ଴ˉܨଵˉܨଶˉܨହˉܨ଺ˉܨଷˉܨସˉܨଵ଺ 7 

and ܨ଴ˉܨ଻ˉ଼ܨ  ଵ଺. According to data in Table 7, the 8ܨˉଵଵܨˉଵଶܨˉଵଷܨˉଵସܨˉଵହܨˉଵ଴ܨˉଽܨˉ

EFT for the two optimal PSFPs is 20774.9J and 84132.3J, respectively. In total, the minimum EFT 9 

for part A is 104907.2J (20774.9+84132.3) in two-machine environment. Consequently, when part A 10 

requires two machine tools, our approach still achieves a 16.91% [(126254.1-104907.2)/126254.1] 11 

EFT reduction, which validates its effectiveness in multi-machine environment. 12 

6.2. Multi-objective model considering the EFT 13 

The developed single objective model for minimising the EFT can integrate with the models for op-14 

timising other objectives such as the machining time, quality and cost to obtain the required multi-15 

objective model. For example, to avoid machine tool tardiness, the time consumption of feature tran-16 

sitions (TFT) is regarded as a new objective and integrated with the developed EFT model to obtain a 17 

bi-objective model for balancing the TFT and the EFT. Based on Expression (2), the bi-objective 18 

model is developed as: 19 

൝݉݅݊݅݉݅ܧ ݁ݏிௌ ൌ σ  ݁ݏி்ሺௌೖǡௌೖశభሻ௡ାଵ௞ୀଵ݉݅݊݅݉݅ܧ ிܶௌ ൌ σ ி்ܶሺௌೖǡௌೖశభሻ௡ାଵ௞ୀଵ                                                    (11) 20 

where ܶ ிௌ is the total TFT based on a specific PSFP, and ி்ܶሺௌೖǡௌೖశభሻ is the TFT between processing 21 

the feature at the ݇-th position and the feature at the ݇ ൅ ͳ-th position of a sequence. It is assumed 22 

that the features ܨ௣ and ܨ௤ are located at the ݇-th position and the ݇൅ ͳ-th position of a sequence, 23 

respectively. Then, by referring to Expression (1), ܶி்ሺௌೖǡௌೖశభሻ can be expressed as: 24 

ி்ܶሺௌೖǡௌೖశభሻ ൌ ி்ܶሺி೛ǡி೜ሻ ൌ ்ܶ ௉ሺி೛ǡி೜ሻ ൅ ்ܶ ஼ሺி೛ǡி೜ሻ                                             (12) 25 

where ܶ ்௉ሺி೛ǡி೜ሻ is time consumption of tool path in the feature transition from the feature ܨ௣ to its 26 

post-feature ܨ௤. By referring to Expression (3), ்ܶ ௉ሺி೛ǡி೜ሻ is expressed as: 27 



22 
 

்ܶ ௉ሺி೛ǡி೜ሻ ൌ σ ௝ሺி೛ǡி೜ሻ௠௝ୀଵܤ                                                     (13) 1 

where ܤ௝ሺி೛ǡி೜ሻ is time consumption of the ݆-th feeding activity in the feature transition from ܨ௣ to ܨ௤. 2 

In a rapid feeding activity, ܤ௝ሺி೛ǡி೜ሻ equals to ݐ஺ோ௝௣௤ ; otherwise, it equals to ݐ஺ி௝௣௤ . 3 

After obtaining the above bi-objective model, multi-objective optimisation approaches such as Non-4 

dominated Sorting Genetic Algorithm II (NSAG-II) and Strength Pareto Evolutionary Algorithm 5 

(SPEA) can be employed to find a set of optimal PSFPs that result in the optimal trade-offs between 6 

TFT and EFT [46]. These optimisation approaches will be researched in the future. In the following, 7 

the effect of the EFT minimisation on the TFT is demonstrated and discussed based on the developed 8 

TFT model.  9 

According to Expressions (11)-(13) and data in Tables 1, 4, 5 and 6, the TFT based on the optimal 10 

PSFP which results in the EFT minimisation of part A is calculated as follows: 11 

ிܶௌ ሺEFT minimisationሻ ൌ ி்ܶሺிబǡிభሻ ൅ ி்ܶሺிభǡிమሻ ൅ ி்ܶሺிమǡிఱሻ ൅ ி்ܶሺிఱǡிలሻ ൅ ி்ܶሺிలǡிయሻ ൅ ி்ܶሺிయǡிరሻ ൅ ி்ܶሺிరǡிఴሻ ൅12 

ி்ܶሺிఴǡிవሻ ൅ ி்ܶሺிవǡிభబሻ ൅ ி்ܶሺிభబǡிళሻ ൅ ி்ܶሺிళǡிభమሻ ൅ ி்ܶሺிభమǡிభయሻ ൅ ி்ܶሺிభయǡிభరሻ ൅ ி்ܶሺிభరǡிభఱሻ ൅ ி்ܶሺிభఱǡிభభሻ ൅13 

ி்ܶሺிభభǡிభలሻ ൌ ͲǤ͸ͳ͵ ൅ ͳǤͺͲ͵ ൅ ʹͲǤͺʹͺ ൅ ʹǤʹ͹͹ ൅ ͵Ǥʹʹ͹ ൅ ͳǤͲʹͳ ൅ ͵ʹǤͶͺ͸ ൅ ͳʹǤͺ͹ͷ ൅ ͳʹǤͺ͹ͷ ൅14 ͳʹǤͺ͹ͷ ൅ ͵ͲǤͺͷͲ ൅ ͳʹǤͻʹʹ ൅ ͳ͵Ǥʹʹʹ ൅ ͳʹǤͻʹʹ ൅ ͵͵Ǥͺ͹ʹ ൅ ͲǤ͸ͶͲ ൌ ʹͲͷǤ͵ͳs. 15 

In comparison, a PSFP without considering the EFT reduction for part A is generated by the LTR 16 

technique, and the TFT based on this PSFP is: ிܶௌ ሺLTR techniqueሻ ൌ ʹͺͶǤͻͶs. Thus, 27.95% 17 

[(284.94-205.31)/284.94] of the TFT reduction benefits from the EFT minimisation in the multi-18 

objective problem. However, the EFT minimisation is not always beneficial to the TFT reduction. 19 

For example, when a PSFP with the minimum TFT is adjusted to a PSFP with the minimum EFT, its 20 

TFT can increase. In this situation, the trade-off between the minimisation of TFT and EFT should 21 

be made. 22 

7. Conclusions and future work 23 

Reducing the electricity consumption of machine tools during the run-time operations gains more 24 

and more importance in modern manufacturing. The model for the single objective optimisation 25 

problem which aims at minimising the energy consumption of feature transitions (EFT) has been 26 

introduced. The model was developed by understanding and characterising the energy consumption 27 
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of machine tools while executing the rapid and normal feeding activities and the tool change. The 1 

total amount of the EFT for processing a part on a single machine can vary by modifying the proc-2 

essing sequence of features of the part (PSFP). To find the optimal PSFP which results in the mini-3 

misation of the total EFT, depth-first search and genetic algorithm are employed as the optimisation 4 

approaches.  5 

In the case study, the optimal and near-optimal sequences of features for a 15 features part which is 6 

processed by a machining centre (XHF-714F) have been found. The optimal PSFP achieves a 28.60% 7 

EFT reduction. This validates the effectiveness of the developed mathematic model and optimisation 8 

approaches in single machine environment. When the part requires more than one machine tool to 9 

finish all of its features, this approach still achieves a 16.91% EFT reduction. Finally, the developed 10 

EFT model is integrated with a TFT model to obtain a bi-objective model for balancing the TFT and 11 

the EFT. A case shows that 27.95% of the TFT reduction benefits from the EFT minimisation. 12 

In this research, it is time-consuming and error-prone to process the data of machine tools and parts 13 

for the EFT model and then calculate the EFT values between each pair of features. Thus, the auto-14 

mation for the EFT calculation can be improved. One limitation of this research is that the energy 15 

consumption of machine tools during setup change and machine change has not been considered as a 16 

portion of the EFT. For the next step, research on reducing the energy consumed for setup change 17 

and machine change by adjusting the PSFP will be conducted. Besides, multi-objective optimisation 18 

approaches will be employed to obtain the optimal PSFPs that result in the optimal trade-offs among 19 

the machining energy consumption, time, quality, cost and other objectives. Finally, the proposed 20 

feature sequencing approach will be combined with the existing cutting parameter optimisation to 21 

promote the energy-aware integrated process planning for machining. 22 
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Table 1 The relationships between the number of tool stations rotated, power of tool changer and 

tool change time of XHF-714F. 

The number of tool stations rotated 

0 1 2 3 4 5 6 7 8 

Power [W] 0.0 84.8 90.4 93.6 96.2 100.1 100 104.2 102.4 

Time [s] 0.0 17.6 19.0 20.0 20.9 21.9 23.5 24.1 25.3 
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Table 2 Standby power and axial rapid feeding power of XHF-714F. 

Item Power [W] 

Standby power ܲ଴ 371.0 

X-axial rapid feeding power ௑ܲோ 855.8 

Y-axial rapid feeding power ௒ܲோ 504.9 

Z-axial upward and downward rapid feeding 
power (ܲ ௓ோ௎ , ܲ ௓ோ஽ ) 

(659.1, 573.4) 
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Table 3 Coefficients in power models of XHF-714F. 

Item Coefficient 

Monomial coefficient and constant in the 
spindle rotation power model (ܤௌோ, ܥௌோ) 

(0.086, 14.76) 

Quadratic coefficient in the feeding power 
model of X-axis, Y-axis, Z-axis upward and 
downward (ܣ௑ி, ܣ௒ி, ܣ௓ி௎ ௓ி஽ܣ , ) 

(5×10-7, -1×10-6, 
 -5×10-7, -1×10-7) 

Monomial coefficient in the feeding power 
model of X-axis, Y-axis, Z-axis upward and 
downward (ܤ௑ி, ܤ௒ி, ܤ௓ி௎ ௓ி஽ܤ , ) 

(0.0491, 0.043, 
0.059, 0.0461) 
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Table 4 Axial rapid feeding speed of XHF-714F. 

Item Speed [m/min]

Rapid feeding speed of X-axis, 
Y-axis and Z-axis (ݒ௑ோ, ݒ௒ோ, ݒ௓ோ) 

(12, 12, 10) 
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Table 5 Relationships between the tool station number, cutters and features. 

 The tool station number of the tool changer 

 #1 #2 #3 #4 #5 

Cutters W400F-FS W400F-FS NACHI SD8(8) NACHI SD8(10) NACHI SD8(12)

Features ܨଵ, ܨଶ ܨଷ, ܨସ, ܨହ, ܨ଺ ܨ଼ ,଻ܨ  ଵଵܨ ଵହܨ ,ଵସܨ ,ଵଷܨ ,ଵଶܨ ଵ଴ܨ ,ଽܨ ,
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Table 6 Process parameters of five feeding activities in the feature transition. 

The ݆ -th 
feeding 
activity 

Feeding 
method 

Start coordinate 
position 

End coordinate
 position 

Spindle 
speed ݊ௌோ௝ଶହ  

[rpm] 

Feed 
rate ݂௝ଶହ 
[mm/r] 

1 Normal (-37, 30, -15) (-37, 40, -15) 2200 0.2 

2 Rapid (-37, 40, -15) (-37, 40, 10) 2200 - 

3 Rapid (-37, 40, 10) (-80, -80, 60) 2200 - 

4 Rapid (-80, -80, 60) (61, -40, -1.5) 2200 - 

5 Normal (61, -40, -1.5) (61, -37, -1.5) 2200 0.2 
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Table 7 Energy consumption of feature transitions between features in the part. 

Energy [J] F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 

F0 775.2 852.3 9780.0 8954.2 9586.2 9827.8 14955.7 15162.2 15354.8 15241.2 17111.3 15369.7 15558.2 16051.7 15950.7 ∞ 

F1 ∞ 1582.6 11602.7 10776.9 11408.9 11650.5 16778.4 16984.9 17177.5 17063.9 18934.0 17192.4 17380.9 17874.4 17773.4 1822.7 

F2 1534.6 ∞ 11804.4 10978.5 11610.5 11852.2 16980.0 17186.6 17379.1 17265.5 19135.7 17394.1 17582.5 18076.0 17975.0 2024.3 

F3 10031.8 10109.0 ∞ 1090.1 1007.5 967.2 15445.7 15652.2 15844.8 15731.2 17873.4 16078.9 16267.3 16760.8 16659.8 1234.5 

F4 10492.6 10569.8 2392.8 ∞ 2440.6 2425.4 15906.5 16113.0 16305.6 16192.0 18334.2 16539.7 16728.1 17221.6 17120.6 1695.3 

F5 11225.9 11303.0 2354.1 2370.0 ∞ 1667.1 16639.8 16846.3 17038.8 16925.2 19067.4 17272.9 17461.4 17954.9 17853.9 2428.6 

F6 11311.7 11388.8 2354.1 2370.0 1667.1 ∞ 16725.6 16932.1 17124.7 17011.1 19153.3 17358.7 17547.2 18040.7 17939.7 2514.4 

F7 10426.4 10503.6 10664.6 9838.8 10470.8 10712.4∞ 5871.1 6063.7 5950.1 16998.1 14984.4 15172.9 15666.4 15565.4 884.6 

F8 10633.0 10710.1 10871.2 10045.4 10677.4 10919.05871.1 ∞ 5950.1 6063.7 17204.6 15191.0 15379.4 15872.9 15771.9 1091.2 

F9 10825.5 10902.7 11063.7 10237.9 10869.9 11111.56063.7 5950.1 ∞ 5871.1 17397.2 15383.5 15572.0 16065.5 15964.5 1283.7 

F10 10711.9 10789.0 10950.1 10124.3 10756.3 10997.95950.1 6063.7 5871.1 ∞ 17283.6 15269.9 15458.4 15951.9 15850.9 1170.1 

F11 11714.3 11791.4 12224.6 11398.7 12030.7 12272.416130.3 16336.8 16529.4 16415.8 ∞ 15274.4 15462.9 15956.4 15855.4 1174.6 

F12 10919.4 10996.5 11376.8 10550.9 11182.9 11181.715063.4 15269.9 15462.5 15348.9 16221.1 ∞ 5926.5 6485.6 6384.7 852.2 

F13 11107.9 11185.0 11565.2 10739.4 11371.4 11613.015251.8 15458.4 15650.9 15537.3 16409.6 5926.5 ∞ 6384.7 6485.6 1040.6 

F14 11601.4 11678.5 12058.7 11232.9 11864.9 12106.515745.3 15951.9 16144.4 16030.8 16903.1 6485.6 6384.7 ∞ 5926.5 1534.2 

F15 11500.4 11577.5 11957.7 11131.9 11763.9 12005.515644.3 15850.9 16043.4 15929.8 16802.1 6384.7 6485.6 5926.5 ∞ 1433.2 
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Fig. 1. A 2-feature part that has two feasible processing sequences. 
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Fig. 2. Power profiles of two sequences: (a) ܨ଴-ܨଵ-ܨଶ-ܨଷ; (b) ܨ଴-ܨଶ-ܨଵ-ܨଷ. 
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Fig. 3. A flowchart of depth-first search. 
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Fig. 4. The search tree for a 3-feature part. 
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Fig. 5. A flowchart of genetic algorithm. 
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Fig. 6. A prismatic part with 15 actual features and 2 virtual features. 
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Fig. 7. The searching process of depth-first search for the optimal solution. 
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Fig. 8. A searching process of genetic algorithm for the optimal solution. 
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Fig. 9. A searching process of genetic algorithm for a near-optimal solution. 

 

 


