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Minimising the energy consumption of tool change and tool path of ma-

chining by sequencing the features

Abstract: A considerable amount of energydsnsumed by machine tools during the
run-time operations such as tool change aotigath. The value of this part of energy is
affected by the processing sequence of featafes part (PSFP) because the tool path
and tool change plan will vary based on diféerent PSFP. This papérstly aims to un-

derstand the relationship between the PSFPtlamanergy consumption of tool change

and tool path during the feature transitions. Then, a model is introduced for the single ob-

jective optimisation problem that minimséhe energy consumption of machine tools
during the feature transitions wh include all the tool pathnd tool change operations.
Finally, optimisation approaches includingptiefirst search and genetic algorithm are
modified and applied to find the optimal AS&hich results in the minimisation of the
energy consumption of featut@nsitions (EFT). In the casstudy, the optimal and near-
optimal sequences of features, in terms efrtiinimum EFT, of a 15 features part which
is processed by a machining centre haeen found. The optimal PSFP achieves a
28.60% EFT reduction, which validates theeefiveness of the developed model and op-
timisation approaches. Besides, a 27.95% tigdhuction of feature transitions benefits

from the EFT minimisation.

Keywords: Energy; Machine tools; Tool changed tool path; Feature sequencing;

Depth-first search; Genetic algorithm
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1. Introduction

To save cost and become environmentallynfilg, reducing the energy consumption of production
facilities is a new target for modemanufacturing companies [1].adhine tools are widely used as
the basic production facilities [2h the manufacturing industry J[3and they are highly energy-
intensive during production [4]The statistics from the U.S. energy information administration
showed that the electricity consumption of maehools occupied abovi®% of national consump-
tion [5]. Therefore, reducing the energy constionp of machine tools (EMT) is a reasonable and

significant routine to promote theanufacturing sustainability and allate the energy crisis [6].

Reducing the EMT is the gbaf this paper. To achieve this dparevious approaches have been
developed to understand and characterise the FJ/For example, Dahmus and Gutowski [8] and
Kordonowy [9] broke the EMT in machining torée levels: the standby pew the run-time opera-
tions power and the actual cutting power [ITHe machine tools consume only the standby power
during the idle mode [11]. This refers to the etaf machine tools that the main power, computer
panel and emergency stop are all switched on without load on anysnib?]. Run-time operations,
including tool change and tool path (multiple aXedding), enable the selected cutter to move to the
right position to begin the actual cutting for thexingtep. By executing these operations, the power
level of machine tools further ineases because servo motors anddép motors are all loaded. Fi-
nally, the actual cutting requiredather additional power [13]. Most existing research on reducing
the EMT has been focused on actual cuttingrgy consumption [14] and standby energy consump-
tion [15]. However, the wterstanding of characteristics of rumé energy consumption is limited in
existing research, and the apprcegto reduce this part of energy consumption have not been well
explored. Especially, run-time ergy consumption accounts for mdren 35% of the total EMT
during production [16], and it ha&nergy-saving potentials. Thumyr research on reducing the EMT

is focused on the run-time operations.

Adjusting the processing gaence of features of anh@dPSFP) is an effectevapproach to reduce the
EMT [17], and this approach is adopted in oupgra It has been proved that actual cutting energy
consumption of a machine tool can be reduiogddjusting the PSFP [14However, existing re-
search ignored run-time energgnsumption when adjusting the PSHB]. Actually, the value of
run-time energy consumption of a specific machow is also affected by the PSFP because the tool
path for the cutter to reach the part for ga@esing a specific feature and the corresponding tool
change plan can vary when its preceding feataréhe sequence is different [19]. This causes vary-

ing values of feeding power, feeding distana®eding speed, and tool aflge time and power,
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thereby resulting in the differenlue of total run-time energy camaption. It is the innovation of
this paper to develop the mathematic relatignletween the PSFP and the value of run-time energy

consumption and then find the most energy-efficient PSFP.

Based on the above, our study firstly aims at wstdading and charactemg the EMT during run-
time operations including tool path and tool charif@ee sub-models havween developed to de-
scribe energy consumed by a machine tool wéxecuting rapid and normé&eding activities and

tool change. Based on the sub-models, a mod#gpict energy consumption during the tool change
and tool path between processing a specific feanaats pre- or post- feates has been further de-
veloped. This part of energy isfaded as the energy consumptionfeéture transitions (EFT). The
single objective optimisation in this research is to minimise the total EFT for processing a part by
searching for the optimal PSFP. Depth-first seanoth genetic algorithm are modified and used as
optimisation approaches. Based on a case studprtippsed model has been validated and the op-
timisation approaches are effeeiin finding the optimal or nearptimal processing sequences of
features of a part (PSFPs). In this study, it is asduiva all of the required processing for a part can
be finished on a single machine tddbla part requires more than one machine tool to finish all of its
features, the features to be processed on the matiEne can be sorted and sequenced to reduce the
EFT.

In the remainder of this paper, the literature revigwresented in the nesgection. The description

of the research problem and the model for miningghe EFT are given ineStion 3. In Section 4,
the working procedures of depth-first searckd genetic algorithm for solving the aforementioned
optimisation problem are described. A case studypiglucted to demonstrate the developed model
and optimisation approaches in Section 5. In 8adi the effectiveness of this approach on the EFT
reduction in multi-machine environment and a malijective model considering the EFT are dis-

cussed. Finally, a brief summary and fetwork are given in Section 7.

2. Literature review

Research has been developed to understancekgonship between the PSFP and the EMT. For
example, Sheng et al. [14] developed a model pacti@ow the feature sequemof a part with three
features (a groove, a hole and an@r face) to influence the valwf cutting energy consumption.
Wiener [20] investigated the EMT models for cdexpparts with more than 14 features. Srinivasan
and Sheng [21] considered the magacturing constraints such as the precedence relationships be-
tween features within a specific part. Further, ahoe to automatically identify features of a part

4
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and generate energy-saving operations was devklop&’in et al. [18]. However, only the cutting
energy consumption of machineots has been considered ire taforementioned works while the
EFT including the energy consumption of tool chaagéd tool path has been ignored. Thus, the EFT
model based on the PSFP is supplemented to bridge this knowledge gap.

Considerable amount of reseattthis been focused on modelling twsts of tool change and tool
path based on the PSFP. These can be used ssnoefe for our study to model the EFT. For exam-
ple, Al-Sahib and Abdulrazzaq [22] and Abu Qudeirakef23] studied the td path cost based on a
hole-making process. The corresponding problermfmimising the tool path cost by feature se-
quencing was formulated as a special caseavelling salesman problenand the drilling time
model was developed as well [24]. Kolahan anangi [25] re-modelled the previous hole-making
process by realising that the relevant cost misatidon problem was more mplex than the travel-

ling salesman problem because the cost assdcwith each drilling operation was both sequence-
dependent and position-dependdittis single objective optimisatn problem has also been formu-
lated as a 0-1 non-linear mathematic model withsideration of tool air-cutting time and tool
switch time [26]. For the tool change cost, a single objective optimisation problem for minimising it
by feature sequencing was developed subjected to various manufacturing precedence constraints [27
Bhaskara Reddy [28] proposed a feature precagmaph to identify maracturing precedence

constraints.

In above modelling research on twsts of tool change and tool path, there are mainly three limita-
tions which weakened the accuracy of models: (})ak been assumed thhe costs for all tool
change operations on a specific machine tool are.ddowever, in the reality, the tool change cost
varies based on the number of istatintervals rotated. (2) The tool path time was the single parame-
ter to calculate the tool path cost. However, the padh cost is affected by both the tool path time
and the tool path cost per unit time. The lattex @a variable, changing its value based on process
parameters such as feeding speed. (3) The dataarsealculating the costs e¢bol change and tool
path were subjectively assumed instead of erpentally measured on site. In the modelling work
for the EFT, these weaknesses have been overdxyusing the experimentally measured power

data of machine tools and developing more precise models.

Both deterministic algorithms and meta-heuristiga’e been used as optimisation approaches to
minimise the costs of tool changead tool path based on the PSFRese can be used as references
for our study to minimise the EFT. Normally,tdeministic algorithms such as dynamic program-

ming and branch-and-bound were employed to fived global optimum. However, these solutions

5
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are more applicable for the sir-medium sized problems withumber of features less than 20.
The computation time they consumed to findghlabal optimum sharply increases when solving the
large sized problems [29]. Comparatively, meta-tstigs are able to provide the local or global op-
timum within much less computan time [30]. Therefore, thepecome increasingly popular to
solve feature sequencing problems. Both types lotisas have been tested in our article. Specifi-
cally, depth-first search and genetic algorithm setected as the optimisation approaches. When
employing these approaches to minimise the ERferagétechnical difficultis need to be overcome,
such as the search tree generation for the E&demFinally, the optimigan results and computa-

tion time of developed approaches arkdaded and compared in the case study.

According to the relevant litetares reviewed, it canonclude that the EFT including energy con-
sumption of tool change and tool path basedhe PSFP has not been analysed and modelled. Fur-
ther, optimisation approaches for reducing Bl through adjusting the PSFP have not been ex-
plored yet. These knowledge gaps have negativastamn the realisation of our goal to reduce the
EMT. To bridge them, this paper develops a nonedel to reflect the mathematic relationship be-
tween the PSFP and the EFT. Based on this modgth-fiest search and getic algorithm are first
adopted to search for the PSFPs that resualterminimum EFT. The proposed solutions for model-
ling and optimising the EFT are main novelties andtdbutions of this papgeand they are intro-
duced in the following sections.

3. Problem statement and modelling

The notation used in the problem statement, algorithm description and throughout the paper is as fol-

lows:

Feature sequencing problem

i,k,j indices for features of a papgsitions in a PSFP and feeding
activities in a feature transition
F; i-th feature of a part
F¢ a finite set ofx features of a park, = {F;}|-,
F a finite set of + 2 features of a part within machining envi-
ronmentF = {F} F. cF
F, a virtual feature to denote the start position of tools in machin-
ing
J a virtual feature to denote tleed position of tools in machin-
ing
Sk k-th position of a sequence
S a finite set ofn + 2 positions in a PSFB, = {S, }71%
m number of feeding activities in a feature transition
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Energy consumption
total EFT based on a specific PSFP [J]
EFT from the featurg, to its post-featuré, [J]

energy consumption of tool chgm in the feature transition
from E, to F, [J]

energy consumption of tool paih the feature transition from
Fp to F,; [J]

EFT from the feature at theth position to the feature at the
k + 1-th position of a sequence [J]

a finite set of energy consumption of feeding activities

(Fp. FO™ ) .
A= {Aj } during the feature transition from to F,,
j=1

O0<p<n,1<qg<n+1,p#q)

energy consumption of theth feeding activityof the feature
transition fromr, to F;, [J]

relative distances between the start and end coordinate posi-
tions of X-axis, Y-axis andZ-axis in thej-th feeding activity of
the feature transition fro, to F; [mm]

start and end coordinate value)6hxis in thej-th feeding ac-
tivity of the feature transition frorf, to F, [mm]

spindle rotation power in thjeth feeding activig of the feature
transition fromF, to F, [W]

spindle rotation speed in thigh feeding activig of the feature
transition fromr, to F; [rpm]

feeding power ofX-axis, Y-axis andZ-axis in thej-th feeding
activity of the feature transition frof to F, [W]

feeding speed at th¥-axis in thej-th feeding activity of the
feature transition fron, to F, [mm/min]

feeding speed in theth feeding activity ofthe feature transi-
tion fromF, to F; [mm/min]

feed rate in thg-th feeding activity of the feature transition
from E, to F, [mm/r]

power of tool changer ithe feature transition frorj, to F;

[W]

Time consumption

rapid feeding time oX-axis, Y-axis andZ-axis in thej-th feed-
ing activity of the feature transition froR) to F, [s]

axial rapid feeding time in theth feeding activity of the fea-
ture transition fron¥;, to F, [s]

axial feeding time in th¢-th feeding activityof the feature
transition fromr, to F; [s]

tool change time in thieature transition fronf, to F; [s]

total time consumption of feature transitions based on a spe-
cific PSFP [s]
time consumption of feature tratisns from the feature at the

7
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k-th position to the feature at tlhet+ 1-th position of a se-

guence [s]
7 Fofa) time consumption of tool path in the feature transition from the
TP feature, to its post-featuré, [s]
g Fvfa) time consumption of thg-th feeding activity of the feature
J transition fromF, to F, [s]

Machine tool related parameters
Pxr, Pyr, P,z rapid feeding power of-axis, Y-axis andZ-axis [W]

P, P2, upward and downward rapid feeding poweZedxis [W]
Axp, Ayp quadratic coefficient in th&-axial andY-axial feeding power
models
AP, AYL quadratic coefficient in theZ-axial downward and upward
feeding power models
Bgg monomial coefficient in the spindle rotation power model
Bxr, Byr monomial coefficient in th&-axial andY-axial feeding power
models
BZr, BYp monomial coefficient in theZ-axial downward and upward
feeding power models
Csr constant in the spindle rotation power model
P, standby power of a machine tool [W]

Vxr, Uyr, Vzg  Fapid feeding speed of-axis, Y-axis andZ-axis [m/min]

Considering a part, all of its actual features can lokenoted as a finite st = {F;}~,. While ma-
chining the part, the total EFT mot only affected by the sequencetlod actual features but also the
start and end positions of tools. ide, they are defined as two vt features for the part, denoted
by F, andF, ., respectively. In this machining background, there is a finite set+o? features
F = {F;}™} for ann-features part. ThE; is a subset of thE (F, c F). In terms of optimisation, the
aim is to determine the optimal PSFP which rasimltthe minimisation athe total EFT under prece-

dence constraints.

As illustrated inFig. 1, a part with two featured’{ andF,) is used as an example to show different
PSFPs can result in different valugisthe total EFT. The two feaes are to be pressed by two
different drilling tools. The stadnd end positions of tools are virtd@atures which are denoted by
F, andF;, respectively. Thereforé,-F,-F,-F; andF,-F,-F,-F; are the two PSFPs which can be
used. Tool paths of the two PSFPe kbelled by blue solid linesd red dashed linesespectively,

in Fig. 1. A typical tool path is consisted of sevefaéding activities. For instance, the tool path
from F; andF, includes four feeding activitie®;, R,, Rs andN,. “R” and “N” here are used to rep-
resent rapid feeding and normaktling. These are the two potentedding approaches to complete
a specific feeding activity.
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Fig. 1. A 2-feature part that has dWeasible processing sequences.
Fig. 2. Power profiles ofwo sequences: (&)-F;-F,-F;; (b) Fy-F,-F;-F;.

The corresponding power input model of a machdaw when processing the part according to the
aforementioned two sequences are showkrign2(a) and(b), respectively. The input power which a
machine requires over time is defined as a st fyection represented by the solid black lind&ig.

2. It can be divided to constant power (standi®y)and variable power [31]. The standby power is
denoted a®,. The variable power level during tool paththe sum of power of axial feeding and
spindle rotation. The power of todhanger is also a variable. Ig. 2, the areas filled with blue and
red slashes and nets represent energy consungsttbe machine during toqdath; the yellow grids

areas represent energy consumption of the maathiming tool change; the blank areas represent

energy consumption during actual cutting. Thus, the total EFT based on a specific PSFP is the col-

oured areas in eithdtig. 2(a) or Fig. 2(b). The EFT from finishg cutting the featurg, to the be-

ginning of cutting its post-featurg on the sequence can be expressed as:

E(FpﬂFq)

FT = E(Fp‘Fq) + E(Fp’Fq) (1)

TP TC

(Fp.Fq)

WhereE(F”'Fq) E (Fp.Fq) e

Fr > Erp andE

O0<p<n1<qg<n+1,p+q) are the energy consumption
of feature transitions, togdath and tool change, respectively, from the featyte its post-feature

(Fp.Fg)

F,. The developed models fEéi,”’F") andE../

are presented in Sections 3.1 and 3.2. By compar-
ing the sizes of the coloured arearig. 2(a) and(b), it shows that different PSFPs may result in

different values of the total EFT.

Following the example above, this research ainseatching for the optimal processing sequence of
features for am-feature part in terms of ¢hminimisation of the total EFT. Considering there are
n + 2 features for am-feature part in machining emonment, a finite set oh + 2 positions

S = {S, }it% is employed to indicate the positions in a sequeficedicates thé-th position of a
sequence. For examplg, = F, means the featur§, is located at thé-th position of a sequence.
For any partF, is located at thé&-st position §; = F,) andF,,,, is located at the + 2-th position
(S,+2 = F,,4+1)- Then, the objective function for minising the total EFT based on a specific PSFP

(Ers) can be expressed as:

o S
minimise Epg = Ypt] E;Tk k1) (2)



o 01 A W N P

10

11
12

13

14

15

16

17
18
19
20

21
22

23

24
25
26

whereEf_i"’S"“) is the EFT between progsing the feature at tiketh position and the feature at the
k + 1-th position of a sequence, whichn be calculated according tadeession (1). Constraints of
the model are developed accordilmgthe precedence constraintsamg features [29]. A feasible
PSFP, namely, a feasible solution for the mathenmatidel, must satisfy atif the constraints. The
total EFT for the corresponding PSFP is set to infinity bnce any feature and its pre- or post- fea-

ture in a sequence violate any constraint.
3.1. Modelling tool path energy consumption

It can be assumed that a tool pattthia feature transition from the featujgeto the featuré;, con-

sists ofm sequential feeding activities. &h, the energy consumption of thth feeding activity can

be denoted ag™"®

; . The tool path energy consumption paomtiof the EFT in a feature transition

(Fp,Fq)

(Erp

) equals to the sum of energy consumptiomlbfeeding activities, which can be expressed

as:

Epg" =y, AT, 3)

Considering there are two possible feedapgproaches (rapid and normal) for jhi feeding activ-

ity, two types of models foﬁﬁF”’Fq) are provided in Sections 3.1.1 and 3.1.2.

3.1.1. Energy consumption of a rapid feeding activity

During a rapid feeding activity, thé-axis, Y-axis andZ-axis of the machine tool feed from the start
to the end coordinate position with their maximégeding speeds [16]. Therefore, the values of
feeding time of the three axes are probably differ€he rapid feeding powes consisted of rapid
feeding power oK-axis, Y-axis andZ-axis, standby power and spind@gation power [32]. Thus, the
energy consumption of theth feeding activity A}F”’Fq)) can be modelled as follow when using the
rapid feeding approach:

Aefad)

pq pq pq 1T
; =[Pxr Prr Pzl X|[txg; tyn; tza;] +(Po+ Pszz)e%) X tap: (4)

where[Pxr  Pyr Pzr]is the axial rapiddeding power vector, amt}r, Pyr andP,; represent the
rapid feeding power oX-axis, Y-axis andZ-axis, respectivelyPyr andPy, are constants for a spe-

cific machine tool. For th&-axis, the power used to driveetipward and downward rapid feedings

10
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are different, which are denoted Bf; andPl;, respectively[tys; tyr; the

;] is the axial rapid
feeding time vector, antfy, tyz; andtyy . are the rapid feeding time die three axes. The vector

can be calculated by:

pq pq bq
CAPRATE A AxjT AT AZ; (5)
XRj YRj ZRj VxR VYR V2R

wherevyg, vyg andvz are the maximum feeding speeds [m/min] of the three axg$, AY”? and

Az} are the relative distances between the start coordinate posifigny?, z7%) and the end

coordinate positiond’?, 7, z7?) of thej-th feeding activity, as shown Fig. 1. Thus,AXj(F”’F") =
rq pq (Fp.Fq) _ |,,pa rq : (Fp.Fg) _ | _pa _ _pa
|xj — xj_1|, AY]. L |yj — yj_1| and flnaIIyAZj L |zj —zj_1|.

During the feeding activity, the machine consumes standby pgwand the spindle rotation is also
on-state. These two portions ofeegy consumption alspoeed to be counted. Comparing several
available models [32] to calculate spindle rotatanver, the linear model proposed by Lv et al. [33]
provides the highest accuracy whish95%. Thus, this model is enaglked to calculate spindle rota-

tion power of a machine tool in thieh feeding activity B}) as:

P sl;g' = Bsg X ngp i 1 Csr (6)

Whereng’gj is spindle rotation speed [rpm] in tjxh feeding activity; coefficienBsz and constant

Csg Can be obtained by linear regressiosdshon experiment data [33]. Finaltﬁgj is axial rapid
feeding time for thg-th feeding activity which is the marum among the rapiteeding time of

three axes thaf}]; = max {teny toajp topi):

3.1.2. Energy consumption of a normal feeding activity

During a normal feeding activity, the feeding routa istraight line from the start to the end coordi-

nate position [16]. Normal feedimmpwer is the sum of feeding powafrthe three axes, spindle rota-
tion power and standbyower [32]. The energy consumption of jhih feeding activity ,(l](.Fp‘F"))

can be modelled as follow when using the normal feeding approach:

(FpFq) _ (ppra pq pq pq pq
AT = (Per; + Prgs + Py + Pigh 4+ Po) x th, (7)

11
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wherePg,;, P/y; andP;; are feeding power of the three axesrmal feeding). The models fBf;,

bq bq imi i i q .
Py¢; andP; are similar. For instance, following Lv et al. [3B]; can be expressed as:
pq _ bq N2 bq
Pyp; = Axp X (Vxp;)®™ + Bxr X Uyp; (8)

where coefficientgly andByr can be obtained by quadratic reggion based on experiment data.

The feeding speed at tieaxis in thej-th feeding activityﬂ;gj) can be calculated by:

pq pq ax71
v . =D, X
T J(axrey e (avpe) s (a2

9)

wherev? is the feeding speed in tji¢h feeding activity that? = nfi x f?, wheref? is the

feed rate [mm/r]. In this scenario, the feedingetiai all axes, spindle rotation time and standby time

o _ o J(@xP9) 4(avP?) +(az0)’
are the same, which is the axial feeding tirffe, t;7; = *-— nggjifqu —.

3.2. Modelling tool change energy consumption

The energy consumption of tool change is affetigdhe tool change time and tool change power
[34]. The tool change power iBe sum of standby power and powértool changer [16]. Thus, the
tool change energy consumption portiontbé EFT between processing the featufeandF,

(Fp.Fq)

(Erc

) can be expressed as:

(Fp'Fq)

(Ferq)
TC '

E = (P + PR} x Ty, (10)

The time consumed for changing toolsrjfg’”’F"), andP}! is the corresponding power level of the

tool changer. The values of them depend on thebeurof tool stations tated for changing tools
[35].

In the next section, two solution algorithms and hbey have been modified for searching the op-

timal PSFP are presented.

4. Solution algorithms

Depth-first search and genetic algorithm areliadpto search for the optimal PSFP. Depth-first

search is selected as one of the solutions bedais able to find the global optimal solution accu-
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rately. Comparatively, genetic algorithm normadlygnsumes less time to reach the optimal or near-
optimal solution, however, finding dthe global optimum is not gtemteed. Hence, experiments are
delivered in Section 5 to compare the perforoganf the two algorithms in solving the aforemen-

tioned problem in terms of the stin quality and computation time.
4.1. Depth-first search

Depth-first search (DFS) is an enumerati@arshing method using theee traversal technique,
which visits the current path as far as possibfereebacktracking and trying the alternative path in
the search tree [36]. The computation time coreitny DFS can be effectively reduced by a prun-
ing approach to avoid the unnecessary path. VAsflowchart of typical DFS is shown iRig. 3. At

the beginning of the algorithm, a search tree ¢hatcover all possible paths is generated and a fea-
sible path is randomly selected as the initipber bound. The nodes of theassh tree are visited
according to the depth-first searching strategy [37]. If the visited node is not eligible, the algorithm
prunes and backtracks to the previowasle. If the visited node is ellde and it is the end node, the
upper bound will be updated. Then, the algorithm psuared backtracks to the previous node. If the
visited node is eligible but it is not the end node, therdhgo continues to visthe next node. After
pruning and backtracking, the algorithm will checkettter the stopping conditions have been met or
not. If the stopping conditions are met, the latggber bound will be reported, and the algorithm
stops; otherwise, the next node will be visitede Btopping conditions can be that all nodes of the
search tree have been visited.

Fig. 3. A flowchart of depth-first search.
4.1.1. Searchtree generation for the EFT model

At the beginning of the algorithm, search tree that can coverpbksible PSFPs is generated. For an
n-feature part, a search tregth n + 2 levels is generated. In theasch tree, a node denotes a fea-
ture and the level denotdise position in the spience. Therefore, a node at ith level of the
search tree indicatesfeature at the-th position of the sequea. The root node at tHest level and
the node at the + 2-th level represent the virtufirst and final features, andF,,, respectively.

A complete path in the searcledrrepresents a possible PSFP. Censid a 3-feature part, a search
tree with 5 levels is generated. A complete paliellad by bold blue lines in the search tree repre-

sents a possible PSER-F, -F;-F,-F,, as shown irFig. 4.
Fig. 4. The search tree for a 3-feature part.
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4.1.2. Conditions of an eligible node and pruning

An eligible node meets the follomg three conditions: (1) The node has not been visited in the cur-
rent path. (2) The node satisfies all of the preoed constraints. (3) The current path value is
smaller than the upper bound after visiting the cumexte. The current patralue is the sum from
the root node to the current node. The corresponaiaigs will be pruned if any condition above is
not met, as illustrated iRig. 4.

4.2.  Genetic algorithm

Genetic algorithm (GA) is a heuristic searchht@que, which imitates the process of natural evolu-
tion by combining the survival of the fittest taeate offspring [38]. The offging replaces weak so-
lutions in each generation anadily the optimal or near-optimablutions to the optimisation prob-
lem are generated [28]. A flowchanf standard GA is shown Fig. 5. At the beginning of the algo-
rithm, an initial population with a size &f chromosomes is randomly generated as the first genera-
tion. In the following generationghromosomes are selected t@dnt a new generation through a
fithess-based process measuredalfitness function [39]. The fitiss function is defined as the ge-
netic representation and measures the qualigaoh chromosome in the population [40]. The chro-
mosomes with a higher fithess have more probalsilitebe selected. The next generation of chro-
mosomes are generated from theskected chromosomes through @& operators of (1) Crossover:
an exchange of segments between the chromes@and (2) Mutation: a random modification on the
chromosome [28]. This generatidmpaocess is repeated until @gping condition has been met [41].
The stopping condition can be the specifieakimum number of geerations reached.

Fig. 5. A flowchart ofgenetic algorithm.
4.2.1. Encoding scheme and fitness evaluation

In this research, a PSFP is encoded to a chromobgrmgeger coding [42]. Each gene in the chro-
mosome corresponds to a specféature. For example, a PSFERF;-F,-F;-F,-F,-F,-F,-Fg can be
encoded as a chromosome [057361428]. The gene 3 represents theffedfule gene sequence
of a chromosome violates the precedence cainssr between featurehje corresponding chromo-
some can be corrected by exchanging and adjuiimgositions of illegal genes in the sequence.

The fitness of each chromosomeeigluated by a fitness function which is the reciprocal of the total

EFT for a PSFP thatitness = Ei = L

T vnt1 o (SkSke1)”
FS  ¥kZ1Epr
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4.2.2. Selection, crossover and mutation operators

The selection operator aims ates#ing the chromosomes in ther@nt generation to reproduce off-
spring. The proportional roulette wheel selection is dsethis research. More details of this selec-

tion operator can be referredRazali and Geraghty [43].

The partially mapped crossover (PMX) is adoptethascrossover operator [44]. For instance, given
parentsB; = [057361428] andB, = [043652178] , PMX generates childre®; andB; by the fol-

lowing procedures.

Two points are randomly chosen as the crosspogrts according to thength of the chromosome,
and then the segments between the two point®, @hdB, are exchanged to generate two new

chromosomes; andC,, as below:

B, = [057|3614|28] Crossover ¢, = [057|6521|28]
B, = [043|6521|78] C, = [043|3614|78]

After the above operation, there are probably sgeres repeated in the new chromosomes. To cor-
rect this, the repeated genes outside segmentedetiie crossover pointeaeplaced according to
the partially mapped method. Fexample, genes at tRBend loci and thé-th loci are repeated and
genes at thé-th loci and the8-th loci are repeated in the chromosofpeThe2-nd loci and theé-th

loci are at the outside of segments betwiencrossover points. Thus, the genes a2thd and the
8-th loci are replaced by the gene 3 and the gemespectively. Finally, the two child chromosomes

are obtained as:

B} = [037652148]
B} = [052361478]'

The swap mutation is adopted as the mutationadpervhich means two atbary genes of a chro-
mosome are selected and swap theesl45]. Following the above examph; is the final child

chromosome oB; after applying a mutation a®y as:

Mutation

By = [03[7]652[148] — B;’ = [03[1]652[7]48].
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5. Case study

A prismatic part named part A with5 actual features is used the case study. Within the back-
ground of this research, 17 features ewasidered for this case, which d@e(plain), F, (stair),F;
(groove),F, (depression)k: (notch),F, (notch),F, (hole),Fg (hole),F, (hole),F;, (hole),F,;; (hole),
F;, (hole),F;5 (hole),F;, (hole) andF;c (hole) and 2 virtual featurd% andF,,, as shown irFig. 6.
The featurd; is required to be machingxtior to any other features,(= F;). A machining centre
(XHF-714F) is employed as the processor for parThe experiment set-up for power data collec-
tion of XHF-714F is the same as thatHuo et al. [17]. The relationshigsetween the number of tool
stations rotated, powef tool changer and tool change time of XHF-714F are liste@aisle 1.
Standby power and axial rapid feeding power are shoviialie 2. All the data in the aforemen-
tioned two tables are obtained byperiment measurement. Coe#icts which are obtained by re-

gression based on experiment data for modetpioidle rotation power and axial feeding power are

listed in Table 3. The speed of axial rapid feeding is obtained from the manual of XHF-714F, as

shown inTable 4. Besides, each tool station and its esponding cutter, and each cutter’s corre-
sponding features are presentedable 5. Tool station #1 is used asetbtart in the experiment. The
origin of coordinate® (0, 0, 0) is located at the centre optsurface of the part’s blank. Coordinate

point G (-80, -80, 60) is used as thartand end position of the toohdithe position for tool change.
Fig. 6. A prismatic part with 15 actu&atures and 2 virtual features.

Table 1 The relationships between thember of tool stations rotatepower of tool changer and
tool change time of XHF-714F.

Table 2 Standby power and axial rapieeding power of XHF-714F.
Table 3 Coefficients in power models of XHF-714F.
Table 4 Axial rapid feeding speed of XHF-714F.
Table 5 Relationships between the tocktdn number, cutters and features.

To prove the effectiverss of the proposed optimisation appracin reducing the EFT, the follow-
ing comparison is conducted. A PSFP produced byclassical sequencingdhnique Left-to-Right

(LTR) [22] serves as the benchrkdo represent the existing appob to arranginghe PSFP without

the energy-saving consideration. The benchmark PSFP generated by E;FRFis—F, —F,— F;,

- F13 - F7 - F8 _F3 - Fll - FlO - Fg _F5 - F6 _F15 - F14 _F16 . The aforementloned depth-fll’st
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search (DFS) and genetic algorithm (GA) usedhis research are developed on Dev C++ 5.11.0
software with the programming lange C++. The parameters of themputation facility used for
experiments are as follows: Intel (R) CoréM)Ti7-2630 QM CPU with 2.00 GHz frequency; 4.00
GB RAM; Windows 7 64bit) operating system.

For this 17 features part, considering the two virfeatures are fixed as the first and final ones on

the feature sequencg, (= F, , S;7 = Fy¢), there are 256 possible pairs of features. In the following,

the value calculation procedure for the EFT between proceBsiandFs (ES ")) is used as exam-

ple to show how to use the models in Section 3.

F5)

Based on above and Expression (i]& #7537 is expressed as:

E;;Z'FS) — E;ZZrFS) + ET(_'I;Z'FS)

whereES2™ andEL2"™ are energy consumption of tool pathd tool change, respectively, during

the feature transition from the featutgeto its post-featurés, which are calculated as follows.
(1) Calculation of{2"s)

As shown inFig. 6, there are five feeding activiti@s the feature transition from, to Fs. The proc-

ess parameters of them are listed'able 6. According to Expression (3E,§§2'F 5) is calculated by:

5
E;iZ'FS) — ZAJ(FZ'FS)
=1

whereAng’FS),...,AgFZ’FS) are energy consumption of the fitst the fifth feeding activity, respec-

tively. Here the calculation oﬁFz’FS) is used as an example.
Table 6 Process parameters of five feedadjivities in the feature transition.

Normal feeding is used for the first feeding acyivithus, Expression (7) is employed to calculate its

energy consumption as:

Fy. F:
A§2 ) = (PE, + PE, + P2, + P&, + Po) X t25,.
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According to Equations (9) and parameterT able 6, the values of feeding speedXaaxis, Y-axis
andZ-axis in the first feeding activity are:

25 _ |-37-(=37)I _ .
vyp = 2200 X 0.2 X T ot sor i Omm/min,
25 _ |40-30]| _ .

vyp, = 2200 X 0.2 X T oo sor i 440mm/min,
28, = 2200 X 0.2 X |215-(15)] = Omm;/min.

V1=37=(=37)|2+[40—30]2+|-15—(-15)|2

Then according to Equation (8) and coefficientq'#ble 3, the values of feedg power of all axes

are:
P23, =5x 1077 x 02 + 0.049 x 0 = OW,
PYF1 —1 X 107° X 4402 + 0.043 X 440 = 18.73W,
P23, = —1x 1077 x 02 4+ 0.0461 X 0 = OW.
According to Equation (6) and coefficientsTable 3, spindle rotation power is:
PSRl = 0.086 x 2200 + 14.76 = 203.96W.
Standby power is?, = 371.0W.

Axial feeding time for the first feeding activity is:

60%+/(=37—(—37))2+(40—30)2+(—15—(-15))2
2200x0.2

= 1.364s.

tig, =

Based on above, energy consumption of the farstling activity in the feature transition frdito

Fs is:
A¥2) = (0 4 18.73 + 0 + 203.96 + 371.0) x 1.364 = 809.57].

Similarly, energy consumption of other fofeeding activities can be calculated Aag?’FS) =

185.11], AY?"™ = 1029.64], A{*™ = 1321.25], andA>"™ = 242.87].
By summing up energy consumption of fhe feeding activities, the value Eﬁ?‘FS) is:
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EY2FS) = 3588.45],

(2) Calculation ofE?ZZ'F )

Fs)

According to Expression (105(‘;2 is calculated by:

EZ™ = (Py + PE) X T2 ™.

According toTable 5, the corresponding cutters By andFz locate at tool station #1 and #2, re-

spectively. Thus, one interval of the t@bhtion rotation is required. AccordingTable 1, power of
the tool changer i22 = 84.8W, and tool change time |§(F2 Fs) = 17.6s. ThereforeE(F2 Fs) =
(371.0 + 84.8) x 17.6 = 8022.08]. By summing um(FZ Fs) andE(F2 ) the EFT fron¥F, to Fs is

calculated asE>™ = 3588.45 + 8022.08 = 11610.5]. The value oES>™ and other 255 EFT

values are listed iable 7.
Table 7 Energy consumption of feature traimis between featas in the part.

Based on the data ifiable 7, the EFT for the benchmark PSFP is 145894.3J. Comparatively, the
developed DFS achieves the global optimum efrttinimum EFT, which is 104162.7J, with compu-
tation time of 42.13 seconds. The corresponding PSEP+$, —F, —Fs—F,—F;—F,—Fg—Fy—

Fio—F,—F,,—F,3—F,—F—F,; —F;,. The searching process of DFS is presenteHign 7.

Therefore, 28.60% [(145894.3-1041621A4%894.3] EFT can be reduced by using DFS compared to
LTR technique.

The parameter values used in GA are obtained by tuning, and their values are as follows: population
size= 100, crossover probability 0.9, mutation probability: 0.05, and generatioa 300. By run-

ning GA for several times, it can also achi¢hre global minimum EFT (104162.7J) with computa-

tion time of 2.42 seconds. The corresponding PSHReisame as that produced by DFS. A search-

ing process of GA for the ¢éimal solution is shown ifrig. 8. However, in most of the runs of GA, it

can only achieve the near-optimal solutions for this case. For example, a near-minimum EFT that GA
can get is 104179.8 J. The corresponding PSERp—§, —F, —F,—F;—Fy—Fs—F,g— Fg—Fg—
F,—F,s—F,,—F,;5—F,,—F;; —Fj,. It also consumes less computation time (2.48 seconds) to get
the near-optimal solution. A searching process of f8Aa near-optimal solution of this case is

shown inFig. 9.
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Fig. 7. The searching process of deptfsffisearch for the optimal solution.
Fig. 8. A searching process of genetic algorithm for the optimal solution.
Fig. 9. A searching process of genetigalithm for a near-optimal solution.

According to the optimisation results, for this case, GA usually returns a near-optimal solution while
DFS always obtains the global optimum. Thus, coegan GA, DFS is superior in finding the most
energy-saving PSFP. Although the solution quality of Garabably little inferior to that of DFS, its
computation time is about 94.11% [(42.13-2.48)/42.13] tetbmm that of DFS. Moreover, when the
number of features in a pastincreasing, the computation tiroé DFS probably increases sharply
and becomes intolerable. In this situation, GA ifgnable to be employed to get the near-optimal
PSFP within reasonable computation time.

6. Discussion

The case study has shown that 28.60% of the EFbearduced by usingdhsingle objective opti-
misation, which validates the effectiveness of qapraach in single machirenvironment. However,

in the real manufacturing circumstance, a part usuatiyires more than one machine tool to finish

all of the processing. Thus, the performancewfapproach on the EFT reduction in multi-machine
environment is discussed and validated in thitsi@e. In addition, it is not reasonable to only reduce

the EFT without considering other objectives utthg the machining time, quality and cost, which

can cause machine tool tardiness and product quality problems. Thus, a multi-objective model con-
sidering the EFT is developed, atiten the effect of the EFT mimisation on other objectives is

demonstrated and discussed.
6.1. EFT reduction in multi-machine environment

If a part requires more than one machine toslfeatures to be processed on the same machine can
be sorted and sequenced tduee the EFT. For example, it is assumed that the partkigiro re-
quires two machine tools including a CNC milling miaehand a CNC drilling machine to finish all

of its features. Specifically, a CNC milling machine is employed to process the features inEluding
(plain), F, (stair),F; (groove),F, (depression)ks (notch) andf, (notch); a CNC diling machine is
employed to process theher features including, (hole),Fg (hole),F, (hole),F;, (hole),F;; (hole),

F;, (hole),F;5 (hole),F,, (hole) andF;s (hole).
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Two benchmark PSFPs generated by the LTRrieeie for the CNC milling machine and the CNC
drilling machine ardy,—F, —F, —F,—F;—Fs—F¢—F,c, andF,—F,,— F;3—F,—Fg—F,;; —F;;—
Fy—F,s—F,,—F,,. It is assumed that the parameters a¥ twachine tools are the same as that of
XHF-714F, thus the data in bold fontTrable 7 can be utilised for the EFT calculation. Then, the
EFT for the two benchmark PSFPs is 20918.2J and 105B38&<pectively. In tal, the benchmark
EFT for part A is 126254.1J (20918.2+105335.9) in mechine environment. Comparatively, the
optimal PSFPs generated by Dfe® the two machine tools afy—F, —F, —Fs —Fs—F;—F,—F4
andFy—F, —F3—Fy—F,g—F;5 —F;4 —F3—F,, —F;; —Fi¢. According to data irfTable 7, the
EFT for the two optimal PSFPs is 20774.9J and 8413&3pectively. In total, the minimum EFT
for part A is 104907.2J (20774.9+84132.3) in two-machine environment. Consequently, when part A
requires two machine tools, our approatii achieves a 16.91% [(126254.1-104907.2)/126254.1]

EFT reduction, which validates its effte®ness in multi-machine environment.
6.2.  Multi-objective model considering the EFT

The developed single objective model for minimgsthe EFT can integrateith the models for op-
timising other objectives such as the machiningetiguality and cost to obtain the required multi-
objective model. For example, to avoid machine taaliness, the time comsption of feature tran-
sitions (TFT) is regarded as a new objective atebmrated with the devabed EFT model to obtain a
bi-objective model for balancing the TFT and tET. Based on Expression (2), the bi-objective

model is developed as:

- . . S 'S
minimise Epg = Zﬁi% Egrk frs)

(11)
minimise Trg = Y pt] TF(?"S"“)
whereTys is the total TFT based on a specific PSFP,Ya,(ﬁHS"“) is the TFT between processing
the feature at thk-th position and the feature at the- 1-th position of a sea@nce. It is assumed
that the featureR, andF, are located at thle-th position and thé& + 1-th position of a sequence,

(SkSk+1)

respectively. Then, by refiéing to Expression (1) can be expressed as:
(SiSk+1) (Fp,Fq) (Fp.Fq) (Fp.Fg)
TFTk k+1) _ TFTp v _ TTpp q +TTCp q (12)
whereTT(i”’Fq) is time consumption of tool path the feature transition from the featufgto its

post-feature,. By referring to Expression (SJ(F”’F @

TP IS expressed as:
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(Fp,Fg) (Fp,Fy)
TTPp a’ _ Z;’l:lBj p'rq (13)

whereB (FpF)

. is time consumption of theth feeding activity in th feature transition frorf, to F,.

In a rapid feeding activit;Bj(F”'Fq) equals tay ; otherwise, it equals gy .

After obtaining the above bi-objiee model, multi-objective optimisation approaches such as Non-
dominated Sorting Genetic Algthm Il (NSAG-II) and Strength Pareto Evolutionary Algorithm
(SPEA) can be employed to find a set of optimal PSR&sresult in the optimal trade-offs between
TFT and EFT [46]. These optimisation approachesbelresearched in the future. In the following,
the effect of the EFT minimisation on the TFTdemonstrated and discussed based on the developed
TFT model.

According to Expressions (11)-(13) and dat&'@bles 1, 4, 5 and6, the TFT based on the optimal
PSFP which results in the EFT minimisatmipart A is calculated as follows:

Tps (EFT minimisation) = TGo™) 4 7uF2) o p02fs) | plsFe) o pUelfs) | plfafa) o pUfa) |
TIS;‘:S,FQ + TIS71‘:9,F10) + T}E?o'ﬁ) + TIS;%FQ) + TIS;12,F13) + TIS71‘:13,F14) + TISIT‘"14,F15) + T}E?s'Fn) +

TF(?”F“) =0.613 + 1.803 + 20.828 + 2.277 + 3.227 + 1.021 + 32.486 + 12.875 + 12.875 +
12.875 + 30.850 + 12.922 + 13.222 + 12.922 + 33.872 + 0.640 = 205.31s.

In comparison, a PSFP without considering the E€duction for part A is generated by the LTR
technique, and the TFT based on this PSFAs(LTR technique) = 284.94s. Thus, 27.95%
[(284.94-205.31)/284.94] of the TFT reduction bendfitsn the EFT minimisation in the multi-
objective problem. However, the EFT minimisatioma always beneficialo the TFT reduction.
For example, when a PSFP with the minimum TFadgisted to a PSFP with the minimum EFT, its
TFT can increase. In this sitimt, the trade-off between the mmisation of TFT and EFT should

be made.

7. Conclusions and future work

Reducing the electricity consummgmn of machine tools during thein-time operations gains more
and more importance in modern manufacturinge model for the singlebjective optimisation
problem which aims at minimisgy the energy consumption of feature transitions (EFT) has been

introduced. The model was developed by understgnand characterisinigpe energy consumption
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of machine tools while executing the rapid andnmairfeeding activities and the tool change. The
total amount of the EFT for processing a part on a single machine can vary by modifying the proc-
essing sequence of features of the part (PSFPjindidhe optimal PSFP which results in the mini-
misation of the total EFT, depth-first search gedetic algorithm are employed as the optimisation

approaches.

In the case study, the optimal and near-optimal sexpseof features for a 15 features part which is
processed by a machining centre (XHF-714R)ehaeen found. The optimal PSFP achieves a 28.60%
EFT reduction. This validates thefaftiveness of the developed timamatic model and optimisation
approaches in single machine environment. Whhenpart requires moreah one machine tool to
finish all of its features, this approach Istithieves a 16.91% EFT reduction. Finally, the developed
EFT model is integrated with BFT model to obtain a bi-objective model for balancing the TFT and
the EFT. A case shows that 27.95% of the Té&duction benefits from the EFT minimisation.

In this research, it is time-consuming and error-prionprocess the data of machine tools and parts

for the EFT model and then calculate the EFT vahedwieen each pair oéétures. Thus, the auto-
mation for the EFT calculation can be improved. Onetdition of this research is that the energy
consumption of machine tools during setup chargkemachine change has not been considered as a
portion of the EFT. For the next step, reseamlireducing the energy consumed for setup change
and machine change by adjusting the PSFP will be conducted. Besides, multi-objective optimisation
approaches will be employed to obtain the optimal P$f&tgesult in the optimal trade-offs among

the machining energy consumption, time, qualitystand other objectives-inally, the proposed
feature sequencing approach will be combinéith whe existing cutting parameter optimisation to

promote the energy-aware integraprdcess planning for machining.
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Table 1 The relationships between thember of tool stations rotatepower of tool changer and
tool change time of XHF-714F.

The number of tool stations rotated
0 1 2 3 4 5 6 7 8
Power [W]| 0.0 84.8 90.4 93.6 96.2 100.1 100 104.2 1024
Time [s] 0.0 17.6 19.0 20.0 20.9 21.9 23.5 24.1 25.3
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Table 2 Standby power and axial rapieeding power of XHF-714F.

ltem PowelW]
Standby poweP, 371.0
X-axial rapid feeding poweky, 855.8
Y-axial rapid feeding powe?, ; 504.9
Z-axial upward and downward rapid feedin
Sower PU. P2 t659.1, 573.4)
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Table 3 Coefficients in power models of XHF-714F.

Item

Coefficient

Monomial coefficient and constant in the
spindle rotation power modeB{y, Csr)

(0.086, 14.76)

Quadratic coefficient in the feeding power
model ofX-axis, Y-axis,Z-axis upward and
downward Ayr, Ayr, A%, A2F)

(5x107, -1x10°,
-5x107, -1x10)

Monomial coefficient in the feeding power
model ofX-axis, Y-axis, Z-axis upward and
downward By, Byr, BYz, B2:)

(0.0491, 0.043,
0.059, 0.0461)
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Table 4 Axial rapid feeding speed of XHF-714F.

Item Speedm/min]
Rapid feeding speed ofaxis,
Y-axis andZ-axis Uyg, Vyr, (12, 12, 10)
Vzgr)
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Table 5 Relationships between the tocktsdn number, cutters and features.

The tool station number of the tool changer
#1 #2 #3 #4 #5
Cutters | W400F-FS WA400F-FS NACHI 8(8) NACHI SD8(10) NACHI SD8(12)
Feature§ F;, F, F3,Fy, F5, Fg  F;, Fg, Fy, F1g  Fi3, Fi3, F14, Fi5 Fi1
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Table 6 Process parameters of five feedaugivities in the feature transition.

- Spind| Feed
The]_ th Feeding Start coordinate End coordinate pin 23 eez5
feeding " " speethsy; ratef;

g method position position J J
activity [rpm] [mm/r]
1 Normal (-37, 30, -15) (-37, 40, -15) 2200 0.2
2 Rapid (-37, 40, -15) (-37, 40, 10) 2200 -
3 Rapid (-37, 40, 10) (-80, -80, 60) 2200 -
4 Rapid (-80, -80, 60) (61, -40, -1.5) 2200 -
5 Normal (61, -40,-1.5) (61, -37,-1.5) 2200 0.2
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Table 7 Energy consumption of feature traisis between featas in the part.

Energy [J]] F. F2 Fs Fa Fs Fe Fz Fs Fo Fio Fi1 Fiz Fis Fia Fis Fie
Fo 775.2 852.3 9780.0 8954.2 9586.2 9827.8 14955.7 15162.2 15354.8 15241.2 17111.3 15369.7 15558.2 16051.7 15950.7 oo
Fi 00 1582.6 11602.7 10776.9 11408.9 11650.5 16778.4 16984.9 17177.5 17063.9 18934.0 17192.4 17380.9 17874.4 1718347
F 1534.6 o0 11804.4 10978.5 11610.5 11852.2 16980.0 17186.6 17379.1 17265.5 19135.7 17394.1 17582.5 18076.0 17283403
Fs3 10031.8 10109.0 o 1090.1 1007.5 967.2 154457 15652.2 15844.8 15731.2 17873.4 16078.9 16267.3 16760.8 16623435
F4 10492.6 10569.8 2392.8 00 2440.6 24254 15906.5 16113.0 16305.6 16192.0 18334.2 16539.7 16728.1 17221.6 1718953
Fs 112259 11303.0 2354.1 2370.0 o0 1667.1 16639.8 16846.3 17038.8 16925.2 19067.4 172729 17461.4 17954.9 1784938%
Fs 11311.7 11388.8 2354.1 2370.0 1667.1 © 16725.6 16932.1 17124.7 17011.1 19153.3 17358.7 17547.2 18040.7 17239%4/4
F; 10426.4 10503.6 10664.6 9838.8 10470.8 10712.4x 5871.1 6063.7 5950.1 16998.1 14984.4 151729 15666.4 15565.4 884.6
Fg 10633.0 10710.1 10871.2 10045.4 10677.4 1091%871.1 o0 5950.1 6063.7 17204.6 15191.0 153794 158729 15771.9 1091.2
Fo 10825.5 10902.7 11063.7 10237.9 10869.9 111116863.7 5950.1 o 5871.1 17397.2 15383.5 15572.0 16065.5 15964.5 1283.7
Fio 10711.9 10789.0 10950.1 10124.3 10756.3 10997950.1 6063.7 5871.1 0 17283.6 15269.9 15458.4 15951.9 15850.9 1170.1
Fi1 11714.3 11791.4 12224.6 11398.7 12030.7 122726130.3 16336.8 16529.4 16415.8 00 152744 154629 159564 158554 1174.6
Fio 10919.4 10996.5 11376.8 10550.9 11182.9 111813063.4 15269.9 15462.5 15348.9 16221.1 00 5926.5 6485.6 6384.7 852.2
Fi3 11107.9 11185.0 11565.2 10739.4 11371.4 116133251.8 15458.4 15650.9 15537.3 16409.6 5926.5 o0 6384.7 6485.6 1040.6
Fi4 11601.4 11678.5 12058.7 11232.9 11864.9 12108%/45.3 15951.9 16144.4 16030.8 16903.1 6485.6 6384.7 e 5926.5 1534.2
Fis 11500.4 115775 11957.7 111319 11763.9 12003%644.3 15850.9 16043.4 15929.8 16802.1 6384.7 6485.6 5926.5 o 1433.2
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