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Abstract 

Uptake behaviour of uranium from aqueous, acidic sulfate and chloride media on iminodiacetic acid 

chelating resin Purolite S930+ has been studied. Experiments have followed UO2
2+, Cu2+ and Fe3+ 

uptake behaviour with respect to acidic and ionic media type and concentration. Uptake suppression 

of all metals was observed at [H+] > 0.1 M sourced from H2SO4 and HCl. In contrast, significant uptake 

of Fe3+ was observed from solutions with [HCl] > 2 M. Suppression of UO2
2+ uptake (up to 15%)  was 

observed upon increasing [SO4
2-] to 4 M, whilst negligible UO2

2+ uptake suppression  was observed 

with [Cl-] up to 6 M. The impact of Fe3+ concentration on UO2
2+ extraction under hypersaline conditions 

([Cl-] = 22.6 g L-1, 0.64 M) has been studied and behaviour fit to Langmuir and Dubinin-Radushkevich 

isotherms. Extended X-ray absorption fine structure (EXAFS) studies have been performed to assess 

the effect of salinity on the uranium coordination environment on the resin and therefore the 

mechanism of uptake. No change in surface species was observed, with the fit species being uranyl 

bound by the iminodiacetic acid functional group in a tridentate motif, with an associated bidentate 



sulfate group. An isotherm model based on this surface has also been derived. It has been shown that 

at pH 2 there is little impact of increasing chloride and sulfate concentrations on the extraction 

behaviour of metals onto Purolite S930+ under the conditions tested. Rather, uranium uptake is more 

affected by the presence of Fe3+ in solution.  As [Fe3+]/[UO2
2+] is increased from 0 to 2, UO2

2+ uptake is 

reduced by up to 66% at aqueous equilibrium. 
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1. Introduction 

     Uranium mines consume vast quantities of water, and many of these mines are located in arid 

regions with either poor access to fresh water or access only to lower quality (saline) water sources 

[1,2]. As an example, it is estimated that the Olympic Dam mine site in South Australia consumes 42 

megalitres of fresh water per day, with a planned expansion of this site pushing this figure up to 200 

megalitres per day [3]. This consumption puts a strain on fresh water supplies and increases the overall 

cost of the mining operation. The majority of this fresh water is used to extract soluble uranium from 

its ore, this liquor is then treated with ion exchange (IX) and/or solvent extraction (SX) processes as 

part of the milling strategy. The use of untreated bore water and/or seawater instead of fresh water 

in these extraction steps may address both the environmental and economic issues of using such large 

quantities of fresh water. However, if such waters are used in uranium extractions, the effect of Cl- on 

the chemistry of the system must be fully understood. For the purposes of this paper, the Cl- 

concentrations have been classified into three categories (with respect to liquors used in common 

uranium IX processes), conventional, saline and hypersaline liquors, as outlined in the schematic 

diagram (Figure 1) below. 

 



 

Figure 1. Chloride concentrations in Saline and Hypersaline liquors. 

 

     After a uranium ore has been mined, screened and crushed it undergoes leaching. This 

leaching process involves the solubilising of uranium to produce a pregnant leach liquor (PLL). The 

leach liquor used depends on the chemical makeup of the ore, but it generally employs sulfuric acid 

as it is more environmentally friendly than hydrochloric or nitric acid. A carbonate leach can be used 

if the ore consumes large amounts of acid. Ores containing tetravalent uranium need an oxidant, 

commonly sodium chlorate or manganese dioxide, to produce soluble hexavalent uranium which can 

be sent for further processing. Extraction of uranium from the PLL most commonly employs IX or SX, 

although nanofiltration has seen some use [4]. Ideally, the extraction medium, whether SX or IX, will 

selectively remove the uranium from the PLL. Therefore the choice of extractant depends heavily upon 

the chemistry of the PLL. The development of new extraction processes that are more tolerant to the 

presence of Cl- may allow greater flexibility in the composition of the PLL, thus allowing the use of 

lower quality waters relative to fresh water. 

     Although SX is the major workhorse technology for uranium recovery there are still some 

general drawbacks to this process [5,6]. These include the need for an extractant molecule soluble in 

the organic phase, potential for solvent loss, phase disengagement in multiple contact stages, third 

phase formation and the generation of large volumes of secondary organic waste. IX processes, as the 

sorbent is solid, remove all of the difficulties of handling large volumes of organic solvent. They also 

often have faster kinetics than SX systems and are more effective when extracting uranium at lower 

concentrations [6]. 

     The majority of uranium processing circuits are sulfate-based [7]. Processes employing IX 

resins for the separation/concentration of uranium typically use anion exchange resins with strong 

base (SBA) functional groups [8]. Those employing SX generally use long chain tertiary amines as 



extractants [9]. Both techniques are sensitive to the presence of Cl- in solution, which causes 

suppressed uranium uptake. Similarly to IX resins, it has been shown that tertiary amines in SX can 

work via an IX mechanism [10]. In both cases the suppression is due to the decreased exchange of the 

uranium-sulfate species due to competing Cl- [9,11]. This is compounded by the increased exchange 

of iron and other impurity elements. This reduced UO2
2+ affinity in high saline conditions can be 

overcome in IX systems by the application of a chelating resin. Functionalities on the resin surface 

employ the chelate effect through multidentate coordination, forming thermodynamically stable 

complexes. In this paper the application of an iminodiacetic acid (IDA) chelation resin, Purolite S930+, 

to the extraction of uranium from simulant uranium process liquors has been explored. Though there 

are many examples of effective, novel sorbents for uranium, including layered silicates, 

nanocomposites, functionalised chitosan and functionalised silica (among numerous others), the 

Purolite S930+ resin has been selected due to its commercial availability and therefore relative ease 

of implementation into a traditional uranium recovery process [12ʹ15]. The iminodiacetic acid 

functionality has been specifically chosen due to the fact that it offers both a strong acid uranium 

elution option, as H+ can effectively compete with uranium at low pH, and chelation strength usually 

increases with high ionic strength [16]. 

 

2. Experimental 

2.1 Reagents and Stock Solutions 

     For all experimental studies, the commercially available chelating IX resin, Purolite S930+, was 

directly supplied by Purolite. The general specification data for this resin and other commercial 

equivalents, for comparative purposes, are given in Table 1 [17]. Prior to experimentation, the S930+ 

resin was preconditioned by contacting 1 mol L-1 HCl or H2SO4
 at a resin volume:acid volume ratio of 

1:10 on an orbital shaker for 24 hrs at room temperature. The resin was then washed three times with 

3 bed volumes (BV) of deionised water ;ϭϴ MɏͿ before use. The structure of the IDA functionality of 

Purolite S930+ resin is given in Figure 2.  



     Aůů ƐŽůƵƚŝŽŶƐ ƵƐĞĚ ŝŶ ůŽĂĚŝŶŐ ĞǆƉĞƌŝŵĞŶƚƐ ǁĞƌĞ ƉƌĞƉĂƌĞĚ ƵƐŝŶŐ ĚĞŝŽŶŝƐĞĚ ǁĂƚĞƌ ;ϭϴ MɏͿ ĂŶĚ 

analytical grade reagents. These uptake solutions were formulated to simulate a uranium leach liquor 

by the dissolution of metallic cation species commonly found in these liquors, in their sulfate form. 

For studies assessing the effect of iron, Fe3+ was added in molar ratios of 1 and 2 relative to [UO2
2+] 

(Table 2). 

 

Table 1. Manufacturer Specifications Purolite S930+ and similar resins. 

 Purolite S930+ Chelex 100 Amberlite IRC748 Lewatit TP208 

Type 
Macroporous, weak acid 

chelating 

Weak acid cation, 

chelating 
Weak acid chelating 

Weak acid cation, 

chelating 

Functionality Iminodiacetic acid Iminodiacetic acid Iminodiacetic acid Iminodiacetic acid 

Capacity / meq mL-1 2.9 0.4 1.35 2.5 

PĂƌƚŝĐůĞ ƐŝǌĞ ͬ ʅŵ 425 -1000 150 - 300 300 - 1100 650 

Moisture content / % 52 - 60 (Na form) - 60 - 65 (Na form) 58 ʹ 64 (delivery form) 

 

 

Figure 2. Functionality of Purolite S930+ resin. 

Table 2. Composition of Simulant Liquor used for Loading Isotherms. 

Element Concentration / M 

Ca2+ 0.013 

K+ 0.034 

Mg2+ 0.019 

Na+ 0.724 

Fe3+ 0 ʹ 0.008 

UO2
2+ 0.0002 - 0.004 

 

2.2. Batch extractions from sulfate and chloride media 

     All batch extractions as a function of acid concentration were carried out as single contacts 

with 2 mL of wet settled resin (WSR) contacted with 50 mL of aqueous simulant feed. The addition of 



either NaCl or (NH4)2SO4 to increase Cl- or SO4
2- levels in the simulant feed was carried out as part of 

the simulant feed production to prevent increases in experimental solution volume. UO2
2+, Cu2+ and 

Fe3+ were spiked into the solution at 0.42, 1.57 and 1.79 mM, respectively (100 ppm of each metal). 

The resin and aqueous feed were continuously mixed for a period of 24 hours at room temperature 

on an orbital shaker, whereafter a sample was taken to determine individual metal ion concentrations 

by ICP-AES (Perkin-Elmer Optima 5300 dual view). Measurements of solution pH were conducted 

using a silver/silver chloride reference electrode calibrated from pH 1-13 using buffers. Under highly 

acidic conditions (pH < 1), acid content was determined by titration with standardised alkali solution. 

Distribution coefficients (KD - the weighted distribution of the analyte) were calculated using Eq.1: 

ࡰࡷ  ൌ ቀࢋ࡯ࢋ࡯ି࢏࡯ ቁ ൈ  Eq.1      ࢔࢏࢙ࢋ࢘࢓ࢗࢇࢂ

 

where Ci is the initial aqueous concentration of the analyte before contact (M), Ce is the aqueous 

concentration of the analyte at equilibrium (M), Vaq is the volume of the aqueous phase (mL) and mresin 

is the dry mass of the resin (g). The extraction percentage (E%) was calculated using Eq. 2. 

Ψࡱ  ൌ ࢋ࡯ࢋ࡯ି࢏࡯ ൈ ૚૙૙      Eq.2 

2.3. Determination of loading isotherms under increasingly saline conditions 

     All loading isotherms were carried out as single contacts by mixing preconditioned S930+ resin 

(2 mLWSR) with aqueous simulant feed (50 mL). The same simulant leach liquor described previously in 

section 2.2 was used, but with the uranyl concentration varied and sodium chloride added to give a 

Cl- concentration of 0.64 M (22.6 g L-1). The resin and aqueous feed were continuously mixed for a 

period of 24 hours at room temperature. The data were fitted to Langmuir (Eq.3) and Dubinin-

Radushkevich (D-R) (Eq.4) isotherm models [18]. The fitting was carried out by using the function 



fitting builder and non-linear curve fitting in OriginPro 2015. Errors were calculated using OriginPro 

2015 at a 95% confidence interval. 

ࢋࢗ  ൌ  Eq.3       ࢋ࡯࢈૚ାࢋ࡯࢈࢓ࢗ

 

ࢋࢗ ൌ ቀ૚ା࢔࢒ࢀࡾቂࡾࡰ࡮ିࢋ࢓ࢗ ૚ࢋ࡯ቁቃ૛
     Eq.4   

 

BDR = Dubinin-Radushkevich isotherm constant, mol2 J-2 

Ce = Solution phase metal ion concentration at equilibrium, mol L-1 

b = Langmuir isotherm constant, L mol-1 

  T = Absolute temperature, K 

  R = Universal gas constant, 8.314 J mol-1 K -1  

  qe = Solid phase metal ion concentration at equilibrium, mol L wsr
-1 

  qm = Monolayer saturation capacity, mol L wsr
-1 

 

2.4. EXAFS experiments on loaded resins 

Uranium LIII-edge EXAFS spectra were recorded in transmission mode on beamline B18 at the 

Diamond Light Source operating in a 10 min top-up mode with a ring current of 299.6 mA and an 

energy of 3 GeV. The radiation was monochromated with a Si(111) double crystal, and harmonic 

rejection was achieved through the use of two platinum-coated mirrors operating at an incidence 

angle of 7.0 mrad. The monochromator was calibrated using the K-edge of an yttrium foil, taking the 

first inflection point in the Y-edge as 17038 eV. Uptake on Purolite S930+ resin was performed from a 

uranium sulfate solution at pH 3 (adjusted with H2SO4), with a uranium concentration of 1 g L-1. 

Samples were homogenised by grinding the resin into a fine powder prior to uptake. This avoids the 

incorporation of artefacts into the data due to the inefficient packing of spherical resin beads. Loaded 



resin (2 mLWSR) was added to a cryo-tube before being vacuum sealed in plastic. The samples were left 

this way during measurement. Multiple spectra from the same system were combined, background 

subtracted and normalised using the software package Athena [19]. Spectrum simulations and fits 

were done using the FEFF database through the software package Artemis [19,20]. 

 

3 Results 

3.1 Batch extraction from sulfate and chloride media 

3.1.1 Batch extraction from sulfate media 

     The extraction of uranyl, copper(II) and iron(III) from sulphuric acid media as a function of 

increasing acid concentration over 24 hours at room temperature is shown in Figure 3, while the 

influence of [SO4
2-] on the same system fixed at pH 2 is shown in Figure 4. 

 

Figure 3. Extraction of UO2
2+, Cu2+ and Fe3+ by Purolite S930+ as a function of pH in H2SO4 media at room temperature. 



 

Figure 4. Extraction of UO2
2+, Cu2+ and Fe3+ by Purolite S930+ as a function of sulfate concentration, at pH 2 and room 

temperature. 

 

     Generally, as the concentration of H2SO4 increases, the uptake of all tested species is 

suppressed. All metal ion species are extracted completely at [H+] <0.04 M, with UO2
2+ and Cu2+ having 

the highest affinity for uptake as this acid concentration is exceeded. As a function of sulfuric acid 

concentration it is clear that UO2
2+ is the most strongly extracted metal species of those studied in this 

work (Figure 3). Under industrially relevant conditions (pH 0.5 ʹ 3 / [H+] = 0.6 ʹ 0.05) the extraction 

trend is as follows: 

 ܷܱଶଶା ൐ ଶାݑܥ ൐  ଷା݁ܨ

 

     At very high sulfate concentrations (> 1 M) and a fixed pH 2 (Figure 4), the extraction of UO2
2+ 

by the S930+ resin is slightly suppressed when compared with that observed for Cu2+ and Fe3+ with 

both metal ions being at least nearly extracted entirely from solution. Although, the extent of uranyl 

extraction is still above 80 % from solutions of 4 M SO4
2- (pH 2). 



     The greatest degree of metal ion uptake suppression for S930+ resin occurs by increasing the 

concentration of hydrogen ions in solution. The IX equilibrium favors the IDA functionality remaining 

protonated, as per Le Chatelier͛s principle. This idea is corroborated by the suppression of metal ion 

uptake by sulfate not being observed until sulfate concentration exceeds 1 M (Figure 4). The lowest 

sulfate concentration, when sourced from (NH4)2SO4, required to give an observable suppression of 

uranyl uptake is ~50 times more than that observed when sulfate is sourced from H2SO4 (Figure 3, 

Figure 4). Uptake suppression from sulfate occurs due to competition between the formation of 

uranyl-sulfate and uranyl-IDA species. A large [SO4
2-] is needed to suppress uranyl recovery, which 

infers that the uranyl cation binds much more strongly to IDA than to aqueous SO4
2- anions. This is 

most likely due to the increased thermodynamic stability via a chelation mechanism. 

 

3.1.2 Batch extraction from chloride media 

The extraction of UO2
2+, Cu2+ and Fe3+ from HCl media as a function of increasing acid 

concentration over 24 hours at room temperature is shown in Figure 5. The extraction of metal ions 

as a function of increasing Cl- ion concentration at pH 2 is shown in Figure 6. 

 

Figure 5. Extraction of UO2
2+, Cu2+ and Fe3+ by Purolite S930+ as a function of pH in HCl media at room temperature. 



 

 

Figure 6. Extraction of UO2
2+, Cu2+ and Fe3+ by Purolite S930+ as a function of chloride concentration at pH 2 in HCl media 

at room temperature. 

 

     Negligible metal ion uptake suppression is observed for [HCl] < 0.1 M. For HCl concentrations 

between 0.1 and  1 M suppression of all metal ion species studied  is seen to such an extent that < 2 

% extraction is obtained for each of the metal ions between 1 and 2 M HCl. When [HCl] is increased 

to above 1 M the near complete uptake suppression for UO2
2+ and Cu2+ by S930+ is maintained. When 

metal ion uptake suppression occurs for S930+ resin in HCl media, it is due to the increased solution 

[H+] shifting the chemical equilibrium so as to prevent H+ dissociation from the IDA moiety, as 

described for the equivalent H2SO4 dependency studies in section 3.1.1. However, Fe3+ undergoes 

significantly elevated levels of extraction with increasing HCl concentration above 2 M. This increase 

in Fe3+ extraction is most likely due to an anion exchange mechanism with the extraction of [FeCl4]- by 

positively charged IDA groups on the surface of the resin. This mechanism has been reported before 

during the SX of iron from chloride media ƵƐŝŶŐ N͕N഻ͲDŝŵĞƚŚǇůͲN͕N഻ͲĚŝďƵƚǇůŵĂůŽŶĂŵŝĚĞ and in Fe3+ IX 



processes at high [HCl] [21ʹ23]. The affinities of the studied metal ions to S930+ exhibit the following 

overall trend when [HCl] < 1 M: ݑܥଶା  ൐ ܷܱଶଶା ൎ  ଷା݁ܨ

 

 At pH 2 and increasing Cl- concentration (up to 6 M), there is minimal suppression in uptake of all the 

studied metal ions in this work by S930+ (Figure 6). 

 

3.2. Determination of loading behaviour under saline conditions 

3.2.1 The Effect of Fe3+ concentration on UO2
2+ loading behaviour under hypersaline 

conditions 

     The effect of increasing the Fe3+ to UO2
2+ ratio in hypersaline conditions (22.6 g L-1 Cl-) at pH 

2 on the uptake of UO2
2+ on Purolite S930+ is shown in Figure 7. It is observed that increasing [Fe3+] 

suppresses the extraction of UO2
2+ by Purolite S930+.  Generally, the Langmuir model provided better 

fits of the data than those from the Dubinin-Radushkevich model, however, the latter model did 

produce a slightly better R2 value for the fit of the data from the experiments where [Fe3+]/[UO2
2+] = 

1. The Dubinin-Radushkevich model also largely overestimates the maximum uranium loading 

capacities. Fitting parameters for each model applied to the loading of uranyl onto S930+ in the 

presence of Fe3+ are presented in Table 3. The Langmuir constant (b) is seen to increase with increasing 

[Fe3+]/[UO2
2+], with the Dubinin-Radushkevich constant (BDR) doing the inverse. The suppression of 

uptake can be seen as a reduction in maximum IX capacity for UO2
2+ with increasing [Fe3+]/[UO2

2+] 

ratio, as shown by qm which is the monolayer saturation capacity for UO2
2+ in mol Lwsr

-1. It can be 

assumed that the difference in qm between systems with and without Fe3+ equates to the amount of 

IX sites on the resin occupied by Fe3+. 



 

Figure 7. UO2
2+ uptake onto Purolite S930+ with [Fe3+]/[UO2

2+] = 0, 1 and 2. Langmuir fitting is shown by black lines. 

 

Table 3. Langmuir and Dubinin-Radushkevich isotherm parameters obtained from fits of data from uranyl loading onto 

Purolite S930+ in the presence of increasing Fe3+concentrations 

 Langmuir Dubinin-Radushkevich 

Loading Conditions b (x 103) qm / mol LWSR
-1 R2 BDR (x 10-9) qm / mol LWSR

-1 R2 

Fe/U = 0 2.043 ± 0.167 0.604 ± 0.018 0.993 4.211 ± 0.275 1.342 ± 0.111 0.981 

Fe/U = 1 2.320 ± 0.341 0.379 ± 0.015 0.982 3.913 ± 0.200 0.809 ± 0.045 0.991 

Fe/U = 2 5.834 ± 0.432 0.206 ± 0.003 0.996 2.744 ± 0.347 0.377 ± 0.042 0.939 

 

3.2.2. EXAFS 

     U LIII-edge EXAFS data were obtained of Purolite S930+ samples after UO2
2+ loading from non-

saline and hypersaline media. The normalised EXAFS decay spectra are displayed in Figure 8. Collected 

spectra appear to show that there is no effect of Cl- concentration upon surface speciation as the 

spectra plotted in K-space and R-space are almost identical (Figure 9).  

 



 

Figure 8. Normalised EXAFS decay spectra of Purolite S930+ loaded with UO2
2+ in non-saline and hypersaline conditions. 

 

 

Figure 9. EXAFS spectra of Purolite S930+ loaded with UO2
2+ in K-space (A) and R-space (B). 

 

4 Discussion 

4.1 Batch extraction from sulfate and chloride media 

The point at which 50% extraction occurs for the Fe3+, Cu2+, and UO2
2+ as a function of H+ 

concentration ([H+]50 and pH50) in hydrochloric and sulfuric acid media can be used as an indicator of 

the strength of the interaction between the resin and metal ion (Table 4). The point at which 50% 

extraction occurs is predicted by polynomial fitting of the closest five data points to 50% extraction 

which gives R2 > 0.9990 for all data sets. From the data in Table 4 it can be seen that the 50% extraction 

values in HCl media cannot be grouped by electrostatics, with very similar values for all metal ions 

tested. In H2SO4 media there is a clear trend of decreasing [H+]50 values as z/IR increases. This infers 



that the interaction between the metal ions and the IDA functionality is not purely governed by 

electrostatics. It is likely that the strength of the interaction between metal and resin is affected by 

the size of the metal cation and how well it fits into the chelate ring. As metal ionic radius decreases, 

it is more difficult for the IDA group to bind in a tridentate fashion as the binding cavity size will need 

to be reduced, producing strain in the chelate ring and making binding less energetically favorable. 

 

Table 4. The 50% extraction point in hydrochloric and sulfuric acid media by Purolite S930+.[24,25] 

Species z Ionic Radius / Å z/IR 
HCl Media H2SO4 Media 

[H+]50 pH50 [H+]50 pH50 

Fe3+ 3 0.55 5.45 0.25 0.60 0.20 0.70 

Cu2+ 2 0.73 2.74 0.28 0.55 0.31 0.51 

UO2
2+ 2 1.40 1.43 0.26 0.59 0.45 0.35 

 

4.2. Determination of loading behaviour under hypersaline conditions 

  Data for uranium loading isotherms with increasing concentrations of [Fe3+] were collected 

using hypersaline conditions (Cl- = 22.6 g L-1, 0.64 M) at pH 2. At this pH regime the H+ concentration 

does not cause any uranyl uptake suppression (Figures 5 & 6). One of the parameters that can be 

calculated from the Dubinin-Radushkevich model is the mean free energy of sorption, which can give 

an indication of the type of mechanism employed in the extraction. These values are presented in 

Table 5. Mean free energy of sorption values are seen to increase with increasing [Fe3+]/[UO2
2+], 

indicating a stronger interaction between the uranyl cation and the IDA moiety at higher Fe3+ 

concentrations. This is the inverse of the relationship between [Fe3+]/[UO2
2+] and maximum loading 

capacity obtained using the Langmuir model. The effect of increasing molar ratio ([Fe3+]/[UO2
2+]) in 

the IX capacity towards uranyl under experimental conditions is shown in Figure 10. 

 



Table 5. Mean free energy of sorption values and uranyl loading capacities for uranium loading at [Fe3+]/[UO2
2+] values 

of 0, 1 and 2. 

[Fe3+]/[UO2
2+] Mean free energy of sorption /  kJ mol-1 A qm / mol LWSR

-1 B 

0.0 10.90 ± 0.36 0.604 ± 0.018 

1.0 11.30 ± 0.29 0.379 ± 0.015 

2.0 13.50 ± 0.85 0.206 ± 0.003 

ACalculated using the Dubinin-Radushkevich model. BCalculated from the Langmuir model. 

 

 

Figure 10. UO2
2+ saturation capacity (mol LWSR

-1) with increasing [Fe3+]/[UO2
2+] molar ratio from Langmuir isotherm 

model fitting. Fitted line is to guide the eye. 

 

 The suppression of uranyl uptake by Purolite S930+ upon increasing [Fe3+] occurs due to 

competition for uptake sites on the resin surface between the two species. The observed results 

infer an increased affinity for Fe3+ by S930+ when compared with UO2
2+. Formation constants (log10ɴͿ 

for the 1:1 Fe3+ or UO2
2+ complex with iminodiacetic acid in aqueous solution have been reported as 

10.72 and 9.90, respectively [26,27]. This higher formation constant for the Fe3+-IDA complex 

suggests that Purolite S930+ will form stronger complexes with Fe3+, agreeing with the collected 

experimental data. 



This reduction in UO2
2+ recovery would be problematic in uranium processing circuits, so [Fe3+] 

would need to be controlled. This could be achieved by adjusting the pH to 3, promoting iron 

precipitation, or Fe3+ could be chemically reduced to Fe2+. An alternative to those methods would be 

an initial extraction step in concentrated HCl media, promoting the removal of [FeCl4
-], followed by 

increasing the pH and extracting the uranium. However, this system would increase plant acid 

consumption, so it may not be suitable. 

4.3. Determination of surface speciation  

     Purolite S930+ is marketed as a chelation ion exchanger, and fits of the EXAFS data obtained 

from uranyl loaded S930+ to molecular species were conducted with this in mind. Uranyl is a 2+ cation, 

therefore according to charge balance, two positive charges must be transferred from the IDA moiety 

into the aqueous phase for uranyl to bind to IDA. The pKa values of free IDA in aqueous solution suggest 

that one acetic acid group will be deprotonated under experimental conditions used to load the uranyl 

onto the resin for the EXAFS samples, meaning the two H+ ions which are transferred from the IDA 

moiety will most likely be from the protonated acetate group and from the protonated nitrogen atom 

[28]. This alludes to a possible mechanism where the IDA binds to uranyl in a tridentate fashion. 

Modelling of the uranium coordination environment was conducted incorporating two axial oxygen 

atoms, two equatorial oxygen atoms and one equatorial nitrogen atom. For the rest of the equatorial 

region, numbers of oxygen atoms were varied to find the best fit. The same fitting methodology was 

applied to data collected in both non-saline and hypersaline environments. The addition of scattering 

paths associated with Cl- groups was not seen to improve fitting parameters in hypersaline fits. Fits 

are presented in R-space and K-space (Figure 11). Fitting parameters are shown in Table 6, with atomic 

parameters from the fit shown in Table 7. 

 



 

Figure 11. U LIII-edge EXAFS fits of uranyl loaded Purolite S930+ from non-saline (left) and hypersaline (right) 

environments. 

 

Table 6. Fitting parameters produced from U LIII-edge EXAFS data fitting of uranyl loaded Purolite S930+ from non-saline 

and hypersaline environments. 

 Non-Saline Hypersaline 

R-factor 0.0168 0.0170 

ʖred
2 968.863 2602.083 

Amp 1.071 0.945 

dE0 0.567 0.862 

 

 

Table 7. Atom parameters from U LIII-edge EXAFS data fitting of uranyl loaded Purolite S930+ from non-saline and 

hypersaline environments (Oaxial are axial oxygen atoms, Oeq are oxygen atoms associated with the IDA moiety or 

aqueous species, N is a resin based nitrogen atom and S is a sulfur atom associated with a sulfate group.) 

 Non-Saline Hypersaline 

 N R / Å ʍ2 N R / Å ʍ2 

Oax 2 1.78675 0.0028 2 1.78834 0.00234 

Oeq 2 2.41479 0.00194 4 2.36268 0.00527 

Oeq 2 2.31017 0.00248 - - - 

N 1 2.54725 0.00163 1 2.53526 0.00034 

S 1 3.10699 0.00686 1 3.12785 0.00899 



 

Best fits were produced for a five coordinate uranyl in the equatorial plane. The IDA acts as a 

tridentate chelating ligand (Figure 12) with the uranyl coordination environment about the equatorial 

plane completed by two oxygen atoms. The tridentate motif provided by IDA has been observed in 

the solid state previously by Jiang et al. [29], though U-N distances are slightly greater than those seen 

in these EXAFS spectra, which can be attributed to the differences between aqueous and solid 

systems. The remaining oxygen donor atoms in the uranyl equatorial plane may be associated with 

either water, hydroxyl groups, sulfate groups or a mixture of all three as these oxygen donors are 

indistinguishable given the experiments performed, and the potentially transient nature of these 

ligands with uranyl in an aqueous environment. The inclusion of a sulfur atom (or atoms) in a 

secondary uranyl coordination sphere for the EXAFS fits was attempted in order to ascertain if these 

remaining oxygen donors are sourced from sulfate. A way of assessing the statistical significance of 

the addition of another scattering path to an EXAFS fit is by using a variation on the F-test [30,31]. This 

method produces a confidence value for the addition of the extra scattering path using goodness of 

fit parameters. Equations 6-8 show how the confidence interval is calculated, where F is the result of 

the F-test, R1 and R0 are the R-factors for the worse and better fits, respectively, n is the number of 

independent points in the fit, m is the number of variables used in the fit, b is the difference in the 

number of parameters used in fits of R1 and R0 (known as the dimension of the fit), IX is the incomplete 

beta function ĂŶĚ ɲ ŝƐ ƚŚĞ ĐŽŶĨŝĚĞŶĐĞ level. A confidence level of 65% or greater suggests that the 

addition of the extra scattering path produces a statistically significant improvement to the fit. 

However, it is generally accepted that to be truly confident that this addition is a statistically significant 

improvement, a value of 95% or higher is required. 

 

ܨ ൌ ൫ோభమିோబమ൯Ȁ௕ோబమȀሺ௡ି௠ሻ ൌ ൤ቀோభோబቁଶ െ ͳ൨ ൈ ௡ି௠௕     Eq.6 

 



ߙ ൌ ͳ െ ௑ܫ ቀ௡ି௠ଶ ǡ ௕ଶቁ      Eq.7 

 ܺ ൌ ቀ ௡ି௠௡ି௠ା௕ிቁ       Eq.8 

 

The F-test produces confidence levels of 97% and 92% for the addition of a sulfur scattering 

path in EXAFS fits from non-saline and hypersaline environments, respectively. This is strong evidence 

that there is always a sulfur atom associated with the complexed uranyl cation. The slightly lower 

confidence interval for the hypersaline fit suggests that the scattering path is not as important as in 

non-saline conditions. This may mean that the sulfate group is not associated with the uranyl complex 

in non-saline conditions as often as in hypersaline conditions. However, a confidence level of 92% still 

shows that the sulfur atom, and therefore sulfate group is almost always present in the uranyl 

coordination environment and is very important in the fit. This leads to the conclusion that a bidentate 

sulfate group is associated with the surface complex in both aqueous environments tested. This is also 

evidenced by the U-S interatomic distance of 3.107 and 3.129 Å from non-saline and hypersaline 

conditions, respectively, which agree with previously published data for bidentate sulfate coordinated 

to uranyl where the U-S distances are ~ 3.1 Å [32]. 

 

 

Figure 12. Schematic representation of uranyl bound to Purolite S930+. 

 

4.3. Isotherm Derivation 

     An extraction mechanism for UO2
2+ by a Purolite S930+ has been proposed using the uranium 

coordination environment elucidated from the EXAFS data fits (Eq.9). This has allowed for the 



derivation of an isotherm model for this system based on the mass action law (Eq.10). The parameter 

ɲIDA2- is the fraction of the IDA moiety present in the dianionic form (Eq.11), while k1,2,3 are the stepwise 

deprotonation constants for IDA [33,34]. The full derivation is shown in the supplemental information 

in Appendix 1. As the IDA functionality is a triprotic system. Free IDA has the following protonation 

constants in aqueous: pK1 = 1.77 (CO2H), pK2 = 2.62 (CO2H) and pK3 = 9.34 (NHR2) [28]. We can make 

the assumption that it is the IDA2- form that actively complexes the metal from solution due to the 

results of the EXAFS experiments. 

 ሾܴܰሺܪሻሺܪܱܱܥሻሺܱܱܥሻሿതതതതതതതതതതതതതതതതതതതതതതതതതതതതതത ൅ ሾܷܱଶଶାሿ ՜ ሾܴܰሺܱܱܥሻଶሺܷܱଶሻሿതതതതതതതതതതതതതതതതതതതതതതതത ൅ ʹሾܪାሿ   Eq.9   

 

ݕ              ൌ ௞೐ೣఈ಺ವಲమష௫ௌଵା௞೐ೣఈ಺ವಲమష௫       Eq.10 

ூ஽஺మషߙ  ൌ ௞భ௞మ௞యሾுశሿయା௞భሾுశሿమା௞భ௞మሾுశሿା௞భ௞మ௞య     Eq. 11 

 

Model fits were performed for isotherm data with increasing [Fe3+]/[UO2
2+] (Table 8, Fig. 13). 

Maximum loading capacity is seen to decrease as [Fe3+] increases. Additionally, the R2 values and qm 

values predicted by the model are identical to those produced by the Langmuir isotherm. This arises 

as the equations are of the same form. The fit extraction equilibrium constant (kex) is of the same order 

of magnitude for all values of [Fe3+]/[UO2
2+]. The value produced when [Fe3+]/[UO2

2+] = 2 is around 2.5 

times higher than when [Fe3+]/[UO2
2+] = 0 and 1. This change may be due to the higher ionic strength 

of the aqueous solution with increasing [Fe3+]. 

 

 

 

 



Table 8. Fitting parameters from the derived isotherm model. 

[Fe3+]/[UO2
2+] R2 kex (x1013) S / mol LWSR

-1 

0 0.994 2.5 ± 0.2 0.604 

1 0.984 2.9 ± 0.4 0.379 

2 0.996 7.2 ± 0.5 0.206 

 

 

Figure 13. Derived isotherm model fit for uranium uptake on Purolite S930+ with differing concentrations of iron. 

5. Conclusions 

Under the conditions tested Purolite S930+ has been shown to be a viable candidate for 

uranium extraction under hypersaline conditions, with maximum uranyl loading capacity in 

hypersaline conditions being 0.604 mol LWSR
-1 (143.75 g LWSR

-1). Collected data shows that Cl-

concentration has very little impact upon uranium extraction ability and mechanism. It has also been 

observed that increasing [SO4
2-] has little impact on uranium uptake. However, [H+] in both sulfuric 

and HCl media is seen to significantly suppress uranium uptake and would therefore need to be 

controlled and kept below 0.1 M. The presence of Fe3+ in solution was also seen to cause a reduction 

in UO2
2+ recovery, by as much as 66% when [Fe3+]/[UO2

2+] = 2. 



The IDA moiety on Purolite S930+ has been shown to chelate the uranyl cation in a tridentate 

fashion in non-saline and hypersaline conditions through the use of EXAFS experiments. EXAFS data 

has been fit using crystallographic data and shows a 5-coordinate equatorial plane, with two oxygen 

atoms and a nitrogen atom from the IDA group and two oxygen atoms from a bidentate sulfate group. 

Assigning two of the oxygen atoms to a sulfate group as opposed to OH- or H2O was deemed correct 

from assessing the statistical significance of adding a U-S-U single scattering path to the fits using a 

variation on the F-test. This identical surface uranyl speciation in non-saline and hypersaline 

environments further shows the lack of impact Cl- concentration has on uranyl uptake. 

Collected data shows that the use of Purolite S930+ is clearly better than traditional SBA resins 

if a move to more environmentally friendly uranium mining processing circuits is to happen. It has 

been reported that the addition of 2.5 g L-1 Cl- to uranium process liquors can reduce extraction by up 

to 20%, which makes the process essentially economically unfeasible [35]. Purolite S930+ also has an 

advantage over other chelating resins such as those containing the aminophosphonic (Purolite S950) 

and mixed sulfonic/phosphonic acid (Purolite S957) functional groups as it can readily be eluted under 

moderately acidic conditions with 1 mol L-1 HCl or H2SO4. The copper present in the solution system 

tested can be removed by pretreating the eluent with chelating IX resin Dowex M4195 which is able 

to form strong complexes with Cu2+. 
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