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Editor's Note: "This is 1 of 10 articles generated from the session "Predictive models in 

ecotoxicology: bridging the gap between scientific progress and regulatory applicability," 

presented at the 27th SETAC Europe Annual Meeting (May 2017, Brussels, Belgium). The 

session considered approaches used in ecotoxicology for understanding and predicting the 

effects of chemicals, from QSAR to ecological modelling. This series aims to critically analyze 

and debate application examples and future developments to increase the acceptability of 

predictive models by regulators, managers, NGOs, and other stakeholders.” 

 
ABSTRACT 

 

Environmental risk assessment (ERA) of chemicals relies on the combination of exposure and 

effects assessment. Exposure concentrations are commonly estimated using mechanistic fate 

models, but the effects side is restricted to descriptive statistical treatment of toxicity data. 

Mechanistic effect models are gaining interest in a regulatory context, which has also sparked 

discussions on model quality and good-modelling practice. Proposals for good-modelling 

practice of effect models currently focus very much on population and community models, 

whereas effects models also exist at the individual level, falling into the category of 

toxicokinetic-toxicodynamic (TKTD) models. In contrast to the higher-level models, TKTD 

models are usually completely parameterised by fitting them to experimental data. In fact, one 

of their explicit aims is to replace descriptive methods for data analysis. Furthermore, the 

construction of these models does not fit into an orderly modelling cycle, as most TKTD 

models have been under continuous development for decades, and are being applied by many 

different research groups, for many different purposes. These aspects have considerable 

consequences for the application of frameworks for model evaluation. For example, classical 

sensitivity analysis becomes rather meaningless when all model parameters are fitted to a data 

set. We illustrate these issues with the General Unified Threshold model for Survival (GUTS), 

relate them to the quality issues for currently-used models in ERA, and provide 

recommendations for the evaluation of TKTD models and their analyses. 
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INTRODUCTION 
 

Environmental risk assessment (ERA) is concerned with assessing the environmental 

impacts of human activitities, such as the release of chemicals. In general, chemical risk 

assessment comprises an exposure assessment and an effects assessment, but whereas the 

former relies heavily on application of mechanistic models, the latter is based on descriptive 

procedures such as hypothesis testing and curve fitting on the results of standard toxicity tests. 

Such descriptive methods have a range of problems associated with them (Laskowski 1995; 

Jager 2011). Most importantly: they provide biassed estimates by focussing only on effects 

after a standardised exposure time, and do not allow for useful extrapolations to other exposure 

scenarios. Mechanistic effect models do exist, and are rapidly gaining interest in the context of 

ERA for chemicals (Grimm et al. 2009; Preuss et al. 2009b; Hommen et al. 2010; Hommen et 

al. 2016), specifically for plant-protection products (PPPs). As the European Food Safety 

Authority (EFSA 2013) puts it: “It is expected that mechanistic effect models at all levels of 

biological organisation will be used to support the RA of PPPs in the future.” This interest in 

effect models has also sparked a discussion regarding the quality of these models, and how to 

document and evaluate it.  

A general guidance for the evaluation of models to be used for ERA was produced in 2009 

by the US Environmental Protection Agency (US-EPA 2009). Specifically for effects models, 

two frameworks were presented more recently: the transparent and comprehensive ecological 

modelling (TRACE) documentation (Schmolke et al. 2010; Grimm et al. 2014), and EFSA’s 
scientific opinion on good-modelling practice for effect models in the context of PPPs (EFSA 

2014). Whilst the recommendations given in these frameworks are generally sensible, it is not 

so clear whether they can be applied in the same way to models at different levels of biological 

organisation. The effects models at the individual level fall into the category of toxicokinetic-

toxicodynamic (TKTD) models. These models differ in key aspects from ecological population 

or system models. Specifically, TKTD models are usually completely calibrated with case-

specific data, and they have a long history of conceptual development and application by many 

different research groups. What are the consequences of these differences for quality evaluation 

of TKTD models? In this paper, we will explore this question and its repercussions in more 

detail, using the General Unified Threshold model for Survival (GUTS, Jager et al. 2011) as 

an illustration. GUTS is a typical example for TKTD modelling in ecotoxicology, and the 

issues we discuss for this model hold for other TKTD models as well. Furthermore, we will 

compare these issues for quality evaluation of TKTD models to those for models that are 

currently routinely used in ERA, and provide a way forward. 

It is good to stress up front that model quality cannot be assessed in isolation as it is tightly 

linked to the intended use of the model. As the US Environmental Protection Agency puts it 

(US-EPA 2009): “Quality is an attribute of models that is meaningful only within the context 

of a specific model application. Determining whether a model serves its intended purpose 

involves in-depth discussions between model developers and the users responsible for applying 

the model to a particular problem.” Model quality evaluation is thus best viewed as an analysis 

of whether a model (or an application of a specific model) is fit-for-purpose. Therefore, we 

start with a short general introduction into TKTD modelling and highlight the purposes for 

which these models can be applied. 

 

TKTD GENERAL INTRODUCTION 

 

Mechanistic effect models at the individual level belong to the category of TKTD 

models. These models combine a toxicokinetic (TK) and a toxicodynamic (TD) module to 

provide a link between external concentrations and the effects on relevant endpoints over 



time. In the context of ERA, relevant individual-level endpoints are those with a direct link to 

population performance, i.e., survival, growth and reproduction. In contrast to risk 

assessment for human health, the focus lies on the protection of populations and ecosystems, 

and not the well-being of individuals per se (see Van Leeuwen and Vermeire 2007). Both the 

TK and TD module explicitly consider the factor ‘time’, in a mechanistic manner. Therefore, 

TKTD models allow the external concentration and other environmental conditions to vary 

over time, and the resulting effects on the endpoints are predicted as they change over time 

(for some models even over the full life cycle of the organism).  

Most TKTD models have been developed with the explicit aim to be generic: the same 

model can be used for many species and chemicals. Application of these models starts with 

calibrating the model to toxicity data for the chemical and species of interest. The difference 

between different species and chemicals is thus reflected in different values of the model 

parameters, and not (or much less) in model structure. Coupled to the fact that TKTD models 

are based on a representation of the underlying mechanisms, this allows for useful 

comparisons between species and chemicals, and for extracting general (and hopefully 

predictive) patterns. These models are usually developed with standard ecotoxicity data in 

mind, which implies that they can be calibrated using observations on individual-level 

endpoints such as survival and reproduction, without requiring measurements at the sub-

individual level (e.g., histology or body residues).  

Owing to these preconditions, TKTD models are relatively simple, and based on rather 

abstract representations of the underlying mechanisms. For example, GUTS models (Jager et 

al. 2011) view mortality as a stochastic process (lumping an enormous number of processes 

into a chance process), and Dynamic Energy Budget models (DEB, see Sousa et al. 2008) 

focus on few idealised biomass components (e.g., structure and reserve) and lumped energy 

fluxes such as total maintenance costs. Such a huge simplification of biology and toxicology 

implies that many potentially relevant processes are ignored, but is needed to accommodate 

limited data sets and to keep the models generic and transparent. More general discussion on 

TKTD modelling and its advantages can be found elsewhere (Jager et al. 2006; Ashauer and 

Escher 2010). 

TKTD models have a substantial history in science, where they are used to understand 

and explain the effects of toxicants (and other stresses) on the life-history traits of a species. 

Although TKTD models are currently not routinely used in ERA, their potential for 

application has been recognised in several frameworks. For example, they have been included 

in ISO/OECD guidance (OECD 2006) as biology-based methods, and EFSA incorporated 

them in their risk assessment scheme to complement laboratory studies with single species in 

tier 2 (EFSA 2013). As stated in the introduction, model quality is tightly bound to the 

intended use of the model. TKTD models may be used for various tasks in ERA, which we 

list in Table 1. In this list, TKTD models are compared to traditional dose-response curves as 

they can serve the same purposes (but then with greater power and flexibility), and can fulfil 

additional purposes that traditional models cannot.  

The TKTD model that we will use as a typical example is the General Unified Threshold 

model for Survival (GUTS, Jager et al. 2011). GUTS is not a single model, but rather a 

framework from which specific models can be derived in a consistent manner (by fixing 

parameters to certain values). It is limited to effects on mortality or immobility, and builds on 

a long history of survival analysis in science. In fact, almost all survival models that have 

been proposed in ecotoxicology can now be viewed as special cases. GUTS is a collaborative 

result, evolving from efforts to harmonise research in the field of survival modelling, in order 

to make more efficient progress, both in science and in applied contexts such as ERA. This is 

in effect comparable to the development of a consensus model for multi-media chemical fate 



to calculate long-range transport potential, which is commended in the US-EPA guidance 

(US-EPA 2009, p.23, box 6). 

To illustrate what GUTS does, we provide an example in Figure 1 for one special case of 

the model (the reduced stochastic death model) for propiconazole in the amphipod 

Gammarus pulex (data from Nyman et al. 2012). This is a typical example for the first use of 

TKTD models, as listed in Table 1: analysing rather standard toxicity data for survival over 

time, using all data in a single analysis. GUTS requires just four parameters for the entire data 

set, and all of these parameters are calibrated: all parameters obtain their value by fitting the 

model to data at the same level as the model’s output (i.e., model predictions for survival 
probability are compared to observations on survival in the experimental cohort). 

 

WHAT MAKES TKTD MODELS DIFFERENT 

 

In applying good-modelling frameworks to TKTD models, a number of problems arise in 

practice. Firstly, these frameworks implicitly focus on a specific category of effect models, 

namely the models at the population level and higher (community, ecosystem, landscape). 

The criteria they propose cannot be used in the same way for effects models at the individual 

level, such as TKTD models. Specifically, these frameworks request reconstruction and 

documentation of every step in the modelling cycle (Fig. 2), which is impossible for generic 

model concepts with a long history and broad distribution in the scientific community. 

Furthermore, TKTD models are, unlike population models, always fitted to data. These issues 

will be discussed in more detail below, followed by their consequences for mainstays of 

good-modelling frameworks: sensitivity/uncertainty analysis and validation. It is good to 

stress already here that these problems are not unique for TKTD models; they are shared by 

the effect models that are currently used in ERA (discussed in more detail later). 

 

The Modelling Cycle 

 

The TRACE framework (Schmolke et al. 2010; Grimm et al. 2014) and EFSA opinion 

(EFSA 2014) emphasise the modelling cycle (simplified version shown in Fig. 2), and 

documentation of that cycle: “Model development should follow the modelling cycle, in which 
every step has to be fully documented …” (EFSA 2014). Such a cycle may be a realistic 

representation when a model is built, largely from scratch, by a single research group (or even 

a single person), to address a specific problem. This situation is perhaps representative for 

many models at higher levels of biological organisation, although even these models are not 

built entirely from scratch; most will rest on well-tested foundations such as matrix and 

individual-based modelling. However, on this foundation, a specific model structure is 

developed and parameterised for a specific species (sometimes also a specific chemical), a 

specific environmental setting, and for a specific purpose. This particular model structure, with 

its general parameterisation, is then usually referred to as ‘the model’, and can be documented 
in the form of a modelling cycle as in Figure 2. TKTD models, in contrast, are truly generic: 

one model structure is applied to many species, chemicals, environmental settings and 

purposes. The most prominent model concepts have a long and convoluted history in 

ecotoxicology. One model is typically applied, tested and further developed by many different 

research groups, working largely independently, but regularly borrowing and modifying 

elements of each other’s work. The same model structure will have been implemented in 

different software applications, used for different species-chemical combinations, and applied 

to address very different questions. As a consequence, there is no modelling cycle for a 

particular model; instead, we are looking at a complex modelling web.  



Taking the example of GUTS, the model structure has not been developed from scratch in 

response to a specific problem formulated in an ERA context; it is based on a century of work 

on survival modelling, which had led to a wide range of (seemingly unconnected) models. 

GUTS places all these developments into a single framework, and thus builds on the insights 

gained with all of these models. Specific cases of this framework have been implemented in 

different programming languages (Matlab, R, Delphi, etc.), by different groups, independently. 

When we have selected a particular special case of GUTS, and a specific software 

implementation, it can then be applied to a wide range of data sets for different species and 

chemicals, and to a variety of problems. There is also no closing of the modelling cycle as in 

Figure 2: a single application will not generally lead to adaptation of the conceptual GUTS 

model, although everyone is free to develop their own version of GUTS, as there is no central 

coordination.  

Clearly, with GUTS, we do not see a single model going through a cycle. We have (at 

least) three different stages of model development, with an ever expanding number of ‘models’: 
there is one conceptual GUTS framework (with a limited number of special cases, stage 1), a 

wider range of software implementations (probably a few dozen, stage 2), and a huge number 

of applications to specific data sets and specific questions (possibly thousands, stage 3). This 

expansion of models is illustrated in Figure 3. GUTS builds on work that has been done on 

other models for survival, and includes the one-compartment TK model with first-order 

kinetics as a module, which has its own (even more distant) historical roots. This can be 

considered stage 0 of the model. 

The modelling cycle is an overly-idealised picture, and a picture that actually fails in 

representing the most interesting models for ERA: generic models that have a long history and 

widespread support in the scientific community. Even though there is no modelling cycle for 

TKTD models such as GUTS, the elements of the cycle in Figure 2 still make sense. However, 

they apply to different stages of the modelling (Fig. 3). For example, there is no point in asking 

for an uncertainty analysis of GUTS in general (explained in detail in the section ‘Sensitivity 
And Uncertainty Analysis’ below); such an analysis would only make sense after a specific 

case of GUTS has been calibrated to a data set, and thus for an application (stage 3). 

Furthermore, it would be superfluous to document the quality of the GUTS concepts for each 

application again and again. It is more useful to separate the evaluation of the conceptual model 

(stage 1) from the evaluation of the software (stage 2), from the evaluation of each specific 

application of the model (stage 3, as in Fig. 3). Specific questions relate to each stage, and 

require a different type of evaluation and documentation (which should refer to, rather than 

repeat, the evaluation/documentation of the preceding stages).  

 

Difference In Parameterisation/Calibration 

 

In the previous section, we discussed the fact that there is no modelling cycle in sight for 

most TKTD models, as might be more easily discerned for population/community models. 

Another (though related) difference with such higher-level models is that TKTD models are 

almost always directly fitted to data; data of the same type as the model output. GUTS is a 

model for the survival probability of individuals over time, and is fitted to observations on 

survival for a test cohort over time. And not just some of the parameters are fitted, but generally 

all of them. In fact, one of the main applications of TKTD models is as a tool for data analysis 

(Table 1). This implies that a number of traditional evaluation criteria, such as 

sensitivity/uncertainty analysis and validation, need to be reconsidered. This is most clearly 

illustrated by contrasting the situation for TKTD models to that for population models.  

Population models are rarely fitted to measured population densities; exceptions are the 

simple exponential and logistic growth models that are used for algae and duckweed (and for 



these models, the same problems as for TKTD models apply). The number of model parameters 

is usually way too large to be determined solely from population data, and, more 

fundamentally, if such extensive data sets existed, there would be little need for the model in 

the first place (modelling is used to predict population impacts in the absence of relevant 

observations). Instead, model parameters in a population model obtain their value from a 

parameterisation process that does not involve the model itself (Fig. 4). For example, a 

population model might require a feeding rate for individuals, and we can look at experimental 

data on the feeding process to derive a relationship between ingestion rate and body length 

(e.g., Preuss et al. 2009a). After all parameters have received a value, we can run the model 

and obtain model predictions at the population level. Classical uncertainty/sensitivity analysis 

implies that we change the parameter values and investigate the response of the model 

prediction to those changes. We can change model parameters in a rather arbitrary manner 

(sensitivity analysis) or apply realistic distributions for them (uncertainty analysis). We can 

compare model predictions and independent observations (corroboration), and/or modify some 

parameter values to obtain a closer correspondence to observed patterns (calibration). Since 

most of the model parameters will be fixed for a range of applications (e.g., the properties of 

the species and the environment), they (and the data sets they are based on) are often treated as 

an integral part of the model. This is likely the underlying rationale for including data-

dependent modelling steps (parameterisation, calibration, corroboration, 

sensitivity/uncertainty analysis) into the development cycle for a model (Fig. 2). 

The situation sketched above for population models is very similar to the case for chemical 

fate models, which are obviously not parameterised by fitting them to measured environmental 

concentrations. For TKTD models, however, parameterisation is the same as calibration, which 

is the actual application of the model to fit a data set (Fig. 4). Observations of the same type as 

the model output are used to obtain the value for all of the model parameters, as was illustrated 

with the example of GUTS (Fig. 1). This is a fundamentally different way to use models, and 

the values of the model parameters (and the data sets used to derive them) cannot be considered 

as part of the model in any sense (unless we are willing to treat the result of each fitting exercise 

as a new model). For TKTD models, including the data-dependent modelling steps in an 

evaluation of the model concept therefore does not make any sense. On closer inspection, this 

also makes little sense for other models, such as those at the population level; it is best to 

explicitly separate the evaluation of the model concepts from that of its parameterisation. 

Therefore, the modelling cycle of Figure 2 needs to be replaced by a model expansion as in 

Figure 3. The fact that TKTD models are fully parameterised by calibration has important 

consequences for how we should look at several data-dependent components of good-

modelling practice such as sensitivity/uncertainty analysis and validation. 

 

Sensitivity And Uncertainty Analysis 

 

Classical sensitivity and uncertainty analysis are hardly useful for TKTD models. To 

perform such analyses, the parameters first need to have received a value, or at least a 

reasonable range, and we need a scenario (e.g., exposure pattern and duration). Otherwise, we 

would need to change all parameters between zero and infinity, for all possible exposure 

patterns, which would be rather pointless. The parameters of TKTD models receive their value 

in a calibration to a particular data set. We thus have to start by fitting the model, as illustrated 

for GUTS in Figure 1, for the case of propiconazole in G. pulex. However, after fitting the 

model, what is the point in changing parameters to see how the model output changes? When 

we change the value of a parameter, we obviously change the goodness-of-fit, and that was 

already done by the optimisation routine. In fact, it is the fit on the data that informs us about 

the sensitivities and uncertainties in the model parameters: the (joint) confidence interval on 



the parameters provides all of the relevant information. Parameters with a narrow confidence 

interval are sensitive, and not very uncertain (their value is clearly identified from the data set). 

Parameters with a wide confidence interval cannot be properly identified from this particular 

data set. They are either insensitive in the model (in this particular part of parameter space), 

and/or the data do not allow their identification.  

Of course, after the model has been fitted, we can still perform a classical sensitivity and 

uncertainty analysis. As explained above, this does not yield much in terms of useful 

information, and furthermore, the sensitivity of each parameter will depend on the exposure 

concentration, the time of exposure, and even the exposure pattern (Ashauer et al. 2013), as 

well as on the specific type of model output selected. In population models, sensitivity analysis 

is useful for those parameters that are treated as part of the model (e.g., specifying individual 

behaviour or environmental conditions), and especially for those that are not fixed by relevant 

data. Such an analysis helps refining the model: we need to scrutinise the parameterisation for 

those parameters to which the model output is particularly sensitive, and can remove processes 

that are insensitive. However, in GUTS, all parameters are fitted simultaneously to a set of 

survival data (Fig. 1), and we cannot refine the parameterisation for an individual parameter as 

it is an integrated part of the model fit, and parameters tend to co-vary. If we don’t like the 
parameter values or their confidence intervals, the only thing we can do is to perform a new 

toxicity experiment (which, with help of the model, can be designed to maximise the 

identification of certain parameters, if needed; Albert et al. 2012). 

Instead of classical sensitivity and uncertainty analysis, application of TKTD models 

benefits most from a robust and coherent statistical treatment in model fitting. The confidence 

intervals on the parameters tell us how well they can be identified from this particular data set, 

and the joint confidence set can be used to propagate uncertainty in the model parameters to 

uncertainty in model predictions (for examples, see Jager and Zimmer 2012; Ashauer et al. 

2016). It is important to stress that the approaches for model calibration and dealing with 

parameter uncertainty tell us nothing about the quality of the conceptual model. They are 

aspects of a specific model application (stage 3, see Fig. 3) in combination with specific 

calibration data.  

 

Model Validation 

 

Since the starting point of virtually all analyses with TKTD models is a calibration to the 

available data, this also raises the question of how to judge the degree of correspondence 

between model and reality. This process is often referred to as ‘validation’, but as models are 
necessarily simplifications of nature they can never be validated in its strict sense (Oreskes et 

al. 1994). It is therefore better to use ‘corroboration’ instead, to refer to the comparison of 
predictions to observations that were not used for calibration (see US-EPA 2009). 

Corroboration is an important element of modelling as it clarifies (and in the best case, 

quantifies) how well the model can represent reality. There are many limitations and pitfalls, 

for example, a model might perform well for the wrong reasons (Oreskes et al. 1994). 

Nevertheless, a range of corroboration studies can go a long way in embodying trust in the 

usefulness of the model concept (for a specific purpose). 

The requirements for corroboration should be closely linked to the intended use of the 

model. If the TKTD model is to be used to derive a no-effect threshold or an ECx,t, the 

requirements will differ from the situation where the model is to be used to extrapolate to 

untested exposure scenarios or to different species (Table 1). In any case, verification is 

possible and very important: checking the consistency and realism of the underlying 

assumptions, and the translation into mathematics and computer code. However, corroborating 

the model’s output with independent observations becomes rather awkward for the application 



of TKTD models in data analysis. In a population model, the type of data that the model 

predicts (e.g., population abundance and structure over time) is not the type of data that is used 

to parameterise the model (see Fig. 4). Therefore, we can parameterise the model first, and 

compare its predictions to independent observations from a population experiment (for an 

example, see Preuss et al. 2009a). However, for TKTD models, parameterisation involves 

fitting the model to data for the endpoint that is being predicted. Taking the GUTS example in 

Figure 1, all of the experimental data are used for the parameterisation/calibration. We could 

repeat the experiment and compare the calibrated model to the new data set, but that would say 

more about the reproducibility of the experimental test than on the realism of the model. The 

only criterion we can use for ‘validity’ of the model in these applications is the goodness-of-

fit of the model to the data. If the model fits well, and if it generally fits well on this type of 

data, that provides support for the model (but not a corroboration in the strict sense). However, 

goodness-of-fit has to be viewed in relation to the flexibility of the model to produce different 

patterns. A twenty-parameter TKTD model might provide a good fit to any data set you throw 

at it, but the goodness-of-fit will not provide support for the realism of the model concept 

anymore.  

We do have the opportunity to corroborate TKTD models using independent data when 

we use the model to make extrapolations beyond the calibration data set. For example, we can 

use the calibrated GUTS model in Figure 1 to make predictions for effects at untested time 

points, untested exposure concentrations or exposure scenarios (e.g., pulse exposure), or 

untested environmental conditions. Subsequently, we can set up additional experiments to test 

those predictions. These are very useful exercises to clarify the accuracy and precision of the 

model predictions, but they have been quite rare so far for TKTD models (for GUTS, see 

Nyman et al. 2012; Ashauer et al. 2016). However, there are several stumbling blocks that must 

be considered. Firstly, performing corroboration studies is hampered by the way science is 

financed; after all, such exercises are not considered sufficiently novel for most funding 

agencies. Furthermore, corroboration will be most convincing if it covers the intended uses, 

and at this moment, it is unclear how these models are to be used in ERA (see the options in 

Table 1). And, finally, a corroboration study requires the model to be parameterised for a 

specific case (chemical, species, conditions, etc.). This implies that a lack of correspondence 

might be either caused by a failure of the model concept, or a failure in the parameterisation, 

or both. Like sensitivity/uncertainty analysis, corroboration is a data-dependent analysis, and 

thus part of an application (stage 3 in Fig. 3). 

 

CURRENT MODELS FOR EFFECTS 
 

Same Problems With Current Models 

 

The points raised above are not unique for GUTS or for TKTD models in general; the same 

problems apply to classical dose-response analysis, TK models, and the simple exponential and 

logistic models for algal population or plant growth. These methods are also models, and have 

been routinely used in ERA for decades, so it makes sense to scrutinise them from a good-

modelling perspective. Furthermore, looking at these more familiar models helps clarify the 

points made above for TKTD models.  

Clearly, it is impossible to discern a modelling cycle (Fig. 2) for these models, and in many 

cases, it will even be difficult to trace their origins. Furthermore, few would attempt sensitivity 

and uncertainty analysis on these models; after fitting a dose-response curve to a data set, there 

is no point in varying the parameters (e.g., EC50 and slope parameter) to see how the curve 

changes. Once we have established an EC50 with a confidence interval, there is simply no need 

for additional analyses. The question of ‘validity’ also becomes rather trivial: how can we 



establish the realism of the fitted dose-response curve or the EC50 that follows from it? 

Regarding evaluation of the model concepts, the dose-response curves have no underlying 

logic, and as OECD guidance (OECD 2006) puts it: “A statistical regression model itself does 
not have any meaning, and the choice of the model (expression) is largely arbitrary.” For 

corroboration, we could redo the experiment, resulting in independent data, and see if the curve 

established earlier also goes through this data set. However, if the new data are very different 

from the calibrated model, it will also be very different from the first data set. Hence, the issue 

would be with the reproducibility of the test, and not the quality of the model or its calibration.  

The situation is equivalent for the exponential growth model that is used to analyse toxicity 

data for algae and duckweed growth, and the one-compartment TK model that is used in 

analysing bioconcentration data. There is no modelling cycle, nobody asks for sensitivity or 

uncertainty analyses, it may be questioned whether these models (or their implementations) 

have been verified, and certainly they are never corroborated using independent data. As with 

TKTD models, the only criterion we can use for ‘validity’ is the goodness-of-fit of the model 

to a data set, and to this type of data in general. For these classical models, this is acceptable 

as they have a very limited range of curve shapes that they can produce; they will not fit just 

any data set. In fact, the log-logistic dose-response curve, exponential growth curve, and one-

compartment TK model have only one curve shape, and the model parameters scale or shift 

this shape in the x- and y-direction.  

 

Which Criteria Were Used To Select Current Models? 

 

As explained in the previous section, models are already being used in the effects 

assessment of ERA, albeit rather crude ones. What kind of criteria were used to select these 

models for ERA in the first place? Certainly not the criteria put forward in good-modelling 

frameworks, as the currently-used models would not have passed. For these models, there is 

no modelling cycle, and therefore also no documentation of every step in their development 

and application. Criteria like sensitivity/uncertainty analysis and ‘validation’ have clearly 
never been an issue. Interestingly, there seem to be no criteria on the software implementations 

to be used, and even more striking: the test guidelines currently don’t even specify which model 

to use, and which methods and software to fit them with. The guidance for acute fish toxicity 

testing (OECD 1992) states: “Normal statistical procedures are then employed to calculate the 
LC50 for the appropriate exposure period.” The same is true for the Daphnia reproduction test 
(OECD 2012): “ECx-values, including their associated lower and upper confidence limits, are 

calculated using appropriate statistical methods (e.g. logistic or Weibull function, trimmed 

Spearman-Karber method, or simple interpolation).”  
The most important criterion used in the past to select these models for ERA was probably 

the fact that there were no alternatives at the time, and that these approaches had a broad 

acceptance in ecotoxicology and among the stakeholders. This is understandable as the 

effectivity of ERA rests on acceptability in science, industry and society. Furthermore, models 

that have managed to gain such broad acceptance have probably done so on the basis of their 

(perceived) appropriateness for the problem at hand. This illustrates that support for a model 

may be more important for its use in ERA than whether it passes all of the criteria for good 

modelling. However, it also shows a clear mismatch between the criteria proposed for new 

effects models and the demands that are placed on currently used methods. 

 

WAY FORWARD 

 

Modifying Criteria For TKTD Models 

 



TKTD models share a number of features with the models currently used in effects 

assessment by which they fundamentally differ from other types of models such as 

population/community models and fate models. Most strikingly: it is impossible to identify a 

modelling cycle (as in Fig. 2) for TKTD models, and they are parameterised directly and 

completely by fitting them to data (Fig. 4). As a consequence, there is a mismatch between 

TKTD models and the frameworks for good-modelling practice that are currently being put 

forward. To remedy this mismatch, the model evaluation needs to be broken down in (at least) 

three separate stages: the conceptual model, the model implementation, and the model 

application. One conceptual TKTD model (such as GUTS) will generally have many 

implementations, and even more applications (Fig. 3). Each stage has a set of evaluation points 

that is relevant for that stage only. In Table 2, we adopted and modified typical items for a 

good-modelling evaluation, and categorised them into the different stages that ‘the model’ 
encompasses. Quality issues only propagate downstream: an issue with the conceptual model 

will influence all applications that follow from it, but an issue with an application does not 

affect the quality of the conceptual model.  

Especially within this last stage, some criteria will need to be modified to suit TKTD 

models. For example, classical sensitivity/uncertainty analysis is rather meaningless, and is 

best replaced by a proper derivation of confidence intervals, and propagation of parameter 

uncertainties from the fit to model predictions. Output corroboration is also part of the 

application as one can only compare a model to independent observations after it has been 

parameterised for a specific species and chemical. For TKTD models, corroboration needs to 

be reconsidered as these models are fitted to data (fully comparable to current use of dose-

response curves). One element of ‘validation’ is goodness-of-fit and how well the model 

generally captures patterns in the kind of data that it is used for. However, goodness-of-fit has 

to be viewed in relation to the flexibility of the model to produce different patterns. When a 

TKTD model is used to make predictions beyond the range of the calibration data, proper 

output corroboration is possible (i.e., comparing model predictions to independent data, not 

used for calibration). At this moment, such studies have been rare for TKTD models, and they 

would need to closely match the intended use of the model in ERA to be meaningful. 

Such a sub-division in stages is not only useful for models at the individual level, but also 

for other models to be used in ERA, especially those with a wide distribution in science. For 

most population models, it would be easy to evaluate stage 1 and 2 together as it seems that 

most models only have one software implementation. Models are not particularly useful for 

ERA if they only have a single application, so stage 3 would have to be treated separately just 

as for the TKTD models. For population models, however, not all of the model parameters are 

case specific; most will probably be kept constant for a range of application cases, such as the 

environmental setting or the behaviour of the focal species. Therefore, the values of these 

parameters are often treated as part of ‘the model’. In our opinion, it is more useful to strictly 
separate the model from its parameterisation, the latter confined stage 3. Stage 3 would then be 

the only stage involving the interplay between data, parameter values, and model results. In the 

ERA context, however, it would make sense to separate stage 3 into a case-specific part 

(chemical and application specific) and a more general part. Confining all data-driven activities 

to stage 3 would clarify that any validation exercise or sensitivity/uncertainty analysis always 

relates to a particular parameterisation of the model.  

 

How To Use Criteria For Model Quality 

 
In our opinion, evaluation questions for model quality (such as those in Table 2) should 

not be used as absolute pass/fail criteria. Models (or their implementations/applications) that 

perform poorly on some of these criteria might still provide useful information for ERA, as the 



current methods for effects assessment testify. What is the purpose of a model quality 

evaluation? Firstly, it is important to establish how each model scores on a set of quality 

criteria, and to clarify what their strengths and limitations are. This knowledge will help risk 

assessors to weigh the evidence presented by the model with other lines of evidence, and select 

appropriate assessment factors. Secondly, such scores can help select the most appropriate 

models for ERA.  

The decision to use a new method (such as a model) in ERA should always be a 

comparison between the new method and the current (default) method. Proposing stringent 

criteria for new methods, without scrutinising the existing method (that the new method is 

supposed to replace) in the same manner, is bound to yield biased decisions. In selecting the 

most appropriate model for ERA, it is therefore essential to compare all contenders on an equal 

footing. This implies that the models and methods that are currently routinely used in ERA 

(such as dose-response curves) should also be judged by same criteria as put forward for 

newcomers such as TKTD models. If all items in Table 2 need to be evaluated and documented 

for each (application of a) TKTD model, why forego on such actions for dose-response models? 

Furthermore, it would be good to harmonise the demands on effects models to those for fate 

models as well. As an example, for fate models, propagation of uncertainties is not standard 

practice, and certainly not for each application. If such analyses are deemed essential for effects 

models, they should also be requested for fate models. 

Besides quality criteria as in Table 2, there might be important reasons to prefer the current 

methods over mechanistic alternatives (e.g., political or regulatory constraints). These criteria 

should, however, be formalised and explicitly incorporated into the good-modelling 

frameworks for regulatory purposes; there is no point in trying to improve models to meet a 

list of criteria when additional implicit criteria are being used in practice.  

 
Considering Modularity In Models 

 

TKTD models are by definition a combination of (at least) two models: a TK model and a 

TD model. The TK models used are also applied by themselves to analyse body-residue data 

over time. In turn, TKTD models are sometimes used as building blocks in population models 

(for GUTS, see e.g., Dohmen et al. 2016). Clearly, individual models can be used as modules 

in more complex models. This modularity raises a number of issues for model evaluation. 

Firstly, it is more efficient to evaluate modules than it is to evaluate models, because modules 

can be re-used in many different models. The EFSA opinion (EFSA 2014) also recognises this: 

“Different models could be also combined together to form linked systems; in this case the 
individual models need to be considered as separate entities before considering the method by 

which they are integrated to form the whole model being used for a specific case.” The second 

issue with modularity is perhaps a less obvious one: it makes little sense to use different 

modules for the same process in different parts of the risk assessment. For example, if the one-

compartment TK model is an appropriate model for body residues over time, it makes sense to 

use it in TKTD models as well (GUTS applies the same TK model in a TKTD context). If 

GUTS is an appropriate model for survival of individuals over time, it makes sense to apply it 

for that purpose as a building block in population models as well, instead of reverting to a static 

dose-response curve for the higher-level models. Using the same modules throughout the ERA 

process is not only logical but will also improve efficiency and consistency.  

 

Agreed Models Or Modules 

 

In risk assessment of PPPs in Europe, the demand for formal evaluation of model quality 

seems to be mainly driven by the fact that applicants can submit a calculation with any model 



of their choice into the dossier. The risk assessors then subsequently faces the task to assess 

whether this model calculation has sufficient quality or not, based on the information provided 

by the applicant. This is an untenable situation as risk assessors cannot be expected to be (or 

become) specialists on every model. Instead of diverting the burden of proof to the model 

developers (who might not have an interest in ERA at all), a far more efficient way forward is 

to arrive at a set of agreed effects models (or better: modules), as proposed by others as well 

(EFSA 2014; Hommen et al. 2016). For a small selection of models, it will be straightforward 

to produce extensive documentation, user-friendly software (including methods for sensitivity 

and uncertainty analysis, if required), and dedicated verification and corroboration studies to 

fill the most important gaps that inevitably exist for every model. Furthermore, it would be 

relatively easy for all stakeholders to build up sufficient expertise with these models to allow 

for critical evaluation of model applications in a dossier. And finally, such a selection of models 

can also provide a focus for further scientific work: currently, researchers have a tendency to 

develop new models (stimulated by funding agencies and journals pressing for novelty), rather 

than applying and testing existing models or modelling frameworks. The experience with 

GUTS has shown us that much more progress can be made by collaborating and pooling 

resources around a single framework. 
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Figure 1. Fit of GUTS (reduced stochastic death model) to survival data for propiconazole in 

Gammarus pulex (Nyman et al. 2012). This fit was achieved with four parameters (95% 

confidence interval in parentheses): dominant rate constant 2.2 (1.6-3.3) d-1, threshold for 

effects 17 (16-18) µM, killing rate 0.13 (0.087-0.20) µM-1 d-1, background hazard rate 0.028 

(0.013-0.050) d-1. The exposure scenario comprised four-day constant exposure to several 

concentrations (see legend). 

 
Figure 2. Simplified modelling cycle, modified from Schmolke et al. (2010). 
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Figure 3. Different modelling stages for GUTS. The general GUTS framework has a number 

of special cases (such as the reduced stochastic-death model, GUTS-RED-SD), which have a 

range of implementations (such as in a toolbox for Matlab), which can have numerous 

applications to specific chemicals and species (such as to propiconazole in the amphipod G. 

pulex in Fig. 1). 

 

 
Figure 4. Difference between the typical use of population models and TKTD models. The 

grey box shows what ‘parameterisation’ involves for both types of models. 
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Table 1. Four different types of applications of TKTD models. 

Purpose Explanation Typical application context 

1) Analysis of data 

from toxicity tests 

TKTD models use all of the data 

simultaneously: all treatments, all 

observation times, and in some 
cases all endpoints. This is more 

robust than fitting a dose-response 

curve, and can easily 

accommodate non-standard data. 

Output from a TKTD model can be a 

model parameter to be used as 

summary statistic (such as a time-
independent effect threshold), or a 

more standard ECx,t (exposure 

concentration for x% effect after 

exposure duration t). 

2) Extrapolation to 

untested conditions 

A TKTD model, once calibrated 

on toxicity data (see point 1), can 

be used to make predictions for 
other situations. As these models 

are based on mechanistic insights, 

their predictions are more useful 

than those based on dose-response 

curves. 

An application with particular 

relevance for PPPs is extrapolation 

from constant to time-varying 
exposure (e.g., using the results from 

fate models). One can also think of 

extrapolation to different 

environmental conditions, such as 

temperature and food availability. 

3) Building block in 

population and 
community models  

The extrapolation opportunities 

(see point 2) can be used to 
represent individual life histories 

in response to dynamic exposure 

conditions. 

TKTD models can serve as the 

individual-level module in models for 
higher levels of biological 

organisation, and can thus be 

integrated into more complex models. 

4) Extrapolation 
between chemicals 

and between species 

TKTD models are based on 
mechanisms, and explicitly 

separate TK from TD. Therefore, 

their model parameters are more 

likely to reveal patterns between 
species and between chemicals 

than traditional statistics such as 

ECx,t. 

TKTD model parameters can be 
related to each other and to properties 

of the species and the chemical 

(QSARs). Such relationships can 

ultimately be used to predict model 
parameters for untested species and 

compounds. 

 

 

  



Table 2. Example of typical items and questions for evaluation of TKTD models, categorised 

per modelling stage as depicted in Figure 3. Generally, each TKTD model with have a single 

set of concepts, several implementations, and many applications (Fig. 3). This table is meant 

as illustration and is not exhaustive. 

Modelling stage Items for evaluation Questions for evaluation 

0) History Historical roots Clearly documented and explained? 

 Use of existing modules Documented, evaluated conceptually 
(see stage 1), and appropriate? 

1) Concepts Model aim/domain What types of question can be 

addressed? 

 Underlying assumptions Explicit, consistent and appropriate? 
What is their scientific support? 

 Complexity Appropriate level given model aim? 

 Translation into mathematics Clear and correct? Have verification 

steps been taken? 

 Documentation Complete and clear? 

 Scientific status What is extent/range of successful 

applications, (see stage 3)? 

 Regulatory status Already used/accepted for regulatory 
purposes, and/or mentioned in guidance 

documents? 

2) Implementation Code Have verification steps been taken? 

 Numerical methods Appropriate and robust choice of 
methods? 

 User friendliness What is the extent/quality of the user 

interface? 

 User manual Is there a manual, is it complete and 
clear? 

 Availability Is implementation (and code) publicly 

available? 

3) Application Purpose What specific question should be 
answered? 

 Data Are data and experimental design well 

described, and appropriate for model and 

application purpose? 

 Numerical/statistical methods If the implementation offers a choice of 

methods: is an appropriate selection 

made? 

 Calibration What is degree of correspondence of 

model to data, and is it sufficient for the 

purpose? 

 Uncertainty analysis Quantification and propagation of 
uncertainties? If so, which uncertainties 

are included, and have appropriate 

methods been used? 

 Relevance Does the model analysis address the 
application purpose? 

 Realism of model predictions Have model results been compared to 

independent data (corroboration)? What 
is the nature and degree of the 

deviations? 

 


