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Localized Patterns in Periodically Forced Systems:
II. Patterns with Nonzero Wavenumber∗

A. S. Alnahdi† , J. Niesen‡ , and A. M. Rucklidge†

Abstract. In pattern-forming systems, localized patterns are readily found when stable patterns exist at the
same parameter values as the stable unpatterned state. Oscillons are spatially localized, time-periodic
structures, which have been found experimentally in systems that are driven by a time-periodic force,
for example, in the Faraday wave experiment. This paper examines the existence of oscillatory lo-
calized states in a PDE model with single-frequency time-dependent forcing, introduced in [A. M.
Rucklidge and M. Silber, SIAM J. Appl. Dyn. Syst., 8 (2009), pp. 298–347] as a phenomenological
model of the Faraday wave experiment. We choose parameters so that patterns set in with non-
zero wavenumber (in contrast to [A. S. Alnahdi, J. Niesen, and A. M. Rucklidge, SIAM J. Appl.
Dyn. Syst., 13 (2014), pp. 1311–1327]). In the limit of weak damping, weak detuning, weak forcing,
small group velocity, and small amplitude, we reduce the model PDE to the coupled forced com-
plex Ginzburg–Landau equations. We find localized solutions and snaking behavior in the coupled
forced complex Ginzburg–Landau equations and relate these to oscillons that we find in the model
PDE. Close to onset, the agreement is excellent. The periodic forcing for the PDE and the ex-
plicit derivation of the amplitude equations make our work relevant to the experimentally observed
oscillons.
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1. Introduction. Spatially localized structures are common in pattern-forming systems,
appearing in fluid mechanics, chemical reactions, optics, and granular media [15, 22]. Much
progress has been made on the analysis of steady problems, where bistability between a steady
pattern and the zero state leads to steady localized patterns bounded by stationary fronts
between these two states [9, 14]. In contrast, oscillons, which are oscillating localized struc-
tures in a stationary background in periodically forced dissipative systems, are relatively less
well understood. Oscillons have been found experimentally in fluid surface wave experiments
[5, 19, 24, 25, 35, 40], chemical reactions [31], optical systems [26], and vibrated granular me-
dia problems [8, 37, 39]. In the surface wave experiments (see the left panel of Figure 1), the
fluid container is driven by vertical vibrations. When these are strong enough, the surface of
the system becomes unstable (the Faraday instability) [20], and standing waves are found on
the surface of the fluid. Oscillons have been found when this primary bifurcation is subcritical
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LOCALIZED PATTERNS IN PERIODICALLY FORCED SYSTEMS 1479

Figure 1. Left: A triad of oscillons in a vertically vibrated colloidal suspension, with time running from
top to bottom (taken from [25]). Right: An oscillon in a vertically vibrated layer of bronze beads (courtesy of
Paul Umbanhowar, Northwestern University).

[13], and these take the form of alternating conical peaks and craters against a stationary
background. A second striking example of oscillons was found in a vertically vibrated thin
layer of granular particles [39], as depicted in the right panel of Figure 1. As with the surface
wave experiments, oscillons take the shape of alternating peaks and craters. The observation
of oscillons in these experiments has motivated our theoretical investigation into the existence
of these states and their stability in a model PDE with explicit time-dependent forcing. In both
of these experiments, the forcing (vertical vibration) is time-periodic with frequency 2Ω, and
the oscillons themselves vibrate either with the same frequency (2Ω) as the forcing (harmonic)
or with half the frequency (Ω) of the forcing (subharmonic). We focus on the subharmonic case
because this is the most relevant for single-frequency forcing as considered here; in contrast,
harmonic oscillations play an important role in the presence of multifrequency forcing [38].

A subharmonic standing wave modulated slowly in time is described by an ansatz of the
form

(1) U(t, x) = A(T )eiΩt cos(kx) + c.c.

for a real scalar variable U depending on a (fast) time variable t and a spatial variable x.
Here, A is a complex amplitude depending on a slow time scale T ; also, k is the wavenumber,
and c.c. stands for complex conjugate. Phase shifts in A correspond to translations in time.
Symmetry considerations then lead to an amplitude equation of the form

(2) AT = (ρ+ iν)A+ C|A|2A+ iΓĀ,

where the real parameter Γ describes the strength of the forcing. The parameters ρ and ν are
real, but C is complex. The last term (with Ā) breaks the phase symmetry of A and thus the
corresponding time-translation symmetry: the phase of A is not arbitrary because the forcing
in the original system is time dependent. The factor i in the last term can be removed by
applying a phase shift. See [17] for a discussion of this (and related) amplitude equations.D
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1480 A. S. ALNAHDI, J. NIESEN, AND A. M. RUCKLIDGE

In the case of spatially localized oscillons, we also have to include spatial modulations, so
that the amplitude A in (1) depends not only on T but also on a slow spatial variable X. It
would seem logical that this ansatz would lead to a diffusion term to (2), yielding a forced
complex Ginzburg–Landau (FCGL) equation which is typically written down without deriva-
tion [16, 28, 30, 41]:

(3) AT = (ρ+ iν)A− 2(α+ iβ)AXX + C|A|2A+ iΓĀ.

Here, α and β are real parameters; the factor −2 is included for comparison with the results
that we will derive in this paper. Burke, Yochelis, and Knobloch [10] showed that this equation
admits localized solutions. In [2], the FCGL equation was derived from a model PDE in which
patterns are formed with zero wavenumber at onset; the agreement between the localized
solutions in the model PDE and those in (3) was excellent.

However, in the Faraday wave experiment, the preferred wavenumber is nonzero at on-
set [6]. Nevertheless, the FCGL equation has sometimes been used as an amplitude equation
for Faraday wave and granular oscillons [4, 16, 37, 42]. In this paper, we argue that this is not
appropriate; instead, a system of two coupled FCGL equations should be used, as was done
in [27, 33].

In order to demonstrate explicitly the origin and correctness of the coupled FCGL equa-
tions as amplitude equations for oscillons, we use a PDE model with single-frequency time-
dependent forcing, introduced in [34] as a phenomenological model of the Faraday wave ex-
periment. We simplify the PDE by removing quadratic terms and by taking the parametric
forcing to be cos(2t), where t is the fast time scale. The resulting model PDE is then

(4) Ut = (µ+ iω)U + (α+ iβ)Uxx + (γ + iδ)Uxxxx + C|U |2U + iRe (U)F cos(2t),

where U(x, t) is a complex function; µ < 0 is the distance from onset of the oscillatory
instability; ω, α, β, γ, δ, and F are real parameters; and C is a complex parameter. The
cos(2t) term makes this PDE nonautonomous. In this model, the dispersion relation can
be readily controlled so the wavenumber at onset can be chosen be zero or nonzero, and
the nonlinear terms are chosen to be simple in order that the weakly nonlinear theory and
numerical solutions can be computed easily. In [2], the wavenumber at the onset of pattern
formation was zero, and the FCGL equation was derived as a description of the localized
solution. There, we did not require the fourth-order derivatives in (4). In contrast, in the
current study we use the dispersion relation to set the wavenumber to be 1 at onset, and
therefore we need to retain the term (γ + iδ)Uxxxx with the fourth-order spatial derivatives.

Our aim is to find and analyze spatially localized oscillons with nonzero wavenumber in
the PDE model (4) theoretically and numerically in one dimension and numerically in two di-
mensions. The approach will be similar to that in [2], though conceptionally more complicated
since we have to consider the interaction between left- and right-traveling waves and the effect
of a nonzero group velocity, leading to coupled amplitude equations. Although we will work
with a model PDE, our approach will show how localized solutions might be studied in PDEs
more directly connected to the Faraday wave experiment, such as the Zhang–Viñals model
[43], and how weakly nonlinear calculations from the Navier–Stokes equations [36] might be
extended to the oscillons observed in the Faraday wave experiment.D
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LOCALIZED PATTERNS IN PERIODICALLY FORCED SYSTEMS 1481

In this case, we can model waves with a slowly varying envelope in one spatial dimension
by looking at solutions of the form

(5) U(x, t) = A(X,T )ei(t+x) +B(X,T )ei(t−x),

where X and T are slow scales and x and t are scaled so that the wave has critical wavenumber
kc = 1 and critical frequency Ωc = 1. Commonly, the complex conjugate is added to an
ansatz of the form (5) in order to make U real, but our PDE (4) admits complex solutions
(we argue in the conclusion that this does not make a material difference). In order to cover
the symmetries of the PDE model, we include both the left- and the right-traveling waves
(with amplitudes A and B, respectively), but the time dependence will be eit only, without
e−it. In subsection 3.1, we explain in detail how the solution of the linear operator, which we
will define later, involves eit only. The +1 frequency dominates at leading order because of
our choice of dispersion relation. Here, we will focus primarily on the one-dimensional case.
Two-dimensional localized oscillons are discussed briefly at the end and studied numerically
in more detail in [1].

We start by showing some numerical examples of oscillons in the model PDE (4) and
bifurcation diagrams exhibiting snaking, where branches of solutions go back and forth as pa-
rameters are varied and the width of the localized pattern increases. We will do an asymptotic
reduction of the model PDE to the coupled FCGL equations in the limit of weak damping,
weak detuning, weak forcing, small group velocity, and small amplitude, and we will study the
properties of the coupled FCGL equations. Some numerical examples of spatially localized
oscillons in the coupled FCGL equations will be given. We will also investigate the effect of
changing the group velocity. Furthermore, we will reduce the coupled FCGL equations to the
real Ginzburg–Landau equation in a further limit of weak forcing and small amplitude close to
onset. The real Ginzburg–Landau equation has exact localized sech solutions. Throughout,
we will use weakly nonlinear theory by introducing a multiple scale expansion to do the reduc-
tion to the amplitude equations. We conclude with numerical examples of strongly localized
oscillons in one and two dimensions.

2. Numerical results for the model PDE. Similar to the methodology that was used in
[2], we present numerical simulations of the PDE model (4) by time-stepping and continuation.
The choice of parameters is guided by the asymptotic analysis in the remainder of the paper:
All modes are damped in the absence of forcing, but the modes with wavenumber k ' ±1 are
only weakly damped, the forcing is also weak, and the group velocity is small. We discretize
the PDE using a Fourier pseudospectral method, and the resulting system of ODEs is solved
with a fourth-order exponential time-differencing method [12]. Most experiments are done on
a domain of size L = 120π (60 wavelengths), in which case we use 2048 grid points. Solving
the PDE from an appropriate initial condition, we find the localized solution plotted in the
left panel of Figure 2.

To do continuation from this localized solution, we represent solutions by a truncated
Fourier series in time with frequencies −3, −1, 1, and 3. The choice of these frequencies
comes from the choice of parameters: The linearized PDE at wavenumber ±1 looks like
∂u
∂t = iu (writing U = u(t)eix), so the strongest Fourier component of u looks like eit; then
putting u = eit into the forcing Re(eit) cos(2t) generates the frequencies −3, −1, 1, and 3, asD
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0 30π 60π 90π 120π
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Figure 2. Left: Stable oscillon solution of (4) found by time-stepping, with µ = −0.255, ω = 1.5325,
α = −0.5, β = 1, γ = −0.25, δ = 0.4875, C = −1 − 2.5i, and F = 0.0585. The solution is plotted at t = 0.
Right: Amplitude of the eijt mode with frequency j when expanding the solution in the left panel at x = 60π
as a Fourier series in time: The frequency +1 component is the strongest, followed by frequencies −3, −1, and
+3, as expected, with the other frequencies at least two orders of magnitude weaker.

described in [2]. We also checked numerically that the frequencies ±1 and ±3 dominate (see
the right panel of Figure 2).

The bifurcation diagram of (4) as computed by AUTO [18] is given in Figure 3. The
subcritical transition from the zero state to the pattern occurs at the bifurcation point Fc =
0.08173. The saddle-node point where the unstable periodic pattern becomes stable is at
Fd = 0.04811. The bistability region where we look for the branch of localized states is
between Fc and Fd. The branch of localized solutions bifurcates from the branch of periodic
patterns at F ∗c = 0.08056, which is away from Fc because of the finite domain. Stable localized
solutions are located between F1 = 0.05666 and F2 = 0.05948.

Examples of solutions along the branch of localized solutions in Figure 3 are given in
Figure 4. Near the point F ∗c where the branch of localized solutions bifurcates, the localized
solutions look like the periodic patterns: small amplitude oscillations which are not very
localized (see Figure 4(a)). As we go along the branch of localized solutions, the amplitude
increases and the unstable oscillons become more localized (Figure 4(b)–(c)). At F1 = 0.05695,
the localized oscillons stabilize (Figure 4(d)), and then they lose stability again at F2 = 0.05987
(Figure 4(e)) as the branch of solutions snakes back and forth. The next saddle-node point
is at F3 = 0.05912 (Figure 4(f)). It appears from the numerical results that the parameter
intervals between successive saddle-node points shrinks to zero as we continue on the branch
with localized solutions; this is called collapsed snaking in [28]. However, we suspect that
our numerics are misleading, partially because the domain size is too small, and that, in fact,
the odd and even saddle-node points asymptote to parameter values which are close to each
other but not equal. The branch of localized solution connects to the pattern branch close
to the saddle-node point Fd. Figure 4(h) shows a typical periodic pattern. All solutions inD
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0.04 0.05 0.06 0.07 0.08 0.09 0.10

F

0

‖U
‖ 2

Fc

Fd

F ∗c

F1

F2

F3

(g)

(h)

(a)
(b)(c)

0.058 0.060

F

F2

F3

(g)

Figure 3. Bifurcation diagram of (4) in the weak damping limit in a domain of size Lx = 120π with
parameters as in Figure 2. The branch with periodic solutions is plotted in red. The bistability region is between
Fd = 0.04811 and Fc = 0.08173. The branch with localized solutions (blue) starts at F ∗c = 0.08056 and has
folds at F1 = 0.05666, F2 = 0.05948, and F3 = 0.05912. Solutions at (a), (b), (c), F1, F2, F3, (g), and (h) are
shown in Figure 4.

Figures 3 and 4 satisfy U(x, t) = U(−x, t) for a suitably chosen origin. We have not found
solutions with any other symmetry.

In the remainder of the paper, we will analyze these oscillons and derive an asymptotic
expression for their amplitude, which will be compared to the numerical solutions in Figure 9.

3. Derivation of the coupled FCGL equation. In this section, we will study the PDE
model (4) in the limit of weak damping, weak detuning, weak forcing, and small amplitude
in order to derive its amplitude equation. In addition, we will need to assume that the group
velocity is small. We start with linearizing (4) about zero, and we consider solutions of the
form U(x, t) = eσt+ikx, where σ is the complex growth rate of a mode with wavenumber k.
Without taking any limits and without considering the forcing, the growth rate is given by

σ = µ− αk2 + γk4 + i(ω − βk2 + δk4),(6)

so σr = µ − αk2 + γk4 gives the damping rate of modes with wavenumber k, and σi =
ω − βk2 + δk4 gives the frequency of oscillation. We will also need the group velocity of the
waves, which is dσi(k)/dk = −2βk + 4δk3.

We will choose parameters so that we are in a weak damping, weak detuning, and small
group velocity limit for modes with wavenumber k = 1. Specifically, in order to find spatially
localized oscillons and to do the reduction to the amplitude equation, we will impose the
following.D
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0 30π 60π 90π 120π

−0.1

0.0

0.1 (a)

0 30π 60π 90π 120π

−0.1

0.0

0.1 (b) ReU(x)

ImU(x)

0 30π 60π 90π 120π

−0.1

0.0

0.1 (c)

0 30π 60π 90π 120π

−0.1

0.0

0.1 (d)

0 30π 60π 90π 120π

−0.1

0.0

0.1 (e)
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−0.1

0.0
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x

−0.1

0.0

0.1 (h)

Figure 4. Solutions along the branch of localized solutions in the bifurcation diagram in Figure 3 at
(a) F = 0.079, (b) F = 0.076, (c) F = 0.073, (d) the fold at F1 = 0.05666, (e) the fold at F2 = 0.05948, (f) the
fold at F3 = 0.05912, and the point (g). Solution (h) is on the periodic branch at F = 0.09.
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0 1 2
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σ
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Figure 5. The growth rate (left panel) and dispersion relation (right panel) of (4) with µ = −0.255,
ω = 1.5325, α = −0.5, β = 1, γ = −0.25, and δ = 0.4875. In this case, the group velocity is small at k = 1
because this is close to the minimum of the dispersion relation.

Stability in the absence of forcing. To have waves with all wavenumbers linearly damped,
we require that σr(k) < 0 for all k. It follows that µ < 0, α > −2

√
µγ, and γ < 0. With

α < 0, we have a nonmonotonic growth rate.
Preferred wavenumber. We want the damping to be weakest for k = ±1. Thus, we require

that the growth rate σr achieves a maximum when the wavenumber k is 1, so d
dkσr(k = 1) =

−2α+ 4γ = 0. This gives the condition α = 2γ.
Weak damping. We also need to make the growth rate σr be close to zero when k = ±1.

Therefore, we introduce a small parameter ε � 1 and a new parameter ρ, so that we have
σr(k = 1) = µ−α+γ = ε2ρ, where ρ < 0. Thus, µ = 1

2α+ ε2ρ. Figure 5(a) shows an example
of the real part of the growth rate.

Weak detuning. We want waves with k ' ±1 to be subharmonically driven by cos(2t),
so the frequency of the oscillation σi should be close to 1 at k = 1. Therefore, we write
σi(k = 1) = ω − β + δ = 1 + ε2ν, where ν is the detuning.

Small group velocity. We require the group velocity dσi
dk = −2kβ + 4δk3 to be O(ε) at

k = ±1, so we have −2β + 4δ = εvg. This is needed to allow the group velocity in the
subsequent amplitude equations to appear at the same order as all the other terms. We
discuss the consequences of choosing a small group velocity in section 6. Figure 5(b) shows
an example of the dispersion relation σi(k).

Weak forcing. To perform the weakly nonlinear theory, we assume that the forcing is
weak, and so we scale the forcing amplitude to be O(ε2), writing F = 4ε2Γ.

We relate the parameters in the PDE model with the parameters in the amplitude equa-
tions in a way that we can connect examples of localized oscillons in both equations. In Table 1,
all PDE parameters are defined in terms of parameters that will appear in the coupled FCGL
equations and vice versa.
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Table 1
Relationships between parameters (µ, ω, α, β, γ, δ, F ) of the PDE model and the parameters (ρ, ν, α, β, vg,Γ)

of the coupled FCGL equations. Note that these relationships depend on the choice of ε. The parameters α and
β are the same in both models.

The PDE model (4) The coupled FCGL (14) Physical meaning

µ = α− γ + ε2ρ = 1
2
α+ ε2ρ ρ =

µ− α+ γ

ε2
ρ = damping (ρ < 0)

γ = 1
2
α

δ = 1
2
β + 1

4
εvg vg =

−2β + 4δ

ε
vg = group velocity

ω = 1 + 1
2
β − 1

4
εvg + ε2ν ν =

ω − 1 − β + δ

ε2
ν = detuning

F = 4ε2Γ Γ =
F

4ε2
Γ = strength of

parametric forcing

3.1. Linear theory. With the parameters as in Table 1, the linear theory of the PDE (4)
at leading order is given by

Ut =

(
α

2
+ i

(
β

2
+ 1

))
U + (α+ iβ)Uxx +

(
α

2
+ i

β

2

)
Uxxxx,(7)

which defines a linear operator L as

LU =

(
− ∂

∂t
+ i

)
U +

(
α

2
+ i

β

2

)(
1 +

∂2

∂x2

)2

U.

This is essentially the linear part of the complex Swift–Hohenberg equation [3], which has
appeared in the context of nonlinear optics [23] and Taylor–Couette flows [7]. To find all
solutions, we substitute U = eσt+ikx into the above equation to get the dispersion relation

σ = i+

(
α

2
+ i

β

2

)(
1− k2

)2
.

We assume that our problem has periodic boundary conditions, which implies that k ∈ R. Fur-
thermore, we require σr = 0 since we are considering neutral modes. The real and imaginary
parts of this equation give

k = ±1 and σ = i.

Therefore, LU = 0, equivalent to (7), implies that neutral modes are linear combinations of
U(x, t) = ei(t+x) and U(x, t) = ei(t−x). Note that our choice of dispersion relation leads to
positive frequency solutions. This is not a severe restriction, as discussed in section 6.

3.2. Weakly nonlinear theory. In order to apply the standard weakly nonlinear theory,
we need the adjoint linear operator L†. Therefore, we define an inner product between two
functions f(x, t) and g(x, t) byD
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〈
f(x, t), g(x, t)

〉
=

1

4π2

∫ 2π

0

∫ 2π

0
f̄(x, t)g(x, t) dt dx,(8)

where f̄ is the complex conjugate of f . The adjoint linear operator L† is defined by the
relation 〈

f(x, t), Lg(x, t)
〉

=
〈
L†f(x, t), g(x, t)

〉
for all f and g,

and so, using integration by parts,

L†f =

(
∂

∂t
− i+

(
α

2
− iβ

2

)(
1 +

∂2

∂x2

)2
)
f.

Taking the adjoint changes the sign of the ∂
∂t term and takes the complex conjugate of other

terms of L. The adjoint eigenfunctions are then given by solving L†f = 0; the solutions are
also linear combinations of ei(t±x).

We expand U in powers of the small parameter ε:

U = εU1 + ε2U2 + ε3U3 + · · · ,(9)

where U1, U2, U3, . . . are O(1) complex functions. We will derive solutions U1, U2, U3, . . . at
each order of ε.

At O(ε), the linear theory arises, and we find LU1 = 0. The solution U1 takes the form

U1 = A(X,T )ei(t+x) +B(X,T )ei(t−x),(10)

where A and B represent the amplitudes of the left- and right-traveling waves. They are
functions of X and T , the long and slow scale modulations of space and time variables:

T = ε2t and X = εx.

The multiple scale expansion below will determine the evolution equations for A(X,T ) and
B(X,T ).

At second order in ε, we get LU2 = 0: The ∂2U1
∂x∂X term cancels with the ∂4U1

∂x3∂X
term. We

would have had a forcing term at this order if we had not ensured that the group velocity is
O(ε). The equation at this order is solved by setting U2 = 0.

At third order in ε, we get

∂U1

∂T
= LU3 + (ρ+ iν)U1 + (α+ iβ)

∂2U1

∂X2
+ 3(α+ iβ)

∂4U1

∂x2∂X2
(11)

+ ivg
∂4U1

∂x3∂X
+ 4iΓ cos(2t) Re(U1) + C|U1|2U1.

The linear operator L is singular, so we must apply a solvability condition: We take the inner
product between the adjoint eigenfunction ei(t+x) and (11), which gives

(12)

〈
ei(t+x),

∂U1

∂T

〉
=
〈
ei(t+x), LU3

〉
+ (ρ+ iν)

〈
ei(t+x), U1

〉
+ (α+ iβ)

〈
ei(t+x),

∂2U1

∂X2

〉
+ 3(α+ iβ)

〈
ei(t+x),

∂4U1

∂x2∂X2

〉
+ ivg

〈
ei(t+x),

∂4U1

∂x3∂X

〉
+ 4iΓ

〈
ei(t+x), cos(2t) Re(U1)

〉
+ C

〈
ei(t+x), |U1|2U1

〉
.
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We have 〈ei(t+x), LU3〉 = 〈L†ei(t+x), U3〉 = 0, so U3 is removed, and the above equation
becomes an equation in U1 only. Substituting the solution U1 leads to

(13)

〈
ei(t+x),

∂

∂T
(Aei(t+x) +Bei(t−x))

〉
= (ρ+ iν)

〈
ei(t+x), Aei(t+x) +Bei(t−x)

〉
+ (α+ iβ)

〈
ei(t+x),

∂2

∂X2
(Aei(t+x) +Bei(t−x))

〉
+ 3(α+ iβ)

〈
ei(t+x),

∂4

∂x2∂X2
(Aei(t+x) +Bei(t−x))

〉
+ ivg

〈
ei(t+x),

∂4

∂x3∂X
(Aei(t+x) +Bei(t−x))

〉
+ 4iΓ

〈
ei(t+x), 1

2 cos(2t)(Aei(x+t) +Bei(t−x) + Āe−i(t+x) + B̄e−i(t−x))
〉

+ C
〈
ei(t+x), (|A|2 +AB̄e2ix + ĀBe−2ix + |B|2)(Aei(t+x) +Bei(t−x))

〉
.

After we compute the left- and right-hand sides of the above equation term by term, we get
equations for the amplitudes A(X,T ) and B(X,T ):

(14)

∂A

∂T
= (ρ+ iν)A− 2(α+ iβ)

∂2A

∂X2
+ vg

∂A

∂X
+ C(|A|2 + 2|B|2)A+ iΓB̄,

∂B

∂T
= (ρ+ iν)B − 2(α+ iβ)

∂2B

∂X2
− vg

∂B

∂X
+ C(2|A|2 + |B|2)B + iΓĀ.

Thus, the PDE model has been reduced to the coupled FCGL equations in the weak damping,
weak detuning, small group velocity, and small amplitude limit. In (14), the group velocity
terms have different signs, which makes the envelopes travel in opposite directions. The
−2α ∂2A

∂X2 may make the above equations look like they are ill posed, but recall that α < 0.

4. Properties of the coupled FCGL equations. Following [21], we can identify the sym-
metries and how they affect the structure of (14). The original system is invariant under
translations in x: Replacing x by x+ φ∗, where φ∗ is arbitrary, we get

U(x+ φ∗, t) = A(X + εφ∗, T ) ei(t+x+φ∗) +B(X + εφ∗, T ) ei(t−x−φ
∗),

which is also a solution of the problem. This translation has the effect of shifting X to X+εφ∗

and changing the phase of A and B: If we suppress the change from X to X + εφ∗, then (14)
is equivariant under

A→ Aeiφ
∗
, B → Be−iφ

∗
,

which is therefore a symmetry of (14). Equations (14) are also invariant under translations
in X, but this is an artifact of the truncation at cubic order [29]. Similarly, we can reflect
in x, which leads to the symmetry A↔ B, ∂x ↔ −∂x.

Amplitude equations associated with a Hopf bifurcation (a weakly damped Hopf bifur-
cation in this case) usually have time translation symmetry, which manifests as equivarianceD
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under phase shifts of the amplitudes. However, the underlying PDE is nonautonomous, and
so rotating A and B by a common phase is not a symmetry of (14). Equations (14) do possess
T -translation symmetry, but this is also an artifact.

The parametric forcing provides an interesting coupling between the left- and right-
traveling waves with amplitudes A and B, which means that solutions or symmetries that
one might expect at first glance are in fact not present. For example, the coupling terms in
the coupled FCGL equations make it impossible to find pure traveling waves; i.e., A 6= 0,
B = 0 is not a solution of (14). Also, solutions with A = B exist only if vg is zero, which
generically it is not. Finally, steady standing wave solutions (which are typically seen in Fara-
day wave experiments) have B(X) = A(−X); substituting this into (14) yields a nonlocal
equation that is not a PDE, though all solutions we present in this paper are in this category.

4.1. The zero solution. The stability of the zero state under small perturbations with
complex growth rate s and real wavenumber q can be studied by linearizing (14), writing A
and B as

A = ÂesT+iqX and B = B̂es̄T−iqX ,

where |Â| � 1, |B̂| � 1, and Â, B̂ ∈ C. We choose B̂es̄T−iqX in order that the exponential
term will cancel in the next step. Substituting this into (14), linearizing, and taking the
complex conjugate of the second equation gives

sÂ = (ρ+ iν)Â+ 2(α+ iβ)q2Â+ ivgqÂ+ iΓ
¯̂
B,

s
¯̂
B = (ρ− iν)

¯̂
B + 2(α− iβ)q2 ¯̂

B − ivgq ¯̂
B − iΓÂ.(15)

This is a linear homogeneous system of equations, so there is a nontrivial solution only when
its determinant is zero. The imaginary part of the determinant equals 2si(ρ + 2αq2 − sr),
where sr and si denote the real and imaginary part of s. We are interested in locating the
bifurcation where zero solution is neutrally stable, so sr = 0. Since ρ and α are negative, the
determinant can only be zero if si = 0. Thus, there is no Hopf bifurcation, and the neutral
stability condition is s = 0. Setting the real part of the determinant of (15) equal to zero
leads to

(ρ+ 2αq2)2 + (ν + 2βq2 + vgq)
2 = Γ2.(16)

The stability of the zero state changes when Γ = Γc, the minimum of the neutral stability
curve, and the nonzero flat state is created with q = qc. This corresponds to a uniform pattern
in the PDE (4) with wavenumber kc = 1 + εqc. The critical wavenumber qc can be computed
by minimizing the left-hand side of (16). Differentiating with respect to q yields the following
cubic equation in q:

4αq(ρ+ 2αq2) + (4βq + vg)(ν + 2βq2 + vgq) = 0.(17)

Solving this gives qc, the critical wavenumber, which is positive if νvg < 0 and negative if
νvg > 0. Substituting q = qc into (16) gives Γc.D
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4.2. Standing waves. Now we look at steady equal-amplitude states of the form A =
R0e

i(qX+φ1) and B = R0e
i(−qX+φ2), where R0 and q are real and φ1 and φ2 are the phases.

These represent uniform standing wave patterns with wavenumber 1 + εq in U(x). We sub-
stitute this into (14), which yields, assuming that R0 is not zero,

0 = (ρ+ iν) + 2(α+ iβ)q2 + ivgq + 3CR2
0 + iΓe−iΦ,

where Φ = φ1+φ2. This is the same equation obtained for steady constant-amplitude solutions
of the single FCGL equation (3) but with a group velocity term. The real and imaginary parts
of the above equation are

Re: 0 = ρ+ 2αq2 + 3CrR
2
0 + Γ sin Φ,

Im: 0 = ν + 2βq2 + vgq + 3CiR
2
0 + Γ cos Φ.(18)

We eliminate Φ by using the identity cos2 Φ + sin2 Φ = 1 to give the following polynomial
equation for R0:

0 = 9(C2
r + C2

i )R4
0 + 6

(
(ρ+ 2αq2)Cr + (ν + vgq + 2βq2)Ci

)
R2

0(19)

+ (ρ+ 2αq2)2 + (ν + vgq + 2βq2)2 − Γ2.

This is a quadratic equation in R2
0, and its discriminant is given by

∆ = 36
(
(ρ+ 2αq2)Cr + (ν + vgq + 2βq2)Ci

)2
− 36

(
(ρ+ 2αq2)2 + (ν + vgq + 2βq2)2 − Γ2

)
(C2

r + C2
i ).

Examination of the polynomial (19) shows that when the forcing amplitude Γ reaches
((ρ + 2αq2)2 + (ν + vgq + 2βq2)2)1/2, a subcritical bifurcation occurs provided that (ρ +
2αq2)Cr + (ν+ vgq+ 2βq2)Ci < 0. Spatially oscillatory states A−sp and B−sp are created, which
turn into A+

sp and B+
sp states at a saddle-node (∆ = 0) bifurcation at Γ = Γd, with

Γd =

√
(ρ+ 2αq2)2 + (ν + vgq + 2βq2)2 − ((ρ+ 2αq2)Cr + (ν + vgq + 2βq2)Ci)2

C2
r + C2

i

.(20)

Figure 6 shows (16) and (20) in the (ν,Γ) parameter plane, where we have taken q = qc
from (17). The values of the parameters ρ, α, β, vg, Cr, and Ci in the figure correspond to
the parameters in the figures in section 2 with ε = 0.1. The primary bifurcation changes from
supercritical to subcritical when (ρ+2αq2)Cr+(ν+vgq+2βq2)Ci = 0, which is at ν = 0.2228
for the parameter values in Figure 6. Localized solutions can be found in the bistability region
between Γc and Γd.

4.3. Localized solutions. In order to find localized solutions of the coupled FCGL equa-
tions (14), one might attempt an ansatz of the form

A = R0(X,T ) ei(qX+φ1) and B = R̄0(X,T ) ei(−qX+φ2)
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−0.5 0.0 0.5 1.0 1.5 2.0

ν

0.0

0.5

1.0

1.5

2.0

2.5

Γ

Γc

Γd

Figure 6. The (ν,Γ) parameter plane of the coupled FCGL equations (14) with ρ = −0.5, α = −0.5, β = 1,
vg = −0.5, and C = −1 − 2.5i. These parameters with ε = 0.1 correspond to the prameters of the model
PDE (4) used in the figures in section 2. The solid line shows the primary pitchfork bifurcation at Γc, where
the zero state becomes unstable to perturbations with wavenumber qc. The dash line shows the saddle-node
bifurcation at Γd.

with R0 complex and q, φ1, φ2 real. This is a spatially modulated version of the standing wave
studied in the previous section. However, the coupled FCGL equations admit no solution of
this form, even if vg = 0. Other standing wave ansatzes are possible, e.g., A = R0(X) ei(qX+φ1)

and B = R̄0(−X) ei(−qX+φ2), but we have not explored these further.
We were able to find analytic expressions for localized solutions of the coupled FCGL

equations by taking further asymptotic limits (see section 5). To motivate the subsequent
calculations, we present some numerical examples of stable spatially localized oscillons in the
coupled FCGL equations found by using the same numerical method as in section 2 on a
periodic domain of size 20π. We take the same parameter values as before: ρ = −0.5, ν = 2,
α = −0.5, β = 1, and C = −1− 2.5i.

The top row of Figure 7 shows an example of a localized oscillon in the coupled FCGL
equations with vg = −0.2. As we increase the magnitude of the group velocity vg to vg = −0.5
(second row) and vg = −1 (third row) and change the forcing strength Γ so that we are still
in the region where the localized solution is stable, we can see that A and B start to move
apart, pulled in opposite directions by the group velocity term. We can use these solutions
to the coupled FCGL equations to reconstruct first-order approximations to solutions of the
PDE model (4) with the help of (9) and (10); this is shown in the bottom row of Figure 7.

We also computed the bifurcation diagram of the coupled FCGL equations on a domain
of size 20π using AUTO [18]. The critical wavenumber with the above parameter values is
qc = 0.09950 ≈ 1

10 , so the periodic solution fits almost perfectly in this domain. The result
is shown in Figure 8. The branch of periodic solution bifurcates from the zero solution at
Γc = 2.035 and has a fold at Γd = 1.206. Using the relation F = 4ε2Γ, we can compute the
corresponding values of forcing in the model PDE (4) as 0.08140 and 0.04820, which agree
well with the values of Fc = 0.08173 and Fd = 0.04811 found in Figure 3 when we applied
AUTO directly to the model PDE.D
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0.0

0.1

0.2

0.3

0.4

0.5

ImA(X)

ImB(X)

0 10π 20π
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0.5
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−0.1
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0.4

0.5

0 10π 20π

X

−0.1

0.0
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0.2

0.3
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x
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0.00
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50π 100π 150π
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0.00
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Figure 7. Stationary solutions to the coupled FCGL equations (14) with ρ = −0.5, ν = 2, α = −0.5, β = 1,
and C = −1 − 2.5i. Top row: vg = −0.2 and Γ = 1.46. Second row: vg = −0.5 and Γ = 1.45. Third row:
vg = −1 and Γ = 1.43. Bottom row: Approximate solutions U(x) of the PDE model (4) reconstructed from the
solutions A(X), B(X) to the coupled FCGL equations assuming ε = 0.1; the left and right plots correspond to
the top and third rows, respectively.D
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1.0 1.2 1.4 1.6 1.8 2.0 2.2

Γ

0
Γc

Γd

Γ∗c

Γ1

Γ2(∗)

1.46 1.50

Γ

Γ2

Figure 8. Bifurcation diagram of the coupled FCGL equations with parameters ρ = −0.5, ν = 2, α = −0.5,
β = 1, C = −1 − 2.5i, and vg = −0.5 (corresponding to Figure 3). The bifurcations are at Γc = 2.035,
Γd = 1.206, Γ∗c = 2.024, Γ1 = 1.418, and Γ2 = 1.491. The solution marked (∗) is shown in the middle row of
Figure 7. Numerical results with AUTO suggest that snaking continues beyond Γ2, but it is too small to see.

Going back to the coupled FCGL equations, we see a secondary bifurcation at Γ = 2.024,
where a branch of localized solutions bifurcates from the branch of periodic solutions. The
localized branch has folds at Γ1 = 1.418 and Γ2 = 1.491. The corresponding F values in terms
of the parameters of the model PDE are 0.05673 and 0.05964, which again agree well with the
values of F1 = 0.05666 and F2 = 0.05948 found in Figure 3.

As shown in Figure 8, the localized branch in the bifurcation diagram of the coupled FCGL
equations continues to snake upwards after Γ2. We believe that these exhibit collapsed snaking,
where the saddle-node points asymptote to one value of Γ as one goes up the branch [28].
However, the bifurcation diagram shows that the branch of localized solutions suddenly stops.
In fact, AUTO turns around at that point. We believe that this may be caused by AUTO
having difficulty handling the phase symmetry in the coupled FCGL equations and that in
reality the branch of localized solutions joins with the branch of periodic solutions near the
fold at Γd, as it does in the bifurcation diagram of the model PDE in Figure 3.

5. Reduction to the real Ginzburg–Landau equation. In this section, we will reduce
the coupled FCGL equations to the real Ginzburg–Landau equation close to the subcritical
bifurcation from the zero solution to the constant amplitude state. The reduction was done
by Riecke [33] in the supercritical case.

We take the complex conjugate of the second equation of (14), so the coupled FCGL
equations become
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∂A

∂T
= D1A+D2

∂2A

∂X2
+ vg

∂A

∂X
+ C(|A|2 + 2|B|2)A+ iΓB̄,

∂B̄

∂T
= D̄1B̄ + D̄2

∂B̄

∂X2
− vg

∂B̄

∂X
+ C̄(2|A|2 + |B|2)B̄ − iΓA.(21)

For simplicity, we write

D1 = ρ+ iν and D2 = −2(α+ iβ).(22)

In order to reduce the coupled FCGL equation to the real Ginzburg–Landau equation, we
apply weakly nonlinear theory close to onset, writing

Γ = Γc(1 + ε22Γ2),

where 0 < ε2 � 1, Γc is the critical forcing at critical wavenumber qc, and Γ2 is the new
bifurcation parameter. We expand the solution in powers of the new small parameter ε2 as
follows: [

A
B̄

]
=

[
ε2A1 + ε22A2 + ε32A3 + · · ·
ε2B̄1 + ε22B̄2 + ε32B̄3 + · · ·

]
.

From subsection 4.1, the growth rate is real with frequency zero (locked to the forcing), so we
scale

∂

∂T
→ ε22

∂

∂T̃

and the preferred wavenumber qc 6= 0, so

∂

∂X
→ ∂

∂X
+ ε2

∂

∂X̃
,

where X̃ and T̃ are very long space and slow time scales.
At O(ε2), we have

0 = D1A1 +D2
∂2A1

∂X2
+ vg

∂A1

∂X
+ iΓcB̄1,

0 = D̄1B̄1 + D̄2
∂B̄1

∂X2
− vg

∂B̄1

∂X
− iΓcA1.

We can solve the above system by assuming that

A1 = P (X̃, T̃ )eiqcX and B1 = Q(X̃, T̃ )e−iqcX .(23)

At this order of ε2, the coupled FCGL equations become

0 = D1P −D2q
2
cP + ivgqcP + iΓcQ̄,

0 = D̄1Q̄− D̄2q
2
c Q̄− ivgqcQ̄− iΓcP.(24)

These can be solved as in subsection 4.1.D
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Additionally, from the first equation of (24) we get a phase relation between P and Q:

Q̄ = Peiφ, where eiφ = −D1 + ivgqc −D2q
2
c

iΓc
.(25)

The fraction in the above equation has modulus 1, so the phase φ is real.
At O(ε22), equations (21) become

0 = D1A2 +D2
∂2A2

∂X2
+ vg

∂A2

∂X
+ iΓcB̄2 + vg

∂A

∂X̃
eiqcX + 2iD2qc

∂A

∂X̃
eiqcX ,

0 = D̄1B̄2 + D̄2
∂2B̄2

∂X2
− vg

∂B̄2

∂X
− iΓcA2 − vg

∂B̄

∂X̃
eiqcX + 2iD̄2qc

∂B̄

∂X̃
eiqcX .(26)

At this stage, we would normally define a linear operator in order to impose a solvability
condition. In this case, the solvability condition can be deduced directly by setting

A2 = P2e
iqcX + · · · and B̄2 = Q̄2e

iqcX + · · · ,(27)

where the dots stand for the other Fourier components. This focuses the attention on the
eiqcX component of (26), which is the only component to have an inhomogeneous part and for
which the linear operator is singular. Substituting these expressions for A2 and B̄2 into (26)
and using (25) leads to the following:

(28)

[
D1 + ivgqc −D2q

2
c iΓc

−iΓc D̄1 − ivgqc − D̄2q
2
c

] [
P2

Q̄2

]
+

[
vg + 2iqcD2

(−vg + 2iqcD̄2)eiφ

]
∂P

∂X̃
=

[
0
0

]
,

where eiφ is defined in (25). The square matrix is singular since it is the same one that
appears in the linear theory; see (15). We multiply the first line by iΓc and the second line by
D1 + ivgqc −D2q

2
c , which is effectively the left eigenvector of the matrix, and then add both

lines and use (16) and (25), ending up with(
iΓc(vg + 2iqcD2) +

(vg − 2iqcD̄2)(D1 + ivgqc −D2q
2
c )

2

iΓc

)
∂P

∂X̃
= 0.

Since ∂P
∂X̃
6= 0, we need

−Γ2
c(vg + 2iqcD2) + (vg − 2iqcD̄2)(D1 + ivgqc −D2q

2
c )

2 = 0.

After substituting (16), we find that this is the same as (17), which is satisfied since qc is at
the minimum of the neutral stability curve.

From the top line of (28), we have the solution

Q̄2 = −
(
vg + 2iqcD2

iΓc

∂A

∂X̃
+
D1 + ivgqc −D2q

2
c

iΓc
A2

)
.

Thus, we have P2 arbitrary at this order of ε2; we can set P2 = 0, and so, restoring the
eiqcX factor, we have

(29) A2 = 0 and B̄2 = −vg + 2iqcD2

iΓc

∂P

∂X̃
eiqcX .
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At O(ε32), the problem has the following structure (after using A2 = 0):

∂A1

∂T̃
= D1A3 +D2

∂2A3

∂X2
+ vg

∂A3

∂X
+ iΓcB̄3

+D2
∂2A1

∂X̃2
+ iΓcΓ2B̄1 + C(|A1|2 + 2|B1|2)A1,

∂B̄1

∂T̃
= D̄1B̄3 + D̄2

∂2B̄3

∂X2
− vg

∂B̄3

∂X
− iΓcA3 + 2D̄2

∂2B̄2

∂X∂X̃

− vg
∂B̄2

∂X̃
+ D̄2

∂2B̄1

∂X̃2
− iΓcΓ2A1 + C̄(2|A1|2 + |B1|2)B1.(30)

We focus on the eiqcX Fourier modes as before and write

A3 = P3e
iqcX + · · · and B̄3 = Q̄3e

iqcX + · · · .

As at order ε22, we multiply the first equation by iΓc and the second equation by D1 + ivgqc−
D2q

2
c and then add them to eliminate P3 and Q3, finding

iΓc
∂A1

∂T̃
+ (D1 + ivgqc −D2q

2
c )
∂B̄1

∂T̃

= iΓcD2
∂2A1

∂X̃2
− Γ2

cΓ2B̄1 + iΓcC(|A1|2 + 2|B1|2)A1

+ 2(D1 + ivgqc −D2q
2
c )D̄2

∂2

∂X∂X̃
B̄2

− (D1 + ivgqc −D2q
2
c )

(
vg
∂B̄2

∂X̃
− D̄2

∂2B̄1

∂X̃2

)
− iΓcΓ2(D1 + ivgqc −D2q

2
c )A1 + C̄(D1 + ivgqc −D2q

2
c )(2|A1|2 + |B1|2)B1.(31)

We use (23), (25), and (29) to substitute A1, B1, and B2 into the above equation and divide
by the common factor of eiqcX . After some manipulation with the help of (16) and (22), this
gives the real Ginzburg–Landau equation

∂P

∂T̃
= − Γ2

cΓ2

ρ+ 2αq2
c

P −
4ρα+ 4νβ + v2

g + 12vgβqc + 24(α2 + β2)q2
c

2ρ+ 4αq2
c

∂2P

∂X̃2

+ 3

(
Cr +

ν + vgqc + 2βq2
c

ρ+ 2αq2
c

Ci

)
|P |2P.(32)

Flat solutions of this equation correspond to the simple constant-amplitude solutions discussed
in subsection 4.2. The real Ginzburg–Landau equation also has steady sech solutions, so we
can find localized solutions of the FCGL equation (14) in terms of hyperbolic functions. The
sech solution of (32) is

P (X̃) =

√
2Γ2

cΓ2

h1
sech

√Γ2
cΓ2

h2
X̃

 eiφ1 ,(33)

D
ow

nl
oa

de
d 

05
/2

5/
18

 to
 1

29
.1

1.
22

.1
44

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

LOCALIZED PATTERNS IN PERIODICALLY FORCED SYSTEMS 1497

where φ1 is an arbitrary phase and

h1 = 3
((
ρ+ 2αq2

c

)
Cr +

(
ν + vgqc + 2βq2

c

)
Ci
)
,

h2 = −2
(
ρα+ νβ + 1

4v
2
g + 3vgβqc + 6(α2 + β2)q2

c

)
,

and Γ2, h1, and h2 must all have the same sign for the sech solution to exist. From (25), we
have Q̄(X̃) = P (X̃)eiφ.

At leading order,

A(X) = ε2P (X)eiqcX =

√
2Γc(Γ− Γc)

h1
sech

√Γc(Γ− Γc)

h2
X

 ei(qcX+φ1)

provided that Γ < Γc, h1 < 0, and h2 < 0. Furthermore, (23) and (25) imply that B̄(X) =
A(X)eiφ.

Finally, recall that in (5), we wrote the solution to the original PDE (4) as

U = εU1 = ε
(
A(X,T )eix +B(X,T )e−ix

)
eit.

Substituting the above formulas for A and B̄, we find that

U = 2ε

√
2Γc(Γ− Γc)

h1
sech

ε√Γc(Γ− Γc)

h2
x

 cos
(

(1 + εqc)x+ 1
2φ+ φ1

)
ei(t−

1
2
φ).

Using Table 1, we return all parameter values to those used in (4). Thus, we conclude that
the spatially localized oscillon is given approximately by

Uloc(x, t) =

√
Fc(F − Fc)

2h∗1
sech

(√
Fc(F − Fc)

16h∗2
x

)
cos(kcx+ 1

2φ+ φ1)ei(t−
φ
2

),(34)

where kc = 1 + εqc and h∗1 and h∗2 are given by

h∗1 = 3
(
µ− α+ γ + 2α(kc − 1)2

)
Cr

+ 3
(
ω − β + δ − 1− 2(β − 2δ)(kc − 1) + 2β(kc − 1)2

)
Ci,

h∗2 = −2α(µ− α+ γ)− 2β(ω − β + δ − 1)

− 2(β − 2δ)2 + 12β(β − 2δ)(kc − 1)− 12(α2 + β2)(kc − 1)2.

This solution Uloc gives an approximate oscillon solution of the model PDE (4) valid in the limit
of weak dissipation, weak detuning, weak forcing, small group velocity, and small amplitude.

In Figure 9, we compare the asymptotic solution (34), with the localized solution from (4),
which we found numerically in section 2. The similarity betwen the two is quite striking; the
main difference is that the real part of the asymptotic solution is somewhat smaller than that
of the numerically computed solution, indicating a small error in the phase φ.

At this order, we do not find a connection between the position of the sech envelope and
that of the underlying cos(kcx) pattern. The relative position should not be arbitrary and
could presumably be determined using an asymptotic beyond-all-orders theory [11].D
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0 30π 60π 90π 120π

x

−0.05

0.00

0.05

Numerical solution

0 30π 60π 90π 120π

x

−0.05

0.00

0.05

Asymptotic solution

ReU(x)

ImU(x)

Figure 9. The left panel is the numerical solution of (4), reproduced from Figure 4(c). The right panel
shows the asymptotic solution, given in (34). These solutions are at F = 0.073.

6. Discussion. In this article, we have shown the existence of oscillons in the PDE (4),
which was proposed as a pheonomenological model for the Faraday wave experiments in [34].
We first used numerical simulation and found that straightforward time-stepping with carefully
chosen parameter values and initial conditions leads to a stable oscillon solution, as shown
in Figure 2. We then turned to analysis. Assuming that the damping, detuning, and forcing
are weak and that the group velocity and amplitude are small, we reduced the PDE (4) to
the coupled FCGL equations (14). We stress that we do not get a single FCGL equation
with an Ā term; cf. (3), which is commonly used as a starting point in discussions of oscillons
in parametrically forced systems [4, 16, 30]. The single FCGL equation is appropriate when
there is a zero-wavenumber bifurcation [2] or if the group velocity is zero. However, if the
wavenumber is nonzero (as in Faraday waves) and the group velocity is nonzero but small,
the coupled FCGL equations should be used. The coupled FCGL equations and the model
PDE both exhibit snaking behavior, though the snaking region is very narrow.

Under the further assumption that the strength of the forcing is close to the onset of
instability, we then reduced the coupled FCGL equations to the subcritical real Ginzburg–
Landau equation (32). This equation has a sech solution, which, after undoing the reductions,
yields an approximate expression for the oscillon; cf. (34). This expression agrees well with
the oscillon found numerically (see Figure 9), just as was found in [2], where we studied a
zero-wavenumber version of this problem.

One special feature of our model PDE (4) is that the linear terms lead only to positive-
frequency oscillations: U ∼ eit. With spatial dependence, we have left- and right-traveling
waves; see (5). In the Faraday wave experiment, as described by the Zhang–Viñals equa-
tions [43] or the Navier–Stokes equations [36], the PDEs are real, and so both positive and
negative frequency traveling waves can be found. Topaz and Silber [38] wrote down am-
plitude equations for these traveling waves in the context of two-frequency forcing, without
long length scale modulation. In spite of having only positive frequency, our coupled FCGLD
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equations (with spatial modulation removed) have the same form as the traveling wave am-
plitude equations in [38] (after truncation to cubic order). These traveling wave equations
(without modulation terms) can similarly be reduced to standing wave equations [32, 38] with
a phase relationship like (25) between the complex amplitudes of the traveling wave compo-
nents. Therefore, we expect that the fact that the model PDE (4) has eit dominant should
not prevent oscillons being found by the same mechanism in PDEs that are closer to the fluid
dynamics because our model PDEs and PDEs for fluid mechanics lead to the same amplitude
equation in the absence of spatial modulation.

Since [32, 38] did not include spatial modulations, they did not have to consider the group
velocity. In the present study, we assumed that the group velocity is small, of the same order
as the amplitude of the solution, in order to make progress. This assumption is questionable
in the context of fluid mechanics. It would be better to assume that the group velocity is order
one, as in [27]. In that case, the left-traveling wave sees only the average of the right-traveling
wave and vice versa, leading to (nonlocal) averaged equations. The authors of [27] found
spatially uniform and nonuniform solutions with both simple and complex time dependence
but did not study spatially localized solutions. Bringing in spatially localized solutions will
be the subject of future work. It is possible to go directly from the PDE (4) to the real
Ginzburg–Landau equation [1, 34], and we expect to be able to do a simular reduction for the
Zhang–Viñals or the Navier–Stokes equation for fluid mechanics; cf. [36, 43].

In the model PDE (4), when the group velocity is small, waves with a wide range of
wavenumbers may be excited. Figure 10 shows two ways in which we can get a fairly small
group velocity. The dispersion curve in the left panel is shallow; in this case, many wavenum-
bers are close to resonant (σi is close to 1). Another possibility is to have two resonant
wavenumbers around k = 1, so that σi is close to a minimum (where vg = 0) at k = 1; see the
right panel for an example. In the latter case, solutions with two nearby wavelengths can be

0.0 0.5 1.0 1.5

k

0.8

1.0

1.2

1.4

1.6

1.8

σ
i

0.0 0.5 1.0 1.5

k

0.8

1.0

1.2

1.4

1.6

1.8

σ
i

Figure 10. Left panel: The dispersion relation for the PDE model (4) with ω = 0.96, β = −0.02, and
δ = 0.02. The frequency σi(k) is close to 1 over a wide range of k. Right panel: Dispersion relation for
ω = 1.5075, β = 1, and δ = 0.4825. Now, σi(k) is equal to 1 at two distinct wavenumbers.
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0 100π 200π

x

−0.1

0.0

0.1

Figure 11. Solution of the PDE model (4) with two wavenumbers. The parameter values are µ = −0.255,
ω = 1.5075, α = −0.5, β = 1, γ = −0.25, δ = 0.4825, C = −1 − 2.5i, and F = 0.15.

0 30π 60π

x

−0.4

0.0

0.4 ReU(x)

ImU(x)

20π 30π 40π
20π

30π

40π

−0.4

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

0.4

Figure 12. Strongly localized oscillons in the PDE model (4) in one (left) and two (right) dimensions with
µ = −0.375, ω = 1.99, α = −0.5, β = 1, γ = −0.25, δ = 0.4975, C = −1 − 2.5i, and F = 1.5. The right panel
shows the real part of U on only part of the domain [0, 60π] × [0, 60π].

expected. Indeed, we did observe such solutions in the PDE model (4); an example is given in
Figure 11. These states resemble those found by Bentley [7] in an extended Swift–Hohenberg
model and by Riecke [33] in the coupled FCGL equations with small group velocity in the
supercritical case.

Finally, we have throughout kept our paramter ε small (ε = 0.1), which is why the oscillons
in, e.g., Figure 4 are so broad, in contrast to the oscillons seen in experiments (see Figure 1). As
a preliminary exploration of increasing ε, we set ε = 0.5, and, after some minor changes to the
parameters, we found strongly localized oscillons in one and two dimensions (see Figure 12).D
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As the picture in two dimensions shows, it is possible for a solution to contain multiple
oscillons, which may or may not be axisymmetric. Reference [1] investigates a related PDE:
(4) but with strong damping and with cubic-quintic (rather than simply cubic) nonlinearity,
where the coefficient of the cubic term has positive real part in order to make the oscillons
more nonlinear. In this case, snaking was found in both one and two dimensions.
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