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Abstract 

As working memory (WM) predicts a wide range of other abilities, it has become a 

popular target for training interventions. However, its effectiveness to elicit generalized 

cognitive benefits is still under debate. Previous research yielded inconsistent findings and 

focused only little on the mechanisms underlying transfer effects. To disentangle training 

effects on WM capacity and efficiency, we evaluated near transfer to untrained, structurally 

different WM tasks and far transfer to closely related abilities (i.e., reasoning, processing 

speed, task switching, and inhibitory control) in addition to process-specific effects on three 

WM mechanisms (i.e., focus switching, removal of WM contents, and interference 

resolution). We randomly assigned 197 young adults to one of two experimental groups 

(updating or item-to-context binding) or to an active control group practicing visual search 

tasks. Before and after five weeks of adaptive training, performance was assessed measuring 

each of the cognitive processes and abilities of interest with four tasks covering verbal-

numerical and visual-spatial materials. Despite the relatively large sample size, large practice 

effects in the trained tasks, and at least moderate correlations between WM training tasks and 

transfer measures, we found consistent evidence for the absence of any training-induced 

improvements across all ranges of transfer and mechanisms. Instead, additional analyses of 

error patterns and self-reported strategy use indicated that WM training encouraged the 

development of stimulus-specific expertise and use of paradigm-specific strategies. Thus, the 

results suggest that the WM training interventions examined here enhanced neither WM 

capacity nor the WM mechanisms assumed to underlie transfer.  

Keywords: working memory capacity, updating, binding, cognitive training and 

transfer 
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Working Memory Updating and Binding Training: Bayesian Evidence Supporting the 

Absence of Transfer 

Throughout the 20th century, the prospect of broadly enhancing cognitive abilities 

through repetitively practicing a set of tasks has been of central interest for commercial 

applications (e.g., the ‘mind training program’ by the Pelmanism Institute of America, 1920) 

and academic research (e.g., Ball et al., 2002; Judd, 1908; Kramer, Larish, & Strayer, 1995; 

Logie, Baddeley, Mané, Donchin, & Sheptak, 1989; Willis, Cornelius, Blow, & Baltes, 1983). 

Over the past 15 years, computerized working memory (WM) training has become a 

particularly popular target for training interventions. WM is a capacity-limited system that 

provides temporary access to representations needed for ongoing cognitive processes, thereby 

building the basis for complex cognition. WM capacity strongly correlates with a wide range 

of higher-order cognitive abilities such as reasoning (e.g., Engle, Tuholski, Laughlin, & 

Conway, 1999; Friedman, Miyake, Schmeichel, & Tang, 2006; Kyllonen & Christal, 1990; 

Oberauer, Süß, Wilhelm, & Wittmann, 2008; Süß, Oberauer, Wittman, Wilhelm, & Schulze, 

2002), executive functions (e.g., Friedman et al., 2008; Miyake et al., 2000; Miyake & 

Friedman, 2012), and academic achievement (e.g., St. Clair-Thompson & Gathercole, 2006). 

Based on the assumption that those correlations reflect overlapping cognitive processes (e.g., 

Kovacs & Conway, 2016), it has been hypothesized that training WM may not only improve 

WM capacity but enhances performance also in tasks measuring those related abilities (e.g., 

Klingberg, Forssberg, & Westerberg, 2002; Klingberg et al., 2005). Early studies indeed 

reported promising empirical evidence for the transfer of training gains to untrained WM 

tasks (i.e., “near transfer”) and even to related abilities (i.e., “far transfer” such as to fluid 

intelligence, e.g., Jaeggi, Buschkuehl, Jonides, & Perrig, 2008; Klingberg, Forssberg, & 

Westerberg, 2002), sparking enthusiasm that “fluid intelligence is trainable to a significant 
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and meaningful degree” (Sternberg, 2008, p. 6791). More than a decade later, however, meta-

analyses report inconsistent findings, with sometimes significant, sometimes nonsignificant 

small far transfer effects (e.g., Au et al., 2015; Melby-Lervåg, Redick, & Hulme, 2016; 

Schwaighofer, Fischer, & Bühner, 2015; Soveri, Antfolk, Karlsson, Salo, & Laine, 2017; 

Weicker, Villringer, & Thöne-Otto, 2015). 

It is yet unclear when and under which circumstances WM training elicits far transfer 

effects, as the mechanisms underlying potential transfer effects have been largely neglected in 

much of past research (cf. von Bastian & Oberauer, 2014; for notable exceptions, see Gibson, 

Gondoli, Johnson, Steeger, & Morrissey, 2012; Hussey et al., 2016; Lilienthal, Tamez, 

Shelton, Myerson, & Hale, 2013; Ralph et al., 2017; Waris, Soveri, & Laine, 2015). 

Moreover, any meta-analytic findings must be interpreted with caution, as they are based on 

studies that often suffered from methodological issues such as evaluating WM training effects 

relative to no-contact control groups, using single transfer measures, or low statistical power 

(cf. Bogg & Lasecki, 2015; Moreau, Kirk, & Waldie, 2016; Shipstead, Redick, & Engle, 

2013). The present study aims to fill this gap by using methodological rigor to systematically 

investigate whether and, if so, how WM training affects theoretically derived indicators of 

WM capacity and efficiency.  

Mechanisms of Transfer 

Generally, training-induced broad cognitive improvements can be caused by either 

increased WM capacity or enhanced WM efficiency, or a combination of both (for a more 

detailed discussion, see von Bastian & Oberauer, 2014). Increased capacity is reflected by 

structural changes and should therefore lead to broad transfer manifested in improved 

performance across tasks drawing on this capacity-limit. Enhanced efficiency refers to a better 

exploitation of the capacity available, for example through the use of strategies or a higher 

level of automatization of WM processes. Different to improvements through enhanced 
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capacity, the range of transfer that follows from enhanced efficiency depends on how 

efficiency was increased: the less material- or paradigm-specific the improvement, the more 

transfer should be observed to tasks that draw on the same WM mechanisms. For example, 

whereas paradigm-specific strategy-use can be expected to transfer to very similar tasks only 

(for reviews, see Lustig, Shah, Seidler, & Reuter-Lorenz, 2009; Morrison & Chein, 2011), a 

higher level of automatization should result in transfer to tasks that draw on the same WM 

mechanisms (cf. von Bastian & Oberauer, 2014).  

To disentangle the effects of enhanced capacity and enhanced efficiency, we based the 

present study on the three-embedded-components model of working memory (Oberauer, 

2009; Oberauer & Hein, 2012), which is an extension of the model proposed by Cowan 

(1995). It assumes three functional levels of information selection, namely the activated part 

of long-term memory (aLTM), the region of direct access (RDA), and the focus of attention 

(FoA). The aLTM reflects all representations needed for a current task, activated through 

perceptual input or spread of activation. In the RDA, a subset of the activated representations 

is temporarily bound into new structures. In contrast to the aLTM, the capacity of the RDA is 

limited due to interference between simultaneously maintained bindings (Oberauer, 2005). 

Lastly, the FoA selects the one item of the RDA that is processed next. According to the 

three-embedded components model, increased WM capacity would result in an increased 

number of bindings that can be maintained at a time. Furthermore, the capacity to build and 

maintain temporary bindings has been hypothesized to be the common limiting factor that 

explains the strong correlation between working memory and reasoning (“binding 

hypothesis”, cf. Oberauer, Süss, Wilhelm, & Sander, 2007). Thus, increased WM capacity in 

terms of a larger number of simultaneously maintained bindings should be reflected in broad 

transfer to other WM tasks, reasoning, and other cognitive abilities (e.g., executive functions) 

that draw on the same ability of simultaneously maintaining bindings.  
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Better WM performance could also reflect a more efficient use of basic WM processes 

that enhance the encoding, maintenance or retrieval of an otherwise stable number of 

bindings. Here, we focus on three WM mechanisms: enhanced focus switching, removal of no 

longer relevant information, and interference resolution. Focus switching refers to the ability 

of the FoA to flexibly shift attention between single items held in the RDA. Reducing the 

time needed to move the FoA from one item to another increases the time to refresh and, thus, 

maintain memoranda (Barrouillet, Bernardin, & Camos, 2004), thereby potentially enhancing 

recall performance. There is some evidence that training can indeed reduce the cost in 

reaction times (RT) caused by focus switching (e.g., Dorbath, Hasselhorn, & Titz, 2011; 

Oberauer, 2006; Verhaeghen, Cerella, & Basak, 2004), but it is yet unclear how these 

improvements relate to transfer effects.  

Removal of no longer relevant information is the “unlearning or unbinding of an item 

from its context” (Ecker, Lewandowsky, & Oberauer, 2014, p. 3). For the proper functioning 

of working memory, especially the building of new bindings in the RDA, it is essential that 

outdated information is removed because it would otherwise strongly interfere with the 

information that is relevant for a current task (Oberauer & Lewandowsky, 2016). More 

efficient removal is marked by a reduction in the time it takes to remove the no longer 

relevant information.  

 Finally, interference resolution is the ability to overcome interference among bindings 

held in the RDA and is often assumed to be one of the most central mechanisms of transfer 

(Au et al., 2015; Hussey et al., 2016; Oelhafen et al., 2013). Interference resolution becomes 

important whenever a conflict in information processing occurs. For example, in a recognition 

task, conflict occurs when participants are presented with a recent item that, however, was not 

part of the current memory set; hence the material is highly familiar yet presently irrelevant. 

This familiarity causes a strong tendency to wrongly identify the information as part of the 
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memory array (cf. Oberauer, 2008). Resolving this interference requires the recollection of the 

item and its context (i.e., the whole binding, Oberauer, 2005; see also Szmalec, Verbruggen, 

Vandierendonck, & Kemps, 2011). Thus, enhanced interference resolution is reflected by 

improved recollection performance.  

How Strong is the Evidence for Transfer? 

Although methodological issues have been discussed extensively elsewhere (e.g., 

Shipstead et al., 2013), several problems persist in the training literature, such as the inclusion 

of no-contact control groups and the measurement of abilities through single tasks (cf. von 

Bastian, Guye, & De Simoni, 2018; Guye, Röcke, Mérillat, von Bastian, & Martin, 2016). An 

additional pervasive issue is the low power of most WM training studies due to small sample 

sizes, with an average group size of n = 20 (Melby-Lervåg et al., 2016). Low statistical power 

not only increases the probability of false-negative and false-positive findings (e.g., Button et 

al., 2013), but can also inflate effect sizes. For example, in their simulation study, Halsey, 

Curran-Everett, Vowler, and Drummond (2015) showed that attempts to detect a true medium 

effect (Cohen’s d = 0.50) with low statistical power (n = 30, theoretical power = 48%) yielded 

97% of inflated effects sizes, with the significant effect sizes ranging from d = 0.44 to d = 

1.23. As the true size of transfer effects is unknown, we can only speculate about the number 

of inflated effect sizes in training research; however, meta-analytic effect size estimates are 

likely to be overestimated (cf. Bogg & Lasecki, 2015; Dougherty, Hamovitz, & Tidwell, 

2015; see also von Bastian et al., 2018).  

A suitable alternative approach to evaluate the evidence of training and transfer effects 

is the use of Bayesian inference, where the strength of evidence is expressed by the Bayes 

factor (BF). The BF is the likelihood of the data under one hypothesis (usually the alternative 

hypothesis, H1) relative to the likelihood of the data under the other hypothesis (usually the 

null hypothesis, H0, cf. Jeffreys, 1961). In contrast to null hypothesis statistical testing, BFs 
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allow for quantifying evidence not only for the alternative hypothesis (i.e., the presence of 

training and transfer effects) but also for the null hypothesis (i.e., absence of training and 

transfer effects). Consequently, BFs are increasingly popular in cognitive training research 

(e.g., Dougherty et al., 2015; Goghari & Lawlor-Savage, 2017; Guye, De Simoni, & von 

Bastian, 2017; Guye & von Bastian, 2017; Sprenger et al., 2013; von Bastian & Oberauer, 

2013). For example, Dougherty and colleagues (2015) recently reevaluated the 20 n-back 

training studies included in the meta-analysis by Au et al. (2015) with a Bayesian approach. 

Out of the 24 comparisons, 11 (i.e., 46%) contributed only ambiguous evidence (BF < 3), 

indicating that the data from these studies were not sensitive enough to support either 

hypothesis. Given that the average group size in the included studies was only n = 20, the 

ambiguity of the results was probably due to low power. Hence, evidence regarding transfer 

effects of WM training is still inconclusive, with large-scale WM training studies contributing 

stronger evidence still being needed. 

Present Study 

In the present study, our goals were to examine (1) the effectiveness of WM training in 

eliciting near and far transfer effects and, (2), the specific mechanisms underlying training-

induced improvements in cognitive performance. We compared two WM training 

interventions – memory updating and associative binding – to an active control group 

practicing visual search. Updating training is amongst the most widely used WM training 

interventions (cf. von Bastian & Oberauer, 2014; e.g., n-back tasks: Jaeggi, Buschkuehl, 

Jonides, & Perrig, 2008; Lilienthal et al., 2013; Redick et al., 2013, keep-track tasks: Dahlin, 

Neely, Larsson, Backman, & Nyberg, 2008; Dahlin, Nyberg, Bäckman, & Neely, 2008, 

running-memory tasks: Waris et al., 2015, and memory updating tasks: Linares, Borella, 

Lechuga, Carretti, & Pelegrina, 2017; Schmiedek, Lövdén, & Lindenberger, 2010). In 

contrast, there are only few process-based associative binding training interventions, with the 
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few existing studies having focused on older adults (Bellander et al., 2017; Zimmermann, von 

Bastian, Röcke, Martin, & Eschen, 2016). However, according to the binding hypothesis 

(Oberauer et al., 2007), a training regimen targeting the ability to simultaneously maintain 

multiple bindings directly should maximize chance to observe broad transfer. 

To evaluate changes in capacity, we assessed near transfer to the respective other set 

of tasks (i.e., binding tasks served as near transfer tasks for updating training and vice versa), 

and far transfer to abilities that have been shown to strongly correlate with WM, such as 

reasoning (e.g., Friedman, Miyake, Schmeichel, & Tang, 2006; Kyllonen & Christal, 1990; 

Oberauer, Süß, Wilhelm, & Wittmann, 2008; Süß, Oberauer, Wittman, Wilhelm, & Schulze, 

2002), shifting and inhibition (e.g., Friedman et al., 2009; Miyake et al., 2000; Miyake & 

Friedman, 2012), and processing speed (e.g., McAuley & White, 2011; Schmiedek, Oberauer, 

Wilhelm, Süss, & Wittmann, 2007). Although both WM training paradigms could increase 

the efficiency of all three WM processes we assessed, we assumed that updating training 

would put particularly strong demands on focus switching (cf. Oberauer, 2006), followed by 

removal of outdated information (cf. Ecker et al., 2014; Ecker, Lewandowsky, Oberauer, & 

Chee, 2010), whereas binding training would emphasize more on interference resolution (e.g., 

Oberauer, 2005), followed by removal of outdated information. In addition, we explored two 

alternative mechanisms of change that would boost performance in the trained paradigms, but 

not transfer to other abilities: systematic shifts in bias towards familiarity-based processing, 

and the use of paradigm-specific strategies.  

We followed the best practice recommendations for training interventions provided by 

recent reviews (e.g., Noack, Lövdén, & Schmiedek, 2014; Shipstead et al., 2012; Simons et 

al., 2016; von Bastian & Oberauer, 2014), such as the inclusion of an active control group, the 

usage of multiple indicators to measure cognitive abilities, and an adequate sample size. First, 

we included an active control group to differentiate between effects that emerge due to the 
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training intervention and those caused by participating in a study (cf. Klingberg, 2010). 

Participants of the control group trained visual search tasks, which demand only little WM 

(e.g., Kane, Poole, Tuholski, & Engle, 2006; Sobel, Gerrie, Poole, & Kane, 2007) and were 

successfully used in previous training studies (e.g., Foster et al., 2017; Harrison et al., 2013; 

Redick et al., 2013; von Bastian, Langer, Jäncke, & Oberauer, 2013). To check whether 

expectations were similar across the experimental and control training groups (Boot, Simons, 

Stothart, & Stutts, 2013), we asked participants to rate their subjective cognitive 

improvement. Second, we assessed each cognitive function with four indicators to prevent 

task-specific features being responsible for the observation of potential transfer effects (cf. 

Noack et al., 2014; Shipstead et al., 2012). Third, our training groups comprised between 59 

and 72 participants, thus our group sample sizes were about three times as large as the size of 

average treatment groups in WM training research (i.e., n = 20, cf. Melby-Lervåg et al., 

2016).  

Method 

Participants 

We recruited young adults between 18 and 36 years for a "cognitive training study" 

through the participant pool of the Department of Psychology of the University of Zurich, 

postings at the university campus, and short study presentations in lectures. Inclusion criteria 

were German native speaker or high proficiency in German, normal or corrected-to-normal 

vision, no color blindness, no current psychiatric or neurological disorders, and no 

psychotropic drug use. Participants were reimbursed after posttest completion with CHF 120 

(approx. USD 125), or 10 course credits and CHF 20 (approx. USD 21). Moreover, 

participants received a bonus of up to CHF 50 (approx. USD 52) depending on the level of 

difficulty they achieved during training (cf. von Bastian & Oberauer, 2013). The experimental 

protocol was approved by the institutional review board at the University of Zurich in 
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compliance with the Helsinki Declaration. All participants gave written consent to taking part 

in the study.  

As previous studies were likely severely underpowered (cf. Bogg & Lasecki, 2015) 

and, hence, probably yielded inflated effect size estimates (Halsey et al., 2015), we refrained 

to use those estimates for power analyses. Instead, we aimed to recruit at least three times as 

many participants than previous studies (i.e., n = 60 per group). We managed to recruit 241 

participants who were randomly assigned to one of the three training groups. The study 

followed a double-blind design, hence neither the participants nor the experimenter 

conducting pre- and posttests knew to which group participants were assigned to. As 

illustrated in Figure 1, N = 233 participants begun with the training intervention of which 216 

completed the study. Reasons for the 17 dropouts were lack of time (4), technical problems 

(8), personal reasons (3), health issues (1), or loss of interest (1). We had to exclude another 

19 participants due to a programming error in the updating training intervention (10) or lack 

of compliance as evidenced by performance below chance level in more than five (i.e., 25%) 

training sessions (9). The final sample we analyzed consisted of 197 participants. Table 1 lists 

the descriptive statistics of the demographic variables. The WM training groups were 

comparable to the active control in terms of gender (updating: BFH1 = 1/4.37 ± 0.00%, 

binding: BFH1 = 1/4.46 ± 0.00%). Evidence also supported the absence of age differences for 

the binding relative to the active control group, BFH1 = 1/3.29 ± 0.00%. It was ambiguous 

though for the updating group, BFH1 = 1/1.13 ± 0.00%, with participants in the updating group 

being, on average, 1 year younger than participants in the active control group.  
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Figure 1. Flowchart of participant recruitment and study completion. 

Table 1 
Participant Demographics 

 Group 
Measure Updating Binding Active Control 

Sample size (n) 59 66 72 
Gender (f/m) 40/19 45/21 49/23 
Age (M, SD) 22.61 (2.97) 24.55 (4.05) 23.81 (4.16) 

Note. BFs indicated support for the null hypothesis that there were no group differences as 
determined by Bayesian Pearson chi-square test (gender) and Bayesian two-tailed t-tests 
(age). 
 
 
Design and Materials 

Participants completed 20 training sessions of extensive cognitive training over the 

course of 5 weeks. Training and transfer effects were assessed by administering a test battery 

before and after training.  
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Training. Participants completed training at their own computer or laptop at home 

using Tatool (von Bastian, Locher, & Ruflin, 2012), a Java-based open-source training and 

testing tool (www.tatool.ch). After each session, data were automatically uploaded to a web 

server running Tatool Online. An experimenter, who was not involved in the collection of 

outcome measures, monitored participants’ training performance and served as contact person 

during training. As in previous work (von Bastian & Oberauer, 2013; von Bastian et al., 2013; 

von Bastian & Eschen, 2016), we aimed to maximize experimental control through automated 

online analyses to detect irregularities (e.g., performance below chance level). To increase 

individual commitment, participants (1) signed a participation agreement at the beginning of 

the study, (2) were made aware of their progress being constantly monitored, (3) received 

regular emails (i.e., after 2 and 4 weeks of training) on their training progress, and (4) were 

reminded to practice when falling behind their training schedule (i.e., less than four sessions 

completed per week).  

Each group practiced four tasks with varying material (numerical, verbal, visual, and 

spatial, see Figure 2 for an illustration and Table 2 for details) for approximately 10 min each 

per training session. The order of task administration was randomized for each training 

session. For all groups, task duration was restricted to a maximum of 11.25 min so that a 

training session did not exceed 45 min. The updating group completed up to 12 trials, the 

binding group up to 24 trials, and the active control group up to 100 trials per task and 

session. 
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Figure 2. Schematic depiction of the four training tasks administered in each training group. In the updating tasks (top row), participants had to 
memorize an initial set of memoranda, update those memoranda according to specific operations, and then maintain the new result. Updating 
steps could require updating the same memory object as in the preceding step (object repetition) or shifting the focus of attention to another 
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object (object switch). In the binding tasks (middle row), participants had to recognize previously memorized items and their current context. 
After a set of memoranda, participants were presented recognition probes with exactly the same context (matches), a different context (e.g., at a 
wrong location, intrusions), or that were entirely new (distractors). In the visual search tasks (bottom row), participants had to identify the odd-
one-out object (highlighted in red for illustration purposes).   
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Table 2 
Description of the Training and Transfer Tasks 

Task Description # Trials Conditions (%) 
Set 

Sizes 
Timing 

Updating 
Digits (n) Memorize digits, update by applying simple arithmetic operations (adapted 

from Lewandowsky et al., 2010).  
16 
 

50 switches 
50 repetitions 
 

3, 5 
 

Stimulus: 500 ms 
Cue: 500 ms 
Operation: ur 

Letters (ve) Memorize letters, update by shifting forward or backward in the alphabet 
(adapted from Lewandowsky et al., 2010). 

16 
 

50 switches 
50 repetitions 
 

2, 4 
 

Stimulus: 500 ms 
Cue: 500 ms 
Operation: ur 

Arrows (vi) Memorize arrows, update by rotating 45 degrees clockwise or counter-
clockwise (adapted from Harrison et al., 2013). 

16 
 

50 switches 
50 repetitions 
 

2, 4 
 

Stimulus: 500 ms 
Cue: 500 ms 
Operation: ur 

Locations (s) Memorize colored circles in a 4 x 4 grid, update by shifting one cell up, 
down, left, or right (adapted from Lewandowsky et al., 2010). 

16 
 

50 switches 
50 repetitions 
 

3, 5 
 

Stimulus: 500 ms 
Cue: 500 ms 
Operation: ur 

Binding 
Symbol-Digit 
(n) 

Recognize pairings of mathematical symbols and two-digit numbers 
(adapted from Wilhelm et al., 2013). 

24 
 

50 matches 
25 intrusions 
25 distractors 

4-6 
 

Stimulus: 900 ms 
probe: ur 

Noun-Verb 
(ve) 
 

Recognize pairings of nouns and verbs (adapted from Wilhelm et al., 2013). 24 
 

50 matches 
25 intrusions 
25 distractors 

4-6 
 

Stimulus: 1800 ms 
probe: ur 

Fractal-
Location (vi) 

Recognize pairings of fractals and their location in a row of boxes (adapted 
from Oberauer, 2005).  

24 
 

50 matches 
25 intrusions 
25 distractors 

4-6 
 

Stimulus: 900 ms 
probe: ur 

Color-
Location (s) 

Recognize pairings of colored triangles and their locations in a 4 x 4 grid 
(adapted from Oberauer, 2005).  

14 
 

50 matches 
25 intrusions 
25 distractors 

4-6 
 

Stimulus: 1800 ms 
probe: ur 

Visual Search 
Numbers (n) Search for a “3” among horizontally and vertically presented “8”s (adapted 

from Kane et al., 2006). 
30 
 

80 target present 
20 target absent 

7, 9, 11 ur 

Letters (ve) Search for a “T” among horizontally and vertically presented “I”s (adapted 
from Harrison et al., 2013). 

30 
 

80 target present 
20 target absent 

7, 9, 11 ur 
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Arrows (vi) Search for a single-headed arrow among double-headed arrows (adapted 
from Kane et al., 2006). 

30 
 

80 target present 
20 target absent 

7, 9, 11 ur 

Circles (s) Search for a circle with one gap among circles with two gaps (von Bastian 
et al., 2013). 

30 
 

80 target present 
20 target absent 

7, 9, 11 ur 

Removal 
Digits (n) Memorize and substitute digits (adapted from Ecker et al., 2010). 18 50 long CTI  

50 short CTI  
3 Stimulus: 500 ms 

long cue: 1800 ms 
short cue: 200 ms 
substitution: ur 

Letters (ve) Memorize and substitute letters (adapted from Ecker et al., 2010). 18 50 long CTI  
50 short CTI 

3 Stimulus: 500 ms 
long cue: 1800 ms 
short cue: 200 ms 
substitution: ur 

Arrows (vi) Memorize and substitute arrows (adapted from Ecker et al., 2010). 18 50 long CTI  
50 short CTI  
 

3 Stimulus: 500 ms 
long cue: 1800 ms 
short cue: 200 ms 
substitution: ur 

Locations (s) Memorize and substitute colored circles in a 4 x 4 grid (adapted from Ecker 
et al., 2010). 

18 50 long CTI  
50 short CTI 

3 Stimulus: 500 ms 
long cue: 1800 ms 
short cue: 200 ms 
substitution: ur 

Reasoning 
Diagramming 
Relationships 
(ve) 

Identify the Venn diagram out of five options that best describes the 
semantic relationship between three nouns (e.g., “animals, cats, and dogs” 
would be best represented by one circle corresponding to “animals” 
containing two separate circles for “cats” and “dogs”; Ekstrom, French, 
Harman, & Dermen, 1976). 

30  - Time limit: 8 min 

Letter Sets 
(ve) 

Identify the letter set that deviates from the logical pattern underlying the 
other four sets (Ekstrom et al., 1976). 

30  - Time limit: 14 min 

Locations Test 
(vi) 

Based on the logical pattern underlying the spatial distribution of “x”s on 
rows of dashes, identify at which of five locations the next “x” has to be 
placed (Ekstrom et al. 1976). 

28  - Time limit: 12 min 

RAPM (s) Complete a pattern by choosing 1 out of 8 options (Arthur & Day, 1994; 
see also Raven, 1990). 

28  - Time limit: 15 min 

Shifting 
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Parity-
Magnitude (n) 

Classify (1-9, excluding 5) as odd or even, or smaller or larger than 5 (von 
Bastian et al., 2016). 

Single: 2 x 64 
Mixed: 129 

50 switches 
50 repetitions 

- ur 

Animacy-Size 
(ve) 

Classify line-drawings of animals and objects as living or non-living, or 
smaller or larger than a soccer ball (von Bastian et al., 2016). 

Single: 2 x 64 
Mixed: 129 

50 switches 
50 repetitions 

- ur 

Color-Shape 
(vi) 

Categorize figures according to their color (blue or green) or their shape 
(round or angular, von Bastian et al., 2016). 

Single: 2 x 64 
Mixed: 129 

50 switches 
50 repetitions 

- ur 

Fill-Frame (s) Classify whether a geometric figure is dotted or striped, or framed or not 
(von Bastian & Oberauer, 2013). 

Single: 2 x 64 
Mixed: 129 

50 switches 
50 repetitions 

- ur 

Inhibition 
Number 
Stroop (n) 

Indicate which of two digits has the higher value. In congruent trials, 
differences in value and physical size match (i.e., digits with higher value 
are displayed larger), in incongruent trials they mismatch, and in neutral 
trials, both digits have the same size (Tzelgov, Meyer, & Henik, 1992). 

288 33 congruent 
33 incongruent 
33 neutral  

- ur 

Color Stroop 
(ve) 

Indicate the hue of color words. In congruent trials, the hue matches the 
color word, in incongruent trials it does not, and in neutral trials, colored 
“X”s are presented (Stroop, 1935). 

288 33 congruent 
33 incongruent 
33 neutral 

- ur 

Global-Local 
(vi) 

Indicate whether the small (local) shapes making up a bigger (global) shape 
are circles or squares. In congruent trials, the local and global shape match 
(e.g., a circle made up of small circles), in incongruent trials, they 
mismatch, and in neutral trials, line drawings of circles or squares are 
presented (Navon, 1977). 

288 33 congruent 
33 incongruent 
33 neutral 

- ur 

Simon (s) Indicate the color of a green or red circle presented on the left, right or 
centrally by pressing the left arrow key for green and the right arrow key 
for red. In congruent trials, the location of the circle and the location of the 
response key match (e.g., a green circle is presented on the left), in 
incongruent trials they mismatch, and in neutral trials, the circle is 
displayed centrally (Simon, Sly, & Vilapakkam, 1981). 

288 33 congruent 
33 incongruent 
33 neutral 

- ur 

Note. All tasks included two practice trials (12 in the shifting and inhibition tasks) to familiarize participants with the tasks. Set size reflects the 
number of memoranda. N = numerical, ve = verbal, vi = visual, s = spatial, ur = unrestricted (until response); RAPM = Raven’s Advanced 
Progressive Matrices. 
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Updating training. In the four memory updating tasks (adapted from Lewandowsky, 

Oberauer, Yang, & Ecker, 2010), participants had to remember an initial set of 

simultaneously presented stimuli. During the updating phase, participants had to transform 

individual stimuli (e.g., mentally move previously memorized circles in a grid or applying a 

simple arithmetic operation to a digit), enter the result of the transformation, and remember 

the result. In half of the trials, a cue indicated which of the stimuli had to be updated next. 

Half of the updating steps were switching trials (i.e., the to-be-updated stimulus was different 

from the one in the preceding updating step) and the other half were repetition trials (i.e., the 

to-be-updated stimulus was the same as the one in the preceding updating step). After nine 

updating steps, participants had to recall the most recent result of each stimulus.  

Binding training. In the four associative binding tasks (adapted from Oberauer, 2005; 

Wilhelm, Hildebrandt, & Oberauer, 2013), participants had to memorize sequentially 

presented associations of two elements (e.g., pairings of symbols and digits, or fractals and 

their location). In the subsequent recognition phase, each association was randomly probed 

with one of the elements given as cue. Of the probes, 50% were positive (i.e., exact matches), 

25% were intrusions (i.e., probes that were presented in the current trial, but associated with a 

different element or location), and 25% were distractors (i.e., probes not presented in the 

current trial). 

Active control training. In the four visual search tasks, participants had to search for a 

target (e.g., a single-headed arrow) among distractors (e.g., double-headed arrows) and, if the 

target was present, to indicate whether it faced up, down, left, or right by pressing the 

corresponding arrow key (cf. von Bastian et al., 2013). In target-absent trials, participants had 

to press "A" instead. The search display was a warped 7 x 8 grid, generating a scattered 

distribution of stimuli on the screen (cf. Guye & von Bastian, 2017). 
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Adaptive training algorithm. Each training task’s difficulty was adjusted to individual 

performance. The updating and binding training tasks started with a set size (i.e., number of 

memoranda) of two and a maximal response time limit of 3500 ms, and the active control 

training tasks with a search display containing six stimuli. The first training session served to 

evaluate participants’ individual cognitive performance limit (cf. Guye & von Bastian, 2017). 

In each task, participants’ mean accuracy was measured after every 10% of trials (1 trial in the 

updating tasks, 2 trials in the binding tasks, and 10 trials in the visual search tasks). If 

participants scored at least 85% correct, difficulty was increased, otherwise it remained on the 

current level. For the remaining 19 training sessions, participants’ performance was checked 

after every 40% of trials (5 trials in the updating tasks, 10 trials in the binding tasks, and 40 

trials in the visual search tasks). In the updating and binding tasks, difficulty was adjusted by 

decreasing the response time limit by 500 ms for four subsequent level-ups (e.g., when 

reaching levels 2 through 5), and by increasing set size by one additional memorandum every 

fifth level-up (e.g., when reaching level 6). The response time limit was reset to 3500 ms 

whenever the set size was increased and again reduced by 500 ms for the subsequent four 

level-ups. In the active control group, level-ups corresponded to an increase in set size (i.e., 

number of stimuli shown in the search display) by one additional stimulus. We refrained from 

adjusting response time in the active control group, to minimize demands on processing 

speed, which is strongly correlated with WM and reasoning (cf. Schmiedek et al., 2007). 

Participants were informed when they reached a higher difficulty level (i.e., “Congratulations, 

you achieved the next level”), and they started each session on the highest level they achieved 

in the preceding session (cf. von Bastian et al., 2013). 

Questionnaires. To examine whether the training groups were similarly motivated 

during training, we asked participants after each training session to rate the enjoyment 

experienced (“Today’s training session was fun to do”) and the effort spent during the training 
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session (“I tried to do well in today’s training session”; both items adapted from the Intrinsic 

Motivation Inventory, IMI, Deci & Ryan, 2015), and the perceived fit between difficulty and 

ability (“The difficulty of today’s training session was just right”; cf. von Bastian & Eschen, 

2016) on a scale ranging from 1 (does not apply at all) to 7 (does apply very well).  

In addition, participants were asked to monitor their learning progress during training 

by answering two questions at the beginning of each training session (i.e., "how would you 

rate your performance in the last training session?", "how well will you perform in today's 

training session?") and one at the end of each session (i.e., "how would you rate your 

performance in today's training session?"). These data will be reported elsewhere. 

Furthermore, participants completed the German version of the Questionnaire on Current 

Motivation (QCM, Rheinberg, Vollmeyer, & Burns, 2001) after training sessions 1 and 10, 

and the IMI (Deci & Ryan, 2015) after training session 20. These data have been reported in 

Guye et al. (2017). Finally, after training session 20, participants completed a questionnaire 

on strategy-use and training-related expectations. Strategy-use was assessed with a 

dichotomous item on whether they used strategies to complete the tasks and, if so, to briefly 

describe the strategy (primarily) used, and to rate how useful they were on a scale from 1 (not 

at all) to 5 (very). To assess training-related expectations, participants reported on a scale 

ranging from 1 (not at all) to 5 (very) whether they believed that they improved in the trained 

tasks, in the untrained cognitive tasks, and in everyday life.  

Pre- and posttest. Before and after the training intervention, we assessed practice, 

near and far transfer, and mechanism-specific effects with a test battery of 28 computer-based 

tasks. We used the same test battery for pre- and posttest to facilitate between-groups baseline 

comparisons, required for investigating the comparability across groups and occasions (cf. 

Guye & von Bastian, 2017; von Bastian & Oberauer, 2013; von Bastian & Eschen, 2016). Up 

to four participants were tested simultaneously in a single lab session that lasted up to 5 h 
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including three short breaks. To control for fatigue and practice effects, half of the 

participants in each group completed the test battery in reversed order (i.e., they started with 

the forward’s order last task of the last block and finished the test battery with the first task of 

the first block, cf. von Bastian & Oberauer, 2013). To familiarize participants with the tasks, 

several practice trials were presented before test blocks of pseudorandomized trials. Each 

cognitive ability was assessed with four tasks with varying material. Table 2 lists the details 

for each task regarding stimuli, conditions, number of trials, set sizes, and timing parameters.  

Before the pretest, participants completed a series of questionnaires: NEO-FFI 

(Borkenau & Ostendorf, 2008); Need for Cognition (Bless, Wänke, Bohner, Fellhauer, & 

Schwarz, 1994), Theories of Intelligence Scale (Dweck, 2000), Grit Scale (Duckworth & 

Quinn, 2009), Self-Efficacy Scale (Schwarzer & Jerusalem, 1995), Self-Efficacy to Regulate 

Exercise (Bandura, 2006). Findings from these measures are reported in Guye et al. (2017).  

Training. To compare practice effects between training conditions, we administered 

test versions of the training tasks at pre- and posttest that were identical in structure and 

material to the training tasks above. All participants completed the same set of trials. Different 

to the training tasks, trials varied regarding set sizes, but with fixed timing parameters. The 

proportion of correctly recalled items at the end of each trial served as dependent variable for 

the updating tasks. The discrimination parameter d’ from signal detection theory served as 

outcome measure for the associative binding tasks. It was computed from subtracting the z-

transformed false alarms to intrusion probes from the z-transformed hit rates (cf. Oberauer, 

2005). Participants' ability to search through a visual display was measured by the individual 

residuals from a simple linear regression model predicting the RTs of target-absent trials from 

the RTs of target-present trials (for a similar approach in dual tasks, see Oberauer, Lange, & 

Engle, 2004). Hence, for the visual search tasks, better performance was reflected by lower 

values. 
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Near transfer. To assess near transfer, we examined whether participants of the 

updating group showed transfer to the binding tasks and vice versa. The mean recall accuracy 

of the updating tasks and the discrimination parameter d’ computed from the binding tasks 

served as dependent variables.  

Far transfer. The four reasoning tasks required participants to either detect a rule 

behind a pattern or to integrate information for drawing a conclusion. The proportion of 

correctly answered items relative to the total number of items served as outcome measure. In 

the four shifting tasks, participants had to categorize bivalent stimuli according to one of two 

classification rules as indicated by a cue, which was displayed 150 ms before stimulus onset 

(cf. von Bastian, Souza, & Gade, 2016). Each task consisted of five blocks: two single-rule 

blocks (only one rule had to be applied, e.g., animacy classification followed by size 

classification), a mixed-rules block (two rules switched randomly, e.g., switching between 

animacy and size classifications), and another two single-rule blocks in reversed order (e.g., 

size classification followed by animacy classification). Half of the trials in the mixed-rules 

block were switching trials (i.e., the rule was different than the one in the preceding trial) and 

the other half were repetition trials (i.e., the rule was the same as the one in the preceding 

trial; the first trial was excluded from analyses as it constitutes neither a switch nor a 

repetition). Switching costs were calculated by subtracting RTs to repetition trials from RTs 

to switch trials in the mixed-rules block. Processing speed was measured by the average RTs 

in single-rule blocks of the shifting tasks. In the four inhibition tasks, participants were 

required to inhibit prepotent responses. These tasks comprised three conditions: a congruent 

condition (correct and prepotent response correspond), an incongruent condition (correct and 

prepotent response do not correspond) and a neutral condition (no prepotent response 

present). Each condition appeared equally often (cf. von Bastian et al., 2016). Stimuli of each 
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condition were randomly presented within four blocks of 72 trials. Interference costs were 

computed by subtracting the RTs to neutral trials from RTs to incongruent trials. 

WM processing. To assess focus switching, we used the RTs in the updating steps of 

the updating training tasks. Specifically, we computed the RT cost of having to switch 

between memory objects in two subsequent updating steps relative to object repetitions by 

subtracting RTs to repetition trials from RTs to switch trials (Oberauer & Hein, 2012). Thus, 

lower values reflected lower costs of switching the focus, which we interpreted as better 

performance.  

Removal speed was measured with four modified memory updating tasks modeled 

after Ecker et al. (2014). As in the updating tasks, participants had to memorize an initial set 

of stimuli. In the subsequent updating phase, however, individual stimuli were substituted by 

new ones and participants had to press the space bar (or click a button in the spatial version of 

the task, cf. Table 2) as soon as they had memorized the new stimulus. A cue presented for 

either 200 ms (i.e., short cue-target interval, CTI) or 1500 ms (i.e., long CTI) indicated which 

stimulus was updated next. In contrast to the updating task, this paradigm consisted of 

switching trials only (i.e., the to-be-updated stimulus was always different from the one in the 

preceding updating step). After 1 to 18 updating steps, participants had to recall the most 

recent stimuli. Individual residuals from a simple regression model predicting the RTs of 

trials with short CTIs from RTs of trials with long CTIs were used as dependent variables 

(Ecker et al., 2010). Thus, lower values reflected more efficient removal from WM. 

Finally, interference resolution performance was assessed by the WM training tasks. 

From the updating tasks, we extracted the proportion of transposition errors (i.e., recalling an 

item from the current trial but at a wrong position). From the binding tasks, we used the 

proportion of correct responses to intrusion probes.  
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Alternative mechanisms. To analyze the patterns of errors committed in the trained 

tasks, we additionally extracted the proportion of extra-list errors (i.e., wrongly recalled items 

not in the memory array) in the updating tasks, and the proportion of correct responses to 

matching and distractor probes in the binding tasks. As changes in accuracy towards probes in 

the binding tasks could reflect systematic shifts in response bias (e.g., saying NO more often 

would result in more misses and, so, in lower accuracy in matching probes, but higher 

accuracy in intrusion and distractor probes), we computed the criterion C by multiplying the 

sum of the z-transformed hit rate and z-transformed false alarm rate by -0.5. Values in the 

positive range reflect biases towards saying NO, and values in the negative range reflect 

biases towards saying YES. The higher the value, the stronger the bias. Self-reported strategies 

were categorized by each author separately, with an agreement rate of 86.18%. Discrepancies 

were resolved through discussion. 

Analyses 

Analyses were undertaken in four steps. First, we evaluated the proposed theoretical 

transfer model by fitting a measurement model to the pre- and posttest data. Second, we 

examined change over the course of the 20 training sessions in terms of the training level 

achieved and motivation. Third, we investigated gains from pre- to posttest for each 

experimental group relative to the control group. Specifically, we analyzed (1) practice effects 

on the trained tasks, (2) near and far transfer, and (3) changes in the proposed WM 

mechanisms of transfer (i.e., focus switching, removal, and resolution of interference).  

Finally, to explore alternative mechanisms of change in the trained abilities, we analyzed the 

response patterns and participants’ self-reported strategy use. All analyses were conducted in 

R (R Core Team, 2015).  

Bayesian analyses. We used the “BayesFactor” package (Morey & Rouder, 2015) 

with the default prior settings (i.e., Cauchy distribution with a scaling factor r = 0.707) to 
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compute BFs. BFs range on a continuous scale from 0 to ∞, with a BF of 1 reflecting perfect 

ambiguity (i.e., the data support both hypotheses equally). BFs below 1 represent evidence for 

the hypothesis in the denominator (typically H0), and BFs above 1 indicate evidence in favor 

of the hypothesis in the numerator (typically H1). For example, a BF of 10 in favor of the H1 

means that the data are ten times more likely under H1 than H0. To facilitate interpretation, 

Table 3 lists verbal labels adapted from Wetzels and Wagenmakers (2012).  

 

Table 3 
Verbal Labels for Interpreting Bayes Factors  

Bayes Factor  
H1 H0 Interpretation 

> 100 < 1/100 Decisive 
30 to 100 1/100 to 1/30 Very strong 
10 to 30 1/30 to 1/10 Strong 
3 to 10 1/10 to 1/3 Substantial 
1 to 3 1/3 to 1 Ambiguous 

1 1 No evidence 
Note. Adapted from Wetzels and Wagenmakers (2012). 

 

Baseline comparisons, training performance and motivation, and gains from pretest to 

posttest were analyzed with Bayesian linear mixed-effects (LME) models across each of the 

four tasks measuring the same ability using the lmBF() function of the BayesFactor package. 

LME models have the advantage that they simultaneously account for multiple sources of 

variance in the data. Two types of effects are distinguished in LME models: fixed effects 

(e.g., variance from experimental conditions or predictors) and random effects (e.g., variance 

from individual differences). We included participant and task as crossed-random effects 

(Baayen, Davidson, & Bates, 2008) to account for the fact that both participants and tasks 

included in our study are random samples drawn from larger populations. Hence, although 

this procedure does not specifically model latent change, it does allow for analyzing effects 

on the level of the assessed ability by modeling the task-specific variance as nuisance (cf. 
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Guye & von Bastian, 2017; von Bastian & Eschen, 2016; von Bastian & Oberauer, 2013; 

Zimmermann et al., 2017). 

Confirmatory factor analysis (CFA). To investigate the relationship between the 

measured cognitive abilities at pre- and posttest, we conducted a latent-variable CFA using 

the “lavaan” package (Rosseel, 2012). We examined model fit evaluating the chi-square 

statistic (Ȥ2), the comparative fit index (CFI), the root mean-squared error of approximation 

(RMSEA) and its 90% confidence interval (CI), and the standardized root mean-squared 

residual (SRMR). Good fit is indicated by values above .95 for CFI, values less than 0.06 for 

RMSEA, and values below .08 for SRMR (Hu & Bentler, 1999).  

Data preprocessing. Only RTs of correct responses were analyzed. RTs being 3 

median absolute deviations away from the overall median (Leys, Ley, Klein, Bernard, & 

Licata, 2013) or shorter than 200 ms were defined as outliers and excluded from analyses. To 

reduce positive skew of speed-based outcome measures, we log-transformed RTs. All 

dependent variables were z-transformed across the three groups. To eliminate variance due to 

the two different orders of test administration in pre- and posttest, we arbitrarily selected one 

order as the reference condition and corrected the data of the other order for the mean 

difference between the two orders for each variable (cf. von Bastian & Druey, 2017; von 

Bastian & Oberauer, 2013).  

Missing data. For each task, we excluded participants who showed signs of non-

compliance (i.e., mean accuracy below chance level and proportion of RTs below 200 ms > M 

proportion + 3 SD). This concerned individuals in 13 tasks at pretest and 17 tasks at posttest 

(see Table A1 in the Appendix). As these data were not missing at random, we refrained from 

imputing those data and instead excluded the affected participants listwise from analyses 

including those measures. Seven participants (1 in the active control and 6 in the binding 

group) had difficulties pursuing their training schedule and, hence, completed only 19 (6 
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participants) or 18 (1 participant) sessions. Only participants with complete training data sets 

were included in the analyses of training progress and motivation. Three participants (one of 

each group) did not complete the questionnaire at the end of training; hence, these participants 

were excluded from the analyses of training-related expectations strategy usage. 

Results 

Data and scripts for running the analyses are available on the Open Science 

Framework (https://osf.io/fy5ku). Descriptive statistics and reliabilities for each outcome 

measure as a function of group and time are listed in Table A2 in the Appendix; between-task 

correlations at pretest and posttest are listed in Table A3 in the Appendix. 

Baseline Comparability 

We compared pretest performance of each experimental group with the active control 

group for each ability (Table 4). The evidence consistently supported the absence of baseline 

differences but was ambiguous in some instances. Specifically, at pretest, the active control 

group tended to show larger shifting switch costs than both experimental groups, longer RTs 

in the speed tasks than the binding group, and to slightly larger interference costs in the 

inhibition tasks than the updating group. Moreover, evidence consistently supported the 

absence of baseline difference in all updating response types, binding probe types, and 

binding bias (BFH1 ≥ 1/3.41) but was ambiguous for updating extra-list errors, BFH1 ≥ 1/2.02 ± 

1.96%, with extra-list errors tending to be higher in the active control group than in the 

updating group. Therefore, we cannot exclude that some level of regression to the mean may 

have occurred for these outcomes. To reduce the impact of those baseline differences, we 

used standardized gain scores (i.e., mean of posttests scores minus mean of pretest scores 

divided by the pretest standard deviation; cf. Guye & von Bastian, 2017; von Bastian & 

Oberauer, 2013; von Bastian & Eschen, 2016) for each participant and each task. 

 

https://osf.io/fy5ku
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Table 4 
Baseline Group Comparability in Cognitive Abilities and Working Memory Processing 

Ability Updating vs. Active Control Binding vs. Active Control 
Training and Near Transfer 

Updating 1/3.22 ± 2.17 1/3.35 ± 1.76 
Binding 1/6.26 ± 1.24 1/6.94 ± 2.65 
Visual Search 1/4.70 ± 4.42 1/4.68 ± 4.96 

Far Transfer 
Reasoning 1/6.94 ± 1.76 1/4.29 ± 1.37 
Shifting 1/1.27 ± 1.32 1/2.02 ± 2.15 
Speed 1/4.07 ± 1.38 1/1.90 ± 1.13 
Inhibition 1/1.38 ± 1.41 1/8.15 ± 4.68 

Working Memory Processing 
Focus Switching 1/11.02 ± 2.16 1/11.36 ± 1.40 
Removal 1/4.59 ± 2.30 1/10.64 ± 3.50 
Interference Resolution  

Updating 1/8.69 ± 2.85 1/5.05 ± 2.98 
Binding 1/8.50 ± 1.59 1/8.71 ± 1.55 

Note. Values are Bayes factors in favor of the alternative hypothesis and their estimation error 
(%).  
 
Evaluation of the Theoretical Transfer Model 

To evaluate the theoretical transfer model, we conducted a latent-variable CFA. We 

first examined the proposed factor structure of seven correlated but separate cognitive abilities 

(i.e., updating, binding, visual search, reasoning, shifting, and general speed) by fitting the 

model to the data from all participants (excluding those with incomplete data) simultaneously 

at pretest (N = 185) and posttest (N = 180). While imposing the same factorial structure at 

both times of assessment (i.e., configural invariance), factor loadings, intercepts, and residual 

variances were allowed to vary freely between pretest and posttest. Likely due to their low 

zero-order correlations (see Table A3 in the Appendix), the four inhibition measures did not 

converge to a latent factor at neither time of assessment. We therefore excluded the inhibition 

factor from the model. The model including the remaining six factors for updating, binding, 

visual search, reasoning, shifting, and general speed fit the data reasonably well, Ȥ2(466) = 

740.43, p < .001, CFI = .93, RMSEA = .06 [.05; .06], SRMR = .06. As depicted in Figure 2, 

all tasks loaded significantly on their respective factor. Moreover, all latent factors exhibited 
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significant variance and correlations between the latent factors were significant, except for 

visual search, which showed no significant relation to any other factor except general speed at 

pretest. More specifically, at pretest, the two working memory factors, updating and binding, 

were strongly related (coefficient estimate = .91), and both factors showed moderate 

correlations with reasoning (coefficient estimates = .66 and .57, for updating and binding, 

respectively). At posttest, the pattern was the same, but the correlation between updating and 

binding was lower (coefficient estimate = .75), and the correlations to reasoning were stronger 

(coefficient estimate = .83 and .59, for updating and binding, respectively). As expected, the 

updating, binding, and reasoning factors were moderately related to general speed, with 

coefficient estimates between -.36 and -.48 at pretest, and between -.27 and -.37 at posttest. 

Furthermore, updating showed a weak, but significant correlation with shifting at pretest 

(coefficient estimate = -.18) which was non-significant at posttest (coefficient estimate = -

.15). 

 

 

Figure 3. Measurement model for the theoretical transfer model for pretest data (printed in 
black) and posttest data (printed in gray). Rectangles represent manifest variables and ellipses 
latent factors. Single-headed arrows represent linear regressions and double-headed arrows 
correlations. Bold numbers indicate significance (p < .05). All latent factor variances were 
significant (p < .05). Residual errors of the shifting and speed variables were correlated, 
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because they originated from the same tasks. Note that lower values reflect better 
performance for visual search (i.e., lower residual search costs), shifting (i.e., lower task 
switching costs), and speed (i.e., shorter reaction times).  
 

To examine whether the differences between the pretest and posttest model were 

statistically significant, we tested for measurement invariance across pretest and posttest. We 

first tested for weak invariance by constraining factor loadings to be equal across time, and 

compared the model fit to the baseline model with configural invariance by inspecting the 

differences in CFI and RMSEA in addition to running Ȥ2 difference tests (cf. Cheung & 

Rensvold, 2002). The loss in model fit caused by constraining factor loadings to be equal was 

negligible, ǻȤ2 = 10.05, ǻdf = 18, p = .930, ǻCFI < .01, ǻRMSEA < .01. Next, to test for 

strong invariance, we additionally constrained the intercepts to be equal across time, which 

again did not result in a significant loss of fit, ǻȤ2 = 0.78, ǻdf = 18, p > .999, ǻCFI < .01, 

ǻRMSEA < .01. Finally, we tested for strict invariance by additionally constraining the 

residuals to be equal across time. The loss in fit was again non-significant, ǻȤ2 = 28.32, ǻdf = 

24, p = .247, ǻCFI < .01, ǻRMSEA < .01.  

As we were able to establish strict measurement invariance, we next tested whether 

covariances and variances of the latent variables were also invariant across pretest and 

posttest. The loss of fit was non-significant, ǻȤ2 = 14.56, ǻdf = 15, p = .483, ǻCFI < .01, 

ǻRMSEA < .01. Finally, the loss in fit from constraining the latent factor variances to be 

equal was also negligible, ǻȤ2 = 4.13, ǻdf = 6, p = .659, ǻCFI < .01, ǻRMSEA < .01. 

Overall, this final model produced a slightly better fit than the configural baseline model, 

Ȥ2(547) = 798.27, p < .001, CFI = .94, RMSEA = .05 [.04; .06], SRMR = .06. Hence, the most 

parsimonious model with strict measurement invariance with additional invariance of latent 

factor covariances and variances was retained, rendering the pretest to posttest differences in 

coefficient estimates negligible.  
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Summary. The CFA supported the theoretical assumption that updating and binding 

are highly correlated abilities unrelated to visual search. Following the rationale that transfer 

is driven by functional overlap between abilities, the factor correlations observed in our 

pretest and posttest data suggest that transfer is most likely to occur from one WM training 

intervention to the other (i.e., near transfer), followed by transfer to reasoning and speed (i.e., 

far transfer). In contrast, it should be unlikely that transfer from WM training to shifting and 

visual search would occur. Similarly, as we found only little shared variance between the 

visual search latent factor shares and all other latent factors, visual search training should have 

little impact on performance in tasks measuring any of the other abilities.  

Training Performance and Motivation 

To investigate performance gains over the course of the 20 training sessions, we ran 

Bayesian LMEs for each group using the set size (coded as linear contrast) achieved by the 

end of each training session as dependent variable, session as fixed effect, and participant and 

task as random effects. The reported estimates are means of the sampling from the posterior 

distribution with 10,000 iterations and reflect the increase in set size from one session to the 

next one alongside their 95% credible interval. As Figure 4 shows, all three groups improved 

substantially over the course of the 20 sessions. Evidence for monotonic increases in 

performance was decisive for the updating group, MDiff  = 0.09 [0.09, 0.09], BFH1 > 100 ± 

1.22%, for the binding group, MDiff  = 0.10 [0.10, 0.11], BFH1 > 100 ± 1.80%, and for the 

visual search group, MDiff  = 2.06 [2.05, 2.08], BFH1 > 100 ± 2.70%.  
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Figure 4. Performance gains during 20 sessions of training. Error bars denote the 95% 
confidence intervals for within-subjects comparisons calculated according to Cousineau 
(2005) and Morey (2008). Limits of the y-axes reflect the minimum and maximum of set sizes 
that could be achieved during training. 

 



WORKING MEMORY TRAINING 35 

We next evaluated motivation during training by running a Bayesian LME for each of 

the motivation measures assessed at the end of each session (i.e., enjoyment, effort and 

perceived fit between task difficulty and ability) as dependent variable, group (updating, 

binding, and active control) and the linear contrast of the 20 sessions as fixed effects, and 

participant as random effect. As Figure 5 illustrates, the three groups rated their average 

enjoyment similarly, with strong evidence supporting the absence of an effect of group, BFH1 

= 1/30.11 ± 2.14% as well as the absence of an effect of session, BFH1 = 1/25.99 ± 1.78%. 

Evidence was ambiguous regarding the interaction between group and the linear contrast of 

session, BFH1 = 1.98 ± 2.18%, with the updating group showing a stronger drop in enjoyment 

ratings than the active control towards the end of training, BFH1 = 32.29 ± 4.38%.  

For the self-reported effort spent on training, evidence was decisive in favor of a linear 

effect of session, BFH1 > 100 ± 1.32%, indicating that effort ratings decreased over time. In 

addition, there was strong evidence in favor of a Group x Session interaction, BFH1 = 16.55 ± 

1.55%. Following up on this interaction, we found that the active control group’s ratings 

remained more stable over the course of training relative to the binding group, BFH1 > 100 ± 

4.17%, but were similar to those of the updating group, BFH1 = 1/7.74 ± 2.40%.  

Finally, there was ambiguous evidence tending to favor an effect of group on the 

ratings of perceived fit between task difficulty and individual ability, BFH1 = 2.02 ± 5.16%, 

caused by the slightly lower average ratings in the updating group relative to the active 

control group, BFH1 = 5.15 ± 14.10%. There was no effect of session, BFH1 = 1/6.36 ± 5.12%, 

and no Group x Session interaction, BFH1 =1/14.32 ± 5.24%. 
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Figure 5. Motivation measures across the 20 training sessions as a function of group. Error 
bars denote 95% confidence intervals for within-subjects comparisons calculated according to 
Cousineau (2005) and Morey (2008).  

 

Training-related expectations. To check whether the three training paradigms 

elicited different expectations that could affect posttest performance, we analyzed 

participants’ ratings of subjective gains after the training intervention (see Table 5). Overall, 

evidence consistently favored the absence of group differences in ratings of subjective gains.  
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Table 5 
Training-Related Expectations as a Function of Transfer Range 

 Group M (SD) Pairwise Comparisons (BFH1 ± Error) 

Range Updating Binding AC Updating vs. AC Binding vs. AC 

Training 3.81 (0.78) 3.88 (0.89) 3.69 (0.90) 1/3.96 ± 0.03 1/2.79 ± 0.00 
Transfer 2.31 (1.16) 2.63 (1.22) 2.42 (1.09) 1/4.58 ± 0.05 1/3.29 ± 0.00 
Everyday 1.81 (0.40) 1.89 (0.31) 1.89 (0.32) 1/2.68 ± 0.01 1/5.42 ± 0.00 

Note. Participants rated their subjective gains on a scale from 1 (not at all) to 5 (very). AC = 
active control. 

 

Summary. All three training groups showed substantial performance improvements 

across the 20 sessions. Motivation ratings were overall relatively similar, except that the 

updating group rated their intervention as somewhat less enjoyable towards the end of 

training, and the perceived fit between task difficulty on average as less optimal than the 

active control group. In addition, the reduction in self-reported effort spent over time was 

more pronounced in the binding group than in the active control group. Nevertheless, 

training-related expectations were relatively similar across groups. 

Training and Transfer Gains 

To evaluate whether training induced changes in cognitive performance, we compared 

the performance gains from pretest to posttest in each WM training group to those observed 

for the active control group using Bayesian LMEs across each of the four tasks measuring the 

same ability.1 Results are summarized in Table 6 and illustrated in Figure 6. 

 

                                                 
1 It would have been desirable to analyze those gains on the latent level within a structural-equation 

framework (e.g., Schmiedek et al., 2010). However, probably due the moderate group sizes for the purposes of 
structural-equation modeling, we could not establish measurement invariance at pretest for the multiple groups 
and, so, had to refrain from using latent difference-score modeling techniques (McArdle, 2009). 
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Table 6 
Parameter Estimates for Fixed Effects of the Bayesian Linear Mixed-Effects Models 

 
Updating vs. Active Control Binding vs. Active Control 

Ability MDiff [95% HDI] BF ± error % MDiff [95% HDI] BF ± error % 
Training and Near Transfer Gains 

Updating 0.35 [0.17, 0.53] > 100 ± 1.93 0.08 [-0.07, 0.23] 1/6.02 ± 1.79 
Binding 0.08 [-0.11, 0.28] 1/8.24 ± 1.35 0.55 [0.30, 0.78] > 100 ± 1.75 
Visual Searcha 0.52 [0.28, 0.78] > 100 ± 3.14 0.57 [0.31, 0.82] > 100 ± 1.45 

Far Transfer 
Reasoning -0.04 [-0.19, 0.11] 1/10.37 ± 1.34 -0.01 [-0.16, 0.14] 1/11.36 ± 5.38 
Shiftinga -0.03 [-0.24, 0.18] 1/9.21 ± 3.30 0.02 [-0.18, 0.21] 1/9.77 ± 2.34 
Speeda -0.15 [-0.29, -0.01] 1.16 ± 1.24 -0.11 [-0.26, 0.04] 1/2.48 ± 4.83 
Inhibitiona 0.07 [-0.12, 0.26] 1/9.40 ± 1.67 -0.12 [-0.30, 0.08] 1/5.76 ± 4.91 

Working Memory Processing 
Focus Switchinga -0.23 [-0.43, -0.03] 1.25 ± 3.03 0.03 [-0.15, 0.23] 1/11.50 ± 2.17 
Removala 0.09 [-0.13, 0.31] 1/8.46 ± 1.50 -0.04 [-0.28, 0.15] 1/11.30 ± 1.86 
Interference Resolution    

Updatinga -0.26 [-0.47, -0.05] 1.40 ± 2.15 -0.09 [-0.27, 0.11] 1/7.58 ± 6.34 
Binding -0.11 [-0.29, 0.08] 1/5.57 ± 1.46 -0.07 [-0.29, 0.15] 1/8.84 ± 1.96 

Note. Estimates are the mean group differences from 10,000 samples of the posterior 
distribution. HDI = highest density interval of the posterior distribution.  
aNegative mean group differences reflect greater performance gains in the experimental 
group.  
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Figure 6. Gains from pretest to posttest in the trained tasks, structurally different working 
memory tasks (near transfer; both in top panel), working memory mechanisms (middle panel), 
and other but related abilities (far transfer; bottom panel). For illustration purposes, scores 
were averaged across the four tasks administered per ability and reverse-coded so that higher 
values correspond to greater performance gains. Error bars denote 95% confidence intervals. 

 

Training gains. Evidence in favor of training effects from pretest to posttest for all 

three training groups was substantial to decisive (see top panel of Figure 6). Compared to the 

active control group, the updating group showed larger gains in updating, BFH1 > 100 ± 

1.93%, and the binding group improved more strongly in binding, BFH1 > 100 ± 1.75%. 
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Similarly, the active control group showed larger gains in visual search than the updating 

training group, BFH1 > 100 ± 3.14%, and the binding group, BFH1 >100 ± 1.45%. 

Near transfer. Despite the large correlation between updating and binding on the 

latent level, and despite the large training effects, the evidence favored the absence of near 

transfer effects from updating training to binding, BFH1 = 1/8.24 ± 1.35%, as well as from 

binding training to updating, BFH1 = 1/6.02 ± 1.79%. 

Far transfer. In line with the absence of near transfer, we found no far transfer effects 

on reasoning, shifting, speed, and inhibition (see middle panel of Figure 6), although some of 

these abilities correlated at least moderately with updating and binding at pretest. The absence 

of far transfer was largely supported by substantial to strong evidence (ranging between 

1/5.76 ± 4.91% and 1/11.36 ± 5.38) except for speed, for which the evidence was ambiguous 

(updating: BFH1 = 1.16 ± 1.24%; binding: BFH1 = 1/2.48 ± 4.83%).  

WM processing. Next, we investigated group differences in gain scores for focus 

switching, removal, and interference resolution (see bottom panel of Figure 6). To examine 

effects on focus switching, we analyzed object-switching costs derived from the updating 

tasks. The updating group tended towards improved focus switching, but the evidence was 

ambiguous, BFH1 = 1.25 ± 3.03%. The evidence strongly supported the absence of effects in 

the binding group, BFH1 = 1/11.50 ± 2.17. The evidence also favored the absence of any 

training-specific improvements in the removal of information from WM (updating training: 

BFH1 = 1/8.46 ± 1.50%; binding training: BFH1 = 1/11.30 ± 1.86%).  

To examine whether training improved interference resolution, we analyzed the 

proportion of transposition errors made at recall in the updating tasks, and the accuracy to 

intrusion probes in the binding tasks. There was a trend that updating training reduced the 

proportion of transposition errors, but the evidence was ambiguous only, BFH1 = 1.40 ± 

2.15%. Updating training did not improve performance in binding intrusion probes, BFH1 = 
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1/5.57 ± 1.46%. Moreover, binding training affected neither indicator of interference 

resolution over and above the changes observed in the active control group (transposition 

errors: BFH1 = 1/7.58 ± 6.34%, intrusion probes: BFH1 = 1/8.84 ± 1.96%).  

Summary. Although we observed large training gains for both experimental groups, 

the evidence consistently supported the absence of any transfer effects even to very strongly 

correlated abilities. Moreover, there was little evidence that training affected WM processing 

in terms of focus switching, removal, or interference resolution.  

Alternative Mechanisms of Change 

To further investigate the pattern of results, we explored two often discussed possible 

reasons for observed lack of transfer despite large training gains. One possibility is that 

training induced a stronger reliance on familiarity-based processing, which would become 

evident by higher rates of correct responses accompanied by higher rates of false-positive 

responses. For this purpose, we analyzed the proportion of errors committed in the WM 

training tasks. A second possibility is that participants acquired highly task-specific strategies 

that boosted performance in the trained tasks, but potentially hindered transfer. Therefore, we 

also analyzed the retrospective reports of strategy-use.  

Error patterns. Updating. Besides recalling the correct item at the correct position 

(see updating training gains) and recalling a correct item at the wrong position (transposition 

errors, see WM processing), participants could recall an item that was not part of the current 

memory list at all (extra-list errors, see left column in Figure 7). We found strong evidence 

that the updating group improved more than the active control group in extra-list errors, MDiff  

= -0.33 95% HDI [-0.51, -0.16], BFH1 = 58.27 ± 1.55%. The binding group did not improve, 

MDiff  = -0.07 95% HDI [-0.23, 0.09], BFH1 = 1/8.75 ± 1.43%. 
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Figure 7. Gains from pretest to posttest in the proportion of errors committed in the trained 
tasks in addition to those reported above. For illustration purposes, scores were averaged 
across the four tasks administered per ability and reverse-coded so that higher values 
correspond to greater performance gains. Error bars denote 95% confidence intervals. 

 

Binding. Recognition probes could be positive (matches) or negative, with the probe 

being either a correct item at a wrong position (intrusions, see WM processing) or an item 

that was not part of the current memory list at all (distractors). We observed decisive 

evidence that the binding group exhibited greater accuracy gains in matching probes than the 

active control group, MDiff  = 0.77 95% HDI [0.51, 1.05], BFH1 > 100 ± 1.78%. For the 

updating relative to the active control group, evidence was ambiguous, MDiff  = 0.27 95% HDI 

[0.03, 0.49], BFH1 = 1.32 ± 1.29%. For distractor probes, the evidence was ambiguous for the 

binding group, MDiff  = 0.22 95% HDI [0.04, 0.42], BFH1 = 1.22 ± 2.37%, and strongly favored 

the absence of a difference between the updating group and the active control group, MDiff  = 

0.02 95% HDI [-0.17, 0.22], BFH1 = 1/10.85 ± 1.34%.  

In recognition tasks, changes in response patterns can be the result of systematic 

changes in response bias. For example, a tendency to say YES more often at pretest, but a 

tendency to say NO more often at posttest would yield accuracy losses in matching probes 

accompanied by accuracy gains in intrusion and distractor probes. The pattern of changes 

seen in the active control group suggests such a change in response bias, whereas the gains in 

the binding group seem less bias-dependent. We evaluated the strength of evidence for 
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systematic shifts in bias by testing for within- and between-group changes in the response 

criterion C. As illustrated in Figure 8, all groups started with a relatively relaxed criterion (C 

< 0) at pretest, but the active control group shifted towards a more conservative response 

criterion (C > 0) after training. This within-group bias shift was supported by decisive 

evidence, MDiff  = 0.14 95% HDI [0.10, 0.18], BFH1 > 100 ± 2.36%. The updating training 

group showed a similar bias shift, albeit to a lesser degree, the MDiff  = 0.06 95% HDI [0.03, 

0.10], BFH1 = 17.17 ± 1.49%. In contrast, the binding training group’s response criterion 

remained relatively stable from pretest to posttest, MDiff  = -0.03 95% HDI [-0.07, 0.02], BFH1 

= 1/7.23 ± 4.67%. Whereas the evidence was ambiguous regarding the difference in bias shift 

between the updating training and the active control group, MDiff  = -0.28 95% HDI [-0.53, -

0.05], BFH1 = 1.39 ± 2.01%, it was decisive in favor of a difference between the binding and 

active control group, MDiff  = -0.59 95% HDI [-0.89, -0.32], BFH1 > 100 ± 1.09%.  

 

Figure 8. Change from pretest to posttest in response bias in the binding tasks. The dotted line 
represents a neutral response bias; C > 0 reflects a conservative response criterion (i.e., a 
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tendency to say ‘no’), C < 0 reflects a more relaxed response criterion (i.e., a tendency to say 
‘yes’). Error bars denote 95% confidence intervals. 

 

Strategy use. The reported strategies and the corresponding average ratings of 

perceived usefulness are reported in Table 7. Most participants reported to have used at least 

one strategy during training (updating: 83.04%; binding: 87.88%; active control: 62.50%). Of 

those, the majority of participants in the WM training groups mentioned that they primarily 

rehearsed or read aloud the memoranda, followed by strategies that involve some form of 

reducing memory load such as mapping the memoranda to the keyboard (updating training) or 

focusing efforts on remembering only a subset of stimuli (binding training). Participants in the 

active control most frequently reported having relied primarily on either holistic search 

strategies (i.e., attempting to attend to the full search array in parallel) or serial search 

strategies (i.e., scanning the search array item by item). Other strategies mentioned included 

chunking, visualizing, and recoding of elements, or a mixture of multiple strategies. Given 

that only few participants reported to have not used any strategies, we refrained from testing 

how the use of strategies affected transfer gains.  

On average, usefulness ratings were higher in the updating group (M = 4.18, SD = 

0.93) and in the binding group (M = 4.28, SD = 0.77) than in the active control (M = 3.65, SD 

= 0.97). Bayesian t-tests yielded substantial evidence in favor of higher ratings in the updating 

than in the control group, MDiff  = -0.48 95% HDI [-0.85, -0.11], BFH1 = 5.39 ± 0.00%, and 

very strong evidence in favor of higher ratings in the binding than in the control group, MDiff  = 

-0.58 95% HDI [-0.92, -0.25], BFH1 = 64.67 ± 0.00%. The two WM training groups rated the 

usefulness of the strategies they used similarly high, MDiff  = -0.08 95% HDI [-0.38, 0.22], 

BFH1 = 1/4.23 ± 0.02%. 
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Table 7 
Retrospectively Reported Strategy Use as a Function of Group 

Strategy Frequency (%) Usefulness M (SD) 
Updating 

Rehearsala 47.46 4.39 (0.79) 
Mapping 11.86 3.00 (1.15) 
Otherb 15.25 4.56 (0.53) 
Multiple 8.47 4.00 (0.71) 

Binding 
Rehearsala 28.79 4.26 (0.73) 
Subsetting 22.73 4.20 (0.86) 
Otherc 21.21 4.29 (0.83) 
Multiple 15.15 4.40 (0.70) 

Active Control 
Holistic 25.00 4.11 (0.68) 
Serial 20.83 3.27 (0.88) 
Otherd 16.67 3.58 (1.16) 

Note. The perceived usefulness scale ranged from 1 (not at all) to 5 (very). Data from one 
participant per group was missing. One additional participant in the active control group 
indicated to have used a strategy but did not describe it.  
aAlso includes reading stimuli aloud. 
bFor example, chunking (n = 3), imagery (n = 3), and recoding (n = 2). 
cFor example, associating (n = 4), chunking (n = 3), imagery (n = 2), and recoding (n = 4). 
dFor example, attending to a specific part of the screen only (n = 2). 
 

Summary. We found no evidence for training-induced changes in WM processing. 

Instead, updating training solely increased the proportion of correct responses and reduced the 

proportion of extra-list errors in the trained tasks. These improvements did not generalize to 

the other WM paradigm: the updating training group’s performance gains in binding matching 

and distractor probes were comparable to those observed in the active control group. 

Similarly, the binding training group showed marked improvements in matching probes and, 

to a lesser extent, in distractor probes. In contrast to the other two groups, these performance 

changes were not accompanied by systematic shifts in response bias. However, despite these 

bias-independent gains, the binding training group did not improve in correctly recalling 

memoranda or reducing extra-list errors in the updating tasks. Moreover, most participants 

reported to have used strategies which they rated as relatively useful for completing the tasks. 

Although both WM paradigms afforded similar strategies (e.g., rehearsal, reduction of 
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memory load, chunking, or imagery), performance gains in one paradigm did not transfer to 

the other paradigm.  

Discussion 

In this study, we evaluated the evidence for and against the effectiveness of WM 

training in enhancing cognition using Bayesian inference. We found substantial and consistent 

evidence supporting the absence of both near and far transfer, suggesting that training did not 

enhance WM capacity. Furthermore, there was little evidence that WM training affected any 

of the processes that had been proposed to underlie transfer effects (i.e., focus switching, 

removal of no longer relevant information, or the resolution of interference). Instead, 

additional analyses of error patterns and self-reported use of strategies in the trained tasks 

suggest that the repetitive practice encouraged the development of stimuli-specific expertise 

and the use of paradigm-specific strategies.   

Evaluation of the Theoretical Transfer Model 

One prerequisite for training effects to generalize to other abilities is that the training 

and transfer abilities share a considerable portion of variance. To establish the magnitude of 

that shared variance, we subjected the assessment data to a latent-variable confirmatory factor 

analysis. Consistent with previous studies, updating and binding were strongly correlated (cf. 

Wilhelm et al., 2013). Both WM factors were moderately related to reasoning (e.g., Engle et 

al., 1999; Friedman et al., 2006; Kyllonen & Christal, 1990; Oberauer et al., 2008; Süß et al., 

2002) and speed (e.g., Conway, Cowan, Bunting, & Minkoff, 2002; McAuley & White, 2011; 

Schmiedek et al., 2007). The correlations with shifting were only weak, a finding that has 

been observed occasionally in previous studies (e.g., Benedek, Jauk, Sommer, Arendasy, & 

Neubauer, 2014; Huizinga, Dolan, & van der Molen; Hull, Martin, Beier, Lane, & Hamilton, 

2008).  
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The tasks administered to assess inhibition, however, were largely uncorrelated, and so 

we failed to establish a latent inhibition factor. Although this appears to be in conflict with a 

large body of literature (e.g., Friedman & Miyake, 2004b; Friedman et al., 2006; McVay & 

Kane, 2012; Miyake et al., 2000; Shipstead, Lindsey, Marshall, & Engle, 2014; Unsworth, 

Fukuda, Awh, & Vogel, 2014; Unsworth & McMillan, 2014), it is an increasingly common 

finding (e.g., Brydges, Reid, Fox, & Anderson, 2012; Guye & von Bastian, 2017; Hull et al., 

2008; Krumm et al., 2009; Paap & Greenberg, 2013; Rey-Mermet, Gade, & Oberauer, in 

press; Rey-Mermet, Gade, Souza, von Bastian & Oberauer, 2018; von Bastian & Oberauer, 

2013; von Bastian et al., 2016). Low zero-order correlations could be due to low 

psychometric properties of the tasks administered (Cooper, Gonthier, Barch, & Braver, 2017; 

Hedge, Powell, & Sumner, in press). Notably, however, reliability estimates for the inhibition 

measures in the present study ranged between .47 and .74, with 3 out 4 of the tasks exhibiting 

reliabilities ≥ .65. Alternatively, it is possible that individual differences in inhibition are 

highly task-specific, questioning inhibition as a psychometric construct (Rey-Mermet et al., 

2017; Rey-Mermet et al., 2018). The present data add to this notion.  

Paradigm-Specific Performance Gains 

Another prerequisite for transfer effects is improved performance in the trained tasks. 

We found decisive evidence for training gains after both WM training interventions. Despite 

the considerable portion of shared variance between updating and binding, the training-

induced gains were highly paradigm-specific: we observed substantial evidence favoring the 

absence of near transfer effects to the respective other WM factor. The lack of near transfer 

may seem surprising and at odds with meta-analytic near transfer effects (e.g., Melby-Lervåg 

et al., 2016). However, as recently demonstrated by Soveri et al. (2017), the degree to which 

training and near transfer tasks overlap in materials and surface structure needs to be taken 

into account. Specifically, Soveri et al.’s (2017) reanalysis of Melby-Lervåg et al.’s (2016) 
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data from comparisons of healthy adults showed that the near transfer effect size was 

significantly reduced when considering only structurally different near transfer tasks. Indeed, 

the lack of near transfer in the present study is in line with findings both from our own 

previous studies (Guye & von Bastian, 2017; von Bastian & Eschen, 2016; von Bastian et al., 

2013; von Bastian & Oberauer, 2013) as with those of other studies that assessed transfer to 

structurally different WM tasks (e.g., Harrison et al., 2013; Jaeggi et al., 2008; Jaeggi, Studer-

Luethi, et al., 2010; Schmiedek et al., 2010; Sprenger et al., 2013).  

The specificity of improvements after intensive practice is also in line with decades of 

research in skill acquisition showing that practice effects are often highly paradigm- and 

stimulus material-specific, yielding only limited transfer to new tasks (cf. Ericsson, Chase, & 

Faloon, 1980; Healy, Wohldmann, Sutton, & Bourne, 2006; Lewandowsky & Thomas, 2009). 

For example, Healy et al. (2006) showed that participants who learned to use a computer 

mouse that reverses either vertical, horizontal, or a combination of both movements, could not 

transfer this ability to one of the other reversal conditions (e.g., transfer from vertical to 

horizontal movements or vice versa). 

Given the lack of near transfer, it is unsurprising that we found substantial to strong 

evidence favoring the absence of far transfer effects to reasoning and shifting with BFH1 ≥ 

1/9.21. Evidence was ambiguous in respect to processing speed, but also tended to support the 

null hypothesis. The absence of far transfer in the present study corroborates meta-analytic 

findings for comparisons with active controls (e.g., Melby-Lervåg, 2016; Dougherty et al., 

2015) and most of our own previous findings, with two exceptions. In two of our studies, we 

found some evidence for far transfer to reasoning (von Bastian & Oberauer, 2013; 

Zimmermann et al., 2016). Whereas the two studies varied in the training tasks administered 

and the age group examined, they have in common that we assessed long-term effects four 

(Zimmermann et al., 2016) and six months (von Bastian & Oberauer, 2013) after the posttest. 
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In both instances, the difference between the experimental group and the active control 

increased from posttest to follow-up assessment, which contributed to the overall transfer 

effect on reasoning being significant. Although such ‘sleeper effects’ have occasionally been 

reported elsewhere (e.g., Blakey & Carroll, 2015), they are theoretically not predicted and 

difficult to explain. We can only speculate about potential reasons for why the group 

differences were stronger at follow-up than at the immediate posttest. For example, it is 

possible that changes induced from taking part in any training (e.g., changes in motivation) 

mask WM training-specific effects immediately after the intervention but wear off over the 

course of the weeks leading up to follow-up assessment. At the same time, the effects may 

simply present chance findings and, thus, future research is needed to establish their 

replicability. Notably, though, current meta-analyses do not support the notion of reliable 

effects of WM training at follow-up assessments (e.g., Melby-Lervåg et al., 2016). 

Mechanisms of Training-Related Change 

In line with the lack of near and far transfer effects, we found no evidence for training-

related changes in the WM mechanisms (i.e., focus switching, removal of no longer relevant 

information, or the resolution of interference) that were hypothesized to possibly underlie 

transfer of WM training effects. Hence, the question remains, what did change during training 

that may have led to the large gains observed in the practiced tasks? We suggest that 

participants acquired stimuli-specific expertise boosting their memory of item contents in 

addition to using paradigm-specific strategies.  

Stimuli-specific expertise. Our additional analyses of error patterns revealed that 

training gains in the updating training tasks were primarily driven by increased rates of 

correctly recalled items and a reduction in extra-list errors. Similarly, in the binding training 

tasks, improvements were due to increased rates of correctly identifying matching probes and, 

although to a lesser degree, correctly rejecting distractor probes. These improvements were, 
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again, highly paradigm-specific, with neither WM group showing analogous effects for the 

respective other set of tasks.  

The changes specific to the correct items suggest that training may have increased 

familiarity-based processing. Following dual-process models of recognition, memory 

accuracy is based on two separable sources of information processing: familiarity and 

recollection (e.g., Atkinson, Herrmann, & Wescourt, 1974; Oberauer, 2005; 2008; Yonelinas, 

2002). Whereas familiarity is based on the memory of an item regardless of its current 

context, recollection is based on the memory of the binding between an item and its current 

context (e.g., a word and its specific position within the memory array). If the training-related 

improvement in memory accuracy were due to enhanced familiarity-based (or context-

independent) processing only, one would expect to observe a concurrent increase in responses 

involving the correct items but at wrong positions (i.e., more YES responses to intrusion 

probes in the binding tasks, and more transposition errors in the updating tasks). Conversely, 

if the improved memory accuracy were due to enhanced recollection-based (or context-

dependent) processing only, one would expect to observe a concurrent decrease in those false-

positive responses. In our study, the increase in correct responses was accompanied by 

relatively stable false-positive rates, suggesting that practice improved memory of items but 

without compromising recollection-based processing. Thus, it is unlikely that training solely 

led participants to simply rely more strongly on familiarity-based processing.   

Alternatively, participants may have acquired stimuli-specific expertise through the 

repetitive practice with the same set of stimuli over an extended period of time, yielding 

enhanced resolution of the stimuli representations in memory. This tentative explanation 

borrows from a visual WM model recently introduced by Oberauer and Lin (2017). The 

authors suggest a memory system in which an item’s content (e.g., a color) is bound to its 

context (e.g., a location) in a two-dimensional, continuous binding space. At retrieval, 
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contents are accessed through the context, with the probabilistic choice of a response being 

affected by the strength of the content-context binding, the precision of the representation on 

the content dimension, and the amount of background noise. Specifically, a context cue 

presented (e.g., a probed location) will activate the content representation bound to that 

context. In addition, although to a lesser degree, those representations that are bound to highly 

similar contexts (e.g., nearby locations) will also receive some activation, thereby creating 

interference. 

During training, the repetitive encoding and retrieval of the same stimuli may have 

gradually enhanced the precision of their representations. Such a boost in precision of the 

content representations would benefit recall of correct items, but, as it would not affect the 

binding strength, would have little effect on the errors resulting from interference (i.e., 

transposition errors and rejection of intrusion probes). Consistent with this explanation and 

with the lack of transfer in our study, it has been shown that the precision of items in memory 

is task-dependent (Chow & Conway, 2015), and unrelated to fluid intelligence (Fukuda et al., 

2010). However, as our training tasks involved discrete as opposed to continuous stimuli (e.g., 

colors or directions), our data does not allow for estimating the precision of content 

representations. To test our proposition more directly, future studies would need to employ 

tasks that allow for differentiating between precision and number of items in memory such as 

change-detection (e.g., Awh, Barton, & Vogel, 2007; Xu & Chun, 2006) or continuous-

reproduction tasks (e.g., Bays, Catalao, & Husain, 2009; Zhang & Luck, 2008).  

Paradigm-specific strategies. As strategy-based training interventions frequently 

yield only narrow transfer (for reviews, see Lustig et al., 2009; Morrison & Chein, 2011), lack 

of transfer after process-based WM training has been suggested to be caused by the 

development or use of highly paradigm-specific strategies (cf. von Bastian & Oberauer, 

2014). For example, Laine, Fellman, Waris, and Nyman (2018) recently demonstrated that 
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(internally developed or externally instructed) strategy usage during training can improve 

performance in trained and structurally similar untrained tasks while not affecting 

performance in structurally different tasks; a pattern in line with our results. Indeed, despite 

our efforts to reduce strategy use during training through gradually decreasing the response 

time limit (and, thus, the time to employ a strategy), more than 80% of WM trainees reported 

the use of WM-specific strategies. Hence, participants may have acquired strategies that aided 

performance in the trained tasks but were not applicable to the respective other set of tasks 

(Bailey, Dunlosky, & Kane, 2008). Self-reported strategies were quite similar across 

paradigms though. In both WM training groups, rehearsal of items was the most frequently 

mentioned strategy, which is in line with previous studies on strategy use in WM (e.g., Bailey 

et al., 2008; Dunlosky & Kane, 2007; Friedman & Miyake, 2004a; Logie, Della Sala, 

Laiacona, Chalmers, & Wynn, 1996; Morrison, Rosenbaum, Fair, & Chein, 2016; Unsworth 

& Spillers, 2010). On average, participants rated rehearsal as a useful strategy even though it 

has been shown to be normatively ineffective (Dunlosky & Kane, 2007), which is consistent 

with work showing that people often have only limited knowledge about strategy 

effectiveness (e.g., Hertzog, Price, & Dunlosky, 2008). Thus, it is possible that participants 

indeed attempted to use rehearsal also in the respective other paradigm, but that it simply had 

little effect on their performance.  

Other frequently mentioned strategies included reducing WM load by either 

prioritizing a subset of items in the binding tasks (cf. Atkinson, Baddeley, & Allen, 2017) or 

by mapping the memoranda to mental shapes drawn on fingers, legs, or the keyboard (cf. 

Minear et al., 2016). While these strategies may be more effective in boosting performance, 

especially at the limits of WM capacity (e.g., Atkinson et al., 2017; Cusack, Lehmann, 

Veldsman, & Mitchell, 2009; Linke, Vicente-Grabovetsky, Mitchell, & Cusack, 2011), 

differences between the paradigms such as the response mode (i.e., recall in the updating 
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tasks and recognition in the binding tasks, cf. Bailey, Dunlosky, & Hertzog, 2014) or the 

complexity of the memoranda (cf. Atkinson et al., 2017; see also Bengson & Luck, 2016) 

could have prevented participants from successfully applying these strategies to the respective 

other paradigm.  

A third possibility is that, even if participants would have been able to apply the same 

strategy to both training and near transfer tasks, they may still not have chosen to do so, for 

example due to a lack of interest in making the cognitive effort (cf. Carretti, Borrella, 

Zavagnin, & De Beni, 2011). In a recent study, Morrison et al. (2016) asked participants to 

indicate the strategies they used across a range of six verbal WM paradigms. Although the 

distribution of strategies reported was relatively similar for the different paradigms, 

individuals varied in the consistency in which they employed a given strategy in any given 

paradigm. For example, rehearsal was the most frequently selected strategy for a complex 

span task across participants. However, for other tasks, distinct subgroups of participants 

emerged: whereas one subgroup primarily relied on rehearsal also in an item recognition but 

not at all in a running memory span task, another subgroup showed the opposite pattern. 

Hence, there are considerable individual differences in the consistency of strategy use even 

across paradigms that generally afford similar strategies. Although the ability to dynamically 

shift strategies appears to be unrelated to WM capacity (Unsworth, 2016), there is some 

tentative evidence that it may relate to better training outcomes (Dunning & Holmes, 2014). 

However, we assessed strategy use only retrospectively after the training phase, and only for 

the trained, but not for the non-trained tasks; thus, the present data does not allow for further 

investigating these issues. Future studies are needed to directly test the strategy affordance 

hypothesis in the context of WM training, and to better understand how consistency in 

strategy use is related to training and transfer effects.  
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Strengths 

One of the major strengths of our study is the theory-driven selection of training and 

transfer tasks. We based our study on the three-embedded-components model of working 

memory (Oberauer, 2009; Oberauer & Hein, 2012), which describes WM as three different 

levels of information selection, each level narrowing down the information content of the 

preceding one. A theory-based approach of task selection allows for determining whether an 

improvement in a cognitive task is accomplished through an increase in WM capacity or 

enhanced WM efficiency (cf. von Bastian & Oberauer, 2014). Moreover, we systematically 

investigated the WM mechanisms that had been hypothesized to mediate near and far transfer 

effects, and we explored alternative mechanisms that may have led to the training-specific 

gains.  

Another strength of our study was the relatively large sample size with 59 to 72 

participants per group. In contrast to other cognitive training approaches (e.g., Hardy et al., 

2015; Owen et al., 2010; Tennsted & Unverzagt, 2013), most previous WM training studies 

compared 30 participants per group or less. According to the meta-analysis by Melby-Lervåg 

et al. (2016) that included 87 WM training studies, there was only one study with group sizes 

larger (i.e., Estrada, Ferrer, Abad, Román, & Colom, 2015 with 114 to 193 participants per 

group) and one other study with group sizes comparable (i.e., Sprenger et al., 2013 with 57 

and 70 participants per group in experiment 1) to ours. Indeed, the resulting Bayesian 

evidence was at least substantial in our study.  

Moreover, we included an active control group. Although meta-analyses sometimes 

show no effect of the type of control group (i.e., active or passive) on the average transfer 

effect (e.g., Au et al., 2015; Karbach & Verhaeghen, 2015; but see Dougherty et al., 2015), 

including an active control group is still important from a methodological standpoint, as the 

absence of a statistical difference cannot exclude confounds from non-specific intervention 
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effects in any given single study. An optimal control group should demand only little WM, 

and participants should perceive the control intervention as a believable and potentially 

effective intervention (cf. Morrison & Chein, 2011; Shipstead, Hicks, & Engle, 2012; von 

Bastian & Oberauer, 2014). Hence, the control treatment should be as similar as possible to 

the experimental treatment. We argue that visual search training met these criteria well. First, 

visual search did not correlate with the other cognitive abilities assessed as demonstrated by 

the transfer model (Figure 3). Second, training conditions were identical across interventions 

(e.g., number and duration of training sessions, adaptivity, and the amount of feedback and 

experimenter contact). Moreover, motivational measures assessed during training showed that 

participants of the control group perceived training at least as equally enjoyable as the two 

experimental groups; if anything, the updating group rated their training intervention as 

slightly less enjoyable, which is in line with that we observed the highest rate of compliance 

in the control group. We observed a substantial difference in the ratings of effort between the 

binding and the active control group, with the active control group, however, reporting having 

spent more effort during training. We can only speculate about reasons for this difference, but 

possibly, ratings of the effort spent are a consequence of the perceived performance in that 

session. More specifically, as the active control group showed steeper increases in training 

performance than the binding group, they on average experienced more level-ups per session 

than the binding group. Hence, participants might have used their progress in a session in 

terms of level-ups as reference to retrospectively rate their effort in this session. Importantly, 

these differences in rated enjoyment and effort did not affect training-related expectations.  

Finally, we measured each cognitive ability with four tasks. The application of 

multiple indicators to assess a construct minimizes the problems arising from task impurity 

(Miyake & Friedman, 2012). More specifically, the score of a task reflects both cognitive 

ability as well as systematic and random influences (e.g., Shipstead, Redick, et al., 2012). For 
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example, in our study, the latent updating factor explained between 45% and 66% of variance 

in the single updating tasks. Hence, there was still a considerable amount of variance from 

task-specific sources. Therefore, transfer effects found for single tasks may reflect changes in 

the task-specific portions of variance rather than an enhancement of the underlying ability 

(Schmiedek et al., 2010). To extract the ability-specific effects, multiple measures of an 

ability are needed. An often-voiced concern about measuring each ability with multiple 

indicators is that it increases testing time. For example, Green, Strobach, & Schubert (2014) 

argued that such increased testing time could lead to ego-depletion or fatigue effects and, 

hence, obscure training and transfer gains. Therefore, as in our previous training studies (e.g., 

von Bastian & Oberauer, 2013), we administered the test battery in counterbalanced order, 

thereby controlling for any potential linear effects of fatigue or ego-depletion. Moreover, in a 

recent reanalysis of data from four cognitive test batteries from previous studies of our lab 

(i.e., Herkert, 2012; von Bastian & Eschen, 2016; von Bastian et al., 2016; von Bastian & 

Oberauer, 2013) that comprised up to 20 tasks and lasted between 2.5 and 4.5 hours, we found 

no evidence for fatigue or ego-depletion effects (cf. De Simoni, Luethi, Oberauer, & von 

Bastian, 2018).   

Limitations  

A potential drawback of our study is that training was self-administered at home. 

Despite regularly keeping in touch with participants during training and closely monitoring 

their progress, experimental control was less tight than if participants had completed the 

training in the laboratory. For example, although we asked participants to complete their 

training sessions in a quiet area where they would not be disturbed, it is impossible to know 

whether all of them met this request throughout the intervention. Laboratory-administered 

interventions have been argued to strengthen the commitment and motivation of participants 

(cf. Lampit, Hallock, & Valenzuela, 2014). However, regular personal contact with the 
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experimenter also yields an increased risk of experimenter effects (e.g., participants act as 

expected from the experimenter, cf. Rosenthal, et al. 2005), possibly confounding training and 

transfer data. Moreover, although laboratory-based training interventions increase control 

over the environment during training (e.g., minimized impact of distractions), home-

administered training interventions increase ecological validity of the results. Empirically, it 

is yet unclear whether WM training effectiveness is affected by whether it training is 

administered at home or in the laboratory. Although some meta-analyses that include different 

age groups support such an effect (e.g., Lampit et al., 2014; Schwaighofer et al., 2015), others 

that focus solely on young adults do not (e.g., Au et al., 2015). Indeed, several laboratory-

based cognitive training studies did not find any transfer effects either (e.g., Linares et al., 

2017; Redick et al., 2013), whereas other self-administered interventions were successful in 

establishing even far transfer (e.g., Jaeggi, Buschkuehl, Shah, & Jonides, 2014; von Bastian & 

Oberauer, 2013; Zimmermann et al., 2016). Taken together, it seems unlikely that the self-

administered training regime is responsible for the lack of transfer.  

Another limitation is that the present sample consisted of young adults. One could 

argue that young adults are simply not an adequate target for training interventions, as they 

are at the peak of their cognitive functioning, and, hence, room for additional improvement is 

small at best (e.g., Bherer et al., 2008; Karbach & Kray, 2009, see also Titz & Karbach, 2014 

for a review). However, in a recent training study with older adults that followed a similar 

design and yielded comparably strong Bayesian evidence as the present study, we also found 

no transfer effects (Guye & von Bastian, 2017). Moreover, fitting latent growth curve models 

to the data from the present study and that from Guye and von Bastian (2017), we estimated 

how baseline performance in the training tasks predicted the training trajectories (Guye, De 

Simoni, & von Bastian, 2017). For all three training groups, we found decisive evidence for 

individual differences in baseline performance (i.e., the intercept) as well as change therein 
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(i.e., the slope). Contradictory to the hypothesis that lower initial cognitive performance 

yields stronger gains, we found a positive correlation between the intercept and the slope, 

suggesting magnification effects. Furthermore, it has been argued that individual differences 

may obscure transfer effects (cf. Jaeggi, Buschkuehl, Shah, & Jonides, 2014; see also Guye, et 

al., 2016; Katz, Jones, Shah, Buschkuehl, & Jaeggi, 2016). However, the individual 

differences we analyzed in Guye et al. (2017), ranging from indicators of motivation, 

cognition-related beliefs (e.g., grit, theories of intelligence, or need of cognition) to the 

personality big five (i.e., neuroticism, agreeableness, extraversion, openness, and 

conscientiousness), predicted the slope in neither younger nor older adults. Thus, it is rather 

unlikely that age or individual differences underlie the absence of transfer effects in the 

present study.  

Conclusion 

In the present study, WM updating and binding training yielded neither near nor far 

transfer effects, and did not affect WM processing. Thus, the findings contribute evidence that 

the repetitive practice of WM tasks is ineffective in increasing WM capacity and efficiency. 

Instead, the results suggest that training encouraged the development of stimulus-specific 

expertise alongside the use of paradigm-specific strategies. Taken together, the present 

findings add to the notion that interventions involving the mere repetitive practice of WM 

tasks are unlikely to elicit generalized improvements in cognition.  

Context of the Research 

The prospects of a relatively cheap, easy-to-administer intervention to boost cognition 

is highly attractive in terms of clinical and nonclinical applications, but also as a way to 

experimentally manipulate WM capacity. But does process-based WM training really 

fundamentally enhance cognition? Our previous work yielded some evidence in favor (von 

Bastian & Oberauer, 2013; Zimmermann et al., 2016), but also against this proposition (von 
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Bastian & Eschen, 2016; von Bastian et al., 2013) – a state of research that is closely mirrored 

by the mixed evidence from current meta-analyses (e.g., Au et al., 2015; Melby-Lervåg et al., 

2016). However, as many studies featured only small sample sizes (including our own), the 

evidence was rather weak in either direction (cf. von Bastian et al., 2018). To shed further 

light on whether and under which circumstances WM training is effective, we set out to 

systematically examine the underlying mechanisms of WM transfer and the role of individual 

differences (cf. von Bastian & Oberauer, 2014) with larger-scale samples (see also Guye et 

al., 2017; Guye & von Bastian, 2017). Now, the results of that endeavor – that is, the 

consistent absence of the hypothesized effects across our studies, backed up by relatively 

strong Bayesian evidence – leave us to conclude that WM training interventions, as they are 

currently administered, are no quick-fix to enhance cognition. Nevertheless, the robust and 

large practice effects during WM training are still intriguing, as they go well over and above 

the expected range of performance. Thus, moving forward, we aim to more closely examine 

those practice effects to learn more about the role of expertise and task representation in WM. 

We hope this will not only advance our theoretical understanding of (individual differences 

in) WM capacity, but may also be utilized to develop more reliable interventions for 

improving cognitive performance.  
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Appendix 

Table A1 
Excluded Data from Pretest and Posttest 
 Pretest  Posttest 

Task UPD BIN AC  UPD BIN AC 
Updating        

Accuracies        
Arrows   1   1  
Locations  1     1 

Focus Switching        
Digits 1 1   

 
2 1 

Letters 2 2 1  
 

2 2 
Arrows 1 9 5  

 
7 5 

Locations 
 

1 3  
 

1 2 
Binding        

Symbol-Digit 
 

   
  

1 
Fractal-Location 

 
   1 

  
Color-Location 

 
1   

   
Visual Search        

Letters 1 4 1  5 5 
 

Arrows 
 

 1  1 
  

Circles 
 

 2  
   

Removal        
Arrows 

 
1 1  

   
Reasoning        

Diagramming Relationships 
 

   
  

1 
Letter Sets 

 
   

 
1 

 
Locations Test 

 
   

 
1 1 

RAPM 
 

   
  

1 
Shifting        

Parity-Magnitude 
 

   
 

1 
 

Color-Shape 
 

   1 1 
 

Fill-Frame 
 

1 1  
   

Inhibition        
Global-Local 3 1 3  2 

 
2 

Note. UPD = updating group; BIN = binding group; AC = active control group. 
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Table A2 
Task Performance as a Function of Training Group and Time of Assessment 

 Group   
 Updating  Binding  Active Control  Reliability 

Tasks Pre Post  Pre Post  Pre Post  Pre Post 
Updating 

  
 

  
 

  
 

  
Digits 0.75 (0.16) 0.80 (0.16)  0.71 (0.20) 0.75 (0.20)  0.72 (0.19) 0.74 (0.20)  0.89 0.91 
Letters 0.59 (0.21) 0.73 (0.17)  0.49 (0.21) 0.53 (0.22)  0.56 (0.19) 0.57 (0.20)  0.86 0.89 
Arrows 0.40 (0.16) 0.49 (0.18)  0.35 (0.17) 0.41 (0.19)  0.38 (0.15) 0.43 (0.16)  0.83 0.84 
Locations 0.43 (0.17) 0.58 (0.19)  0.39 (0.21) 0.46 (0.22)  0.39 (0.19) 0.46 (0.20)  0.89 0.91 

Binding            

Symbol-Digit 1.00 (0.52) 1.01 (0.64)  0.87 (0.54) 1.13 (0.84)  0.91 (0.51) 1.03 (0.61)  0.7 0.83 
Noun-Verb 1.46 (0.72) 1.47 (0.81)  1.51 (0.71) 1.48 (0.76)  1.36 (0.72) 1.34 (0.80)  0.81 0.84 
Fractal-Location 0.87 (0.51) 1.03 (0.70)  0.92 (0.53) 1.77 (0.99)  0.91 (0.51) 0.99 (0.63)  0.64 0.88 
Color-Location 1.12 (0.72) 1.48 (0.87)  1.08 (0.63) 1.52 (0.80)  1.04 (0.60) 1.18 (0.67)  0.8 0.85 

Visual Searcha            

Numbers -0.03 (0.22) 0.00 (0.18)  0.03 (0.17) 0.07 (0.20)  0.00 (0.19) -0.06 (0.17)  0.73 0.75 
Letters -0.03 (0.18) 0.02 (0.20)  0.01 (0.16) 0.07 (0.19)  0.01 (0.15) -0.07 (0.16)  0.72 0.73 
Arrows -0.02 (0.17) 0.03 (0.19)  0.02 (0.17) 0.03 (0.19)  -0.01 (0.18) -0.05 (0.17)  0.68 0.76 
Circles -0.02 (0.14) -0.01 (0.15)  0.02 (0.13) 0.06 (0.14)  0.00 (0.14) -0.04 (0.14)  0.42 0.43 

Reasoning            

Relationships 0.74 (0.14) 0.75 (0.13)  0.70 (0.14) 0.73 (0.17)  0.74 (0.15) 0.77 (0.13)  0.72 0.74 
Letter Sets 0.73 (0.12) 0.74 (0.16)  0.72 (0.15) 0.74 (0.15)  0.71 (0.16) 0.73 (0.14)  0.66 0.77 
Locations 0.53 (0.16) 0.59 (0.17)  0.46 (0.18) 0.53 (0.19)  0.49 (0.17) 0.58 (0.17)  0.63 0.7 
RAPM 0.59 (0.23) 0.65 (0.23)  0.56 (0.25) 0.61 (0.20)  0.60 (0.19) 0.63 (0.18)  0.72 0.65 

Shiftinga            

Parity-Magnitude 0.37 (0.14) 0.35 (0.16)  0.29 (0.15) 0.30 (0.16)  0.31 (0.17) 0.32 (0.17)  0.87 0.9 
Animacy-Size 0.40 (0.16) 0.42 (0.13)  0.33 (0.15) 0.32 (0.15)  0.36 (0.17) 0.35 (0.16)  0.82 0.88 
Color-Shape 0.35 (0.18) 0.34 (0.17)  0.26 (0.16) 0.28 (0.14)  0.30 (0.17) 0.34 (0.17)  0.87 0.88 
 Fill-Frame 0.29 (0.13) 0.32 (0.13)  0.22 (0.12) 0.26 (0.15)  0.28 (0.15) 0.27 (0.13)  0.84 0.81 
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Speeda            

Parity-Magnitude 6.27 (0.08) 6.23 (0.08)  6.29 (0.13) 6.23 (0.13)  6.27 (0.12) 6.23 (0.13)  0.99 0.99 
Animacy-Size 6.39 (0.09) 6.32 (0.08)  6.40 (0.13) 6.34 (0.14)  6.38 (0.11) 6.32 (0.12)  0.99 0.99 
Fill-Frame 6.19 (0.09) 6.12 (0.09)  6.21 (0.12) 6.16 (0.13)  6.18 (0.13) 6.15 (0.15)  0.99 0.99 
Color-Shape 6.23 (0.08) 6.14 (0.08)  6.25 (0.11) 6.17 (0.11)  6.23 (0.12) 6.15 (0.11)  0.99 0.99 

Inhibitiona            

Numerical Stroop 0.05 (0.04) 0.05 (0.04)  0.07 (0.06) 0.06 (0.04)  0.06 (0.05) 0.06 (0.04)  0.69 0.65 
Color Stroop 0.04 (0.07) 0.02 (0.05)  0.06 (0.07) 0.04 (0.06)  0.06 (0.07) 0.04 (0.07)  0.79 0.74 
Global-Local 0.02 (0.06) 0.03 (0.05)  0.05 (0.06) 0.03 (0.06)  0.04 (0.05) 0.04 (0.06)  0.74 0.74 
Simon 0.03 (0.01) 0.02 (0.01)  0.03 (0.02) 0.03 (0.02)  0.03 (0.02) 0.02 (0.02)  0.39 0.47 

Focus switchinga            

Digits 0.38 (0.15) 0.32 (0.13)  0.35 (0.17) 0.35 (0.16)  0.38 (0.20) 0.37 (0.16)  0.79 0.82 
Letters 0.42 (0.19) 0.31 (0.11)  0.38 (0.23) 0.43 (0.20)  0.38 (0.21) 0.40 (0.18)  0.62 0.7 
Arrows 0.54 (0.28) 0.52 (0.17)  0.57 (0.31) 0.57 (0.30)  0.53 (0.26) 0.54 (0.25)  0.73 0.8 
Locations 0.48 (0.17) 0.53 (0.19)  0.52 (0.21) 0.53 (0.22)  0.50 (0.18) 0.51 (0.19)  0.82 0.86 

Removala            

Digits -0.01 (0.14) 0.00 (0.13)  -0.01 (0.14) 0.00 (0.14)  0.01 (0.13) 0.00 (0.14)  0.86 0.85 
Letters -0.01 (0.14) 0.01 (0.11)  0.01 (0.14) 0.00 (0.14)  0.00 (0.11) 0.00 (0.13)  0.76 0.82 
Arrows -0.02 (0.11) 0.00 (0.10)  0.00 (0.11) -0.01 (0.12)  0.02 (0.12) 0.01 (0.13)  0.57 0.64 
Locations 0.00 (0.09) -0.01 (0.06)  0.01 (0.09) 0.00 (0.09)  -0.01 (0.09) 0.01 (0.08)  0.63 0.65 

Interference Resolution            

Updatinga            

Digits 0.10 (0.07) 0.08 (0.08)  0.11 (0.09) 0.11 (0.08)  0.10 (0.07) 0.11 (0.09)  0.73 0.78 
Letters 0.13 (0.08) 0.09 (0.07)  0.15 (0.08) 0.16 (0.08)  0.13 (0.07) 0.13 (0.06)  0.59 0.59 
Arrows 0.18 (0.07) 0.17 (0.08)  0.19 (0.08) 0.16 (0.06)  0.18 (0.07) 0.17 (0.07)  0.38 0.42 
Locations 0.17 (0.05) 0.15 (0.07)  0.17 (0.07) 0.15 (0.07)  0.17 (0.06) 0.16 (0.07)  0.42 0.54 

Binding            

Symbol-digit 0.65 (0.14) 0.67 (0.14)  0.61 (0.14) 0.65 (0.20)  0.61 (0.13) 0.69 (0.13)  0.6 0.75 
Noun-verb 0.71 (0.15) 0.73 (0.14)  0.72 (0.15) 0.73 (0.14)  0.69 (0.17) 0.72 (0.16)  0.74 0.74 
Fractal-location 0.59 (0.14) 0.64 (0.16)  0.62 (0.14) 0.71 (0.19)  0.63 (0.15) 0.68 (0.14)  0.6 0.76 
Color-location 0.65 (0.17) 0.72 (0.18)  0.64 (0.16) 0.68 (0.18)  0.65 (0.16) 0.72 (0.15)  0.75 0.79 
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Other Updating Errors            

Extra-list errors            

Digits 0.16 (0.10) 0.12 (0.10)  0.19 (0.13) 0.15 (0.13)  0.18 (0.13) 0.15 (0.13)  0.84 0.87 
Letters 0.29 (0.15) 0.18 (0.12)  0.36 (0.16) 0.32 (0.16)  0.31 (0.14) 0.30 (0.16)  0.81 0.86 
Arrows 0.42 (0.14) 0.35 (0.14)  0.47 (0.14) 0.42 (0.16)  0.45 (0.13) 0.40 (0.13)  0.76 0.78 
Locations 0.39 (0.14) 0.27 (0.14)  0.45 (0.16) 0.39 (0.18)  0.44 (0.15) 0.38 (0.15)  0.85 0.88 

Other Binding Probes            

Matches            

Symbol-digit 0.72 (0.10) 0.69 (0.10)  0.71 (0.10) 0.72 (0.13)  0.72 (0.11) 0.67 (0.14)  0.69 0.82 
Noun-verb 0.78 (0.11) 0.75 (0.12)  0.78 (0.10) 0.76 (0.13)  0.76 (0.10) 0.72 (0.13)  0.78 0.85 
Fractal-location 0.72 (0.09) 0.73 (0.10)  0.71 (0.12) 0.84 (0.09)  0.70 (0.11) 0.67 (0.14)  0.71 0.85 
Color-location 0.74 (0.10) 0.78 (0.10)  0.74 (0.12) 0.83 (0.09)  0.72 (0.11) 0.71 (0.13)  0.77 0.78 

Distractors            

Symbol-digit 0.73 (0.12) 0.75 (0.13)  0.72 (0.14) 0.76 (0.15)  0.74 (0.13) 0.77 (0.13)  0.7 0.75 
Noun-verb 0.85 (0.11) 0.85 (0.12)  0.84 (0.14) 0.86 (0.14)  0.83 (0.12) 0.84 (0.12)  0.71 0.78 
Fractal-location 0.67 (0.12) 0.72 (0.14)  0.69 (0.13) 0.80 (0.13)  0.69 (0.15) 0.73 (0.13)  0.69 0.74 
Color-location 0.78 (0.13) 0.83 (0.13)  0.76 (0.13) 0.82 (0.12)  0.79 (0.11) 0.82 (0.13)  0.77 0.75 

Note. Values are Ms ± SDs. Scores are accuracies (proportion correct) or proportion of errors (extra-list errors), except for binding (d’), visual search 
and removal (residuals), inhibition, shifting and focus switching (log-transformed reaction time differences), and updating intrusions (proportion of 
errors). Reliabilities for accuracies and proportion of errors are Cronbach’s alpha; all other reliabilities are split-half reliabilities corrected with the 
Spearman-Brown prophecy formula. 

aLower values reflect better performance. 
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Table A3 
Correlations between Tasks at Pretest and Posttest 
Measure 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 
Updating                            

1. Digits  .70 .59 .54 .40 .34 .38 .49 .03 -.03 .02 .00 .63 .33 .47 .45 .04 .15 .20 .01 -.29 -.28 -.30 -.27 .03 -.29 -.03 
2. Letters .58  .61 .66 .35 .29 .34 .51 .00 -.01 .02 -.10 .52 .36 .49 .42 .06 .17 .26 .09 -.35 -.31 -.37 -.31 -.02 -.27 -.03 
3. Arrows .50 .57  .62 .44 .40 .39 .55 .06 -.01 .02 -.06 .47 .37 .41 .37 .01 .06 .21 .00 -.34 -.30 -.35 -.32 -.01 -.24 -.01 
4. Locations .49 .58 .56  .46 .42 .51 .69 .01 .04 .03 -.01 .45 .38 .46 .32 -.07 .06 .11 -.06 -.26 -.28 -.28 -.26 -.12 -.31 -.01 

Binding                            
5. Symbol-Digit  .29 .34 .33 .42  .53 .50 .50 -.06 -.06 .01 -.03 .37 .15 .35 .18 -.10 -.02 .10 .11 -.16 -.28 -.21 -.19 .07 -.22 .01 
6. Noun-Verb  .42 .31 .39 .41 .42  .39 .39 -.01 -.01 .14 .11 .23 .28 .33 .17 -.10 .01 .03 .15 -.18 -.20 -.17 -.16 .05 -.19 .04 
7. Fractal-Location .35 .41 .32 .56 .38 .42  .67 .15 .13 .09 .07 .39 .27 .32 .25 -.07 -.04 -.01 -.03 -.30 -.32 -.23 -.27 -.03 -.25 -.05 
8. Color-Location .45 .44 .45 .66 .37 .29 .49  .04 .08 .09 .04 .42 .29 .37 .24 -.12 -.02 .02 -.13 -.27 -.27 -.24 -.28 -.09 -.30 -.03 

Visual Search                            
9. Digits -.01 -.03 .06 -.05 .01 -.05 -.04 -.06  .45 .50 .41 .14 .00 .13 .08 -.05 -.10 -.01 -.06 -.04 .00 .00 .01 .01 .02 -.04 
1. Letters -.12 -.04 .01 .00 -.11 -.15 -.01 .01 .35  .49 .36 .01 -.06 .09 -.07 -.07 -.07 .01 -.02 .02 .00 .04 .04 -.10 .10 -.03 
11. Arrows -.06 -.04 .03 -.07 -.04 -.02 -.10 .01 .55 .45  .46 .06 .03 .15 .11 .00 -.03 .03 -.01 .03 .03 .00 -.01 -.02 .01 -.14 
12. Circles -.05 -.05 .04 .05 -.04 -.01 -.04 .08 .31 .46 .35  -.01 .02 .09 .04 -.11 -.11 -.09 -.06 .04 .09 .13 .14 -.04 .11 -.12 

Reasoning                            
13. Relationships .44 .40 .31 .33 .22 .27 .31 .29 .01 -.04 .02 -.06  .30 .59 .54 .05 .13 .15 -.02 -.26 -.23 -.25 -.22 -.01 -.26 -.09 
14. Letter Sets .21 .20 .23 .39 .23 .29 .33 .25 -.15 -.09 -.14 -.06 .37  .44 .35 -.01 .06 .14 .05 -.23 -.22 -.22 -.32 -.01 -.21 -.13 
15. Locations .41 .36 .37 .38 .26 .23 .27 .30 -.08 -.17 -.05 -.10 .47 .29  .47 -.01 .01 .17 .00 -.14 -.13 -.10 -.12 -.01 -.24 -.07 
16. RAPM .32 .31 .28 .25 .11 .19 .17 .22 -.02 -.10 -.05 .03 .47 .42 .41  .07 .07 .15 .04 -.19 -.16 -.16 -.10 .05 -.15 -.15 

Shifting                            
17. Parity-Magnitude .12 .12 .23 .06 -.11 .03 .02 .03 -.08 .04 .00 -.13 .17 .13 .10 .16  .58 .54 .39 .02 -.02 -.05 -.09 -.02 -.04 -.21 
18. Animacy-Size .00 .06 .16 .06 .06 .11 .02 .07 -.08 .12 .14 -.06 .06 .09 .06 .05 .51  .54 .49 -.03 -.12 -.12 -.19 .00 -.18 -.13 
19. Color-Shape .10 .16 .22 .11 .00 .04 .09 .12 -.06 .15 .10 .04 .13 .10 .09 .07 .51 .61  .45 -.13 -.14 -.17 -.20 .02 -.12 -.19 
20. Fill-Frame .06 -.01 .08 -.01 .10 .05 -.01 -.07 -.09 .05 .09 -.12 .09 .10 .05 .06 .39 .57 .52  -.03 -.11 -.05 -.11 .13 -.07 -.07 

Speed                            
21. Parity-Magnitude -.37 -.34 -.38 -.34 -.26 -.25 -.25 -.39 .07 .08 .13 .05 -.25 -.35 -.26 -.26 -.10 -.12 -.13 -.03  .76 .80 .73 -.14 .44 -.15 
22. Animacy-Size -.29 -.32 -.31 -.33 -.31 -.21 -.29 -.32 .10 .06 .18 .05 -.18 -.25 -.17 -.18 .01 -.12 -.10 .00 .77  .84 .81 -.11 .36 -.13 
23. Color-Shape -.37 -.35 -.34 -.35 -.30 -.26 -.26 -.36 .12 .09 .17 .09 -.25 -.32 -.15 -.21 -.04 -.14 -.16 .02 .79 .85  .83 -.05 .40 -.09 
24. Fill-Frame -.29 -.27 -.36 -.37 -.27 -.24 -.17 -.36 .12 .10 .08 .07 -.26 -.30 -.26 -.22 -.09 -.18 -.18 -.12 .71 .77 .78  -.07 .41 .00 

Inhibition                            
25. Numerical Stroop -.04 .05 -.12 -.08 .06 -.07 -.01 .04 -.06 .01 .08 .02 -.09 -.15 .03 -.09 -.07 .02 -.08 .05 -.08 -.14 -.10 -.03  .04 .05 
26. Color Stroop -.20 -.23 -.26 -.30 -.14 -.18 -.25 -.23 .08 -.03 .15 -.02 -.02 -.25 -.09 -.10 .02 -.07 -.09 .02 .43 .42 .47 .37 .05  -.04 
27. Global-Local -.10 -.08 -.11 -.09 .06 -.08 -.03 -.15 .04 -.02 -.06 .05 -.10 -.09 -.16 -.14 -.05 -.08 -.12 -.03 -.02 -.09 -.06 .04 .13 .02  
28. Simon -.06 -.02 -.10 -.27 .00 -.07 -.06 -.17 .09 .08 .21 -.11 .06 -.09 -.02 -.05 .01 .00 -.07 .00 .15 .20 .14 .21 -.03 .08 .00 

Note. Correlations at pretest are illustrated below the diagonal and correlations at posttest above.      


