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Abstract

Blind image deconvolution (BID) is one of the most important problems in image processing, and it requires the determination

of an exact image F from a degraded form of it G when little or no information about F and the point spread function (PSF)

H is known. Several methods have been developed for the solution of this problem, and one class of methods considers

F ,G and H to be bivariate polynomials in which the polynomial computations are implemented by the Sylvester or Bézout

resultant matrices. This paper compares these matrices for the solution of the problem of BID, and it is shown that it reduces

to a comparison of their effectiveness for greatest common divisor (GCD) computations. This is a difficult problem because

the determination of the degree of the GCD of two polynomials requires the calculation of the rank of a matrix, and this rank

determines the size of the PSF. It is shown that although the Bézout matrix is symmetric (unlike the Sylvester matrix) and it is

smaller than the Sylvester matrix, which has computational advantages, it yields consistently worse results than the Sylvester

matrix for the size and coefficients of the PSF. Computational examples of blurred and deblurred images obtained with the

Sylvester and Bézout matrices are shown, and the superior results obtained with the Sylvester matrix are evident.

Keywords Blind image deconvolution · Sylvester matrix · Bézout matrix

Mathematics Subject Classification 65F99 · 12Y05

1 Introduction

The removal of blur and other degradations from an image

is important because it makes its subsequent processing

for, for example, feature detection and feature extraction,

significantly easier and more reliable. Images that arise in

practical applications may suffer from degradations, which

must be removed before the images are interrogated. This

practical necessity has been a major motivation for the contin-

ued research into methods for the improvement of degraded

images.
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If the point spread function (PSF) is spatially invariant,

then the blurred image G is formed by the convolution of

the PSF H and the exact image F . If, in addition, the PSF

is known, then the determination of a deblurred form of a

blurred image reduces to linear deconvolution, which can

be solved by, for example, methods of computational linear

algebra [16]. The more difficult problem arises when there is

no information, or only partial information, about the PSF,

in which case the problem reduces to blind image decon-

volution (BID). In this circumstance, additional information

about the exact image and/or the PSF must be provided in

order to obtain a deblurred image. An example of this prior

information is the knowledge that the PSF is separable, that

is, if h(x, y) is the bivariate polynomial whose coefficients

are the pixel values of the PSF, then it can be written as the

product of its column component hc(x) and its row compo-

nent hr (y), h(x, y) = hc(x)hr (y).

The first set of methods that were used for the solution of

the problem of BID are reviewed in [17], but more recent

methods have used Bayes’ theorem, for which priors are

placed on the PSF and the exact image [3,23,26,37]. These
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methods require that the maximum a posteriori (MAP) esti-

mates F̂ and Ĥ of, respectively, F and H,

(

F̂ , Ĥ
)

= arg max
F ,H

p (F ,H|G)

= arg max
F ,H

p (G|F ,H) p (F) p (H) , (1)

minimise the error associated with the convolution opera-

tion and have sparse derivatives, which arises because many

natural images are composed of regions in which the gradi-

ents are small, with relatively few regions of high gradients.

The distribution of gradients x in F is often modelled as a

generalised Laplacian,

p(x) ∝ exp

(

−
1

2

(

|x |

σ

)α)

, 0 < α < 1,

where σ is the standard deviation of the distribution. This

distribution is frequently called a natural image prior because

of its satisfaction by many natural images, and its imposition

as a prior concentrates gradients at a small number of pixels.

The condition α = 2 yields the Gaussian distribution, but

this prior does not yield a good deblurred image.

The simultaneous MAP estimate of F and H is ill-

posed, and it is better to calculate the MAP estimate of

H by marginalisation over all possible images F because

this yields a better conditioned problem, and then calcu-

late the MAP estimate of F [18,19]. The calculation of the

MAP estimate of H leads, however, to an intractable inte-

gral, but it is shown that an approximation can be made.

This approximation yields a solution of (1) that uses the

expectation–maximisation (EM) algorithm, which consists

of two steps, the E-step and the M-step, that alternate until

convergence is achieved. The E-step requires that a prior

be placed on H and a non-blind deconvolution problem be

solved, which allows an estimate F̃ of F to be calculated.

The M-step involves the calculation of an improved estimate

of H, using the estimate F̃ of the exact image. The E- and M-

steps are then invoked again, using the most recent estimates

of H and F , and the process is repeated until convergence

occurs. The first step in the EM algorithm requires that a

prior be placed on H, and a uniform distribution is usually

assumed [18,26], but this is not realistic [19].

The image processing toolbox in Matlab has four func-

tions that deblur an image:

1. deconvreg.m: Regularisation of a linear algebraic

equation

2. deconvwnr.m: The Wiener filter

3. deconvlucy.m: The Lucy–Richardson algorithm

4. deconvblind.m: Maximum likelihood estimation

The functionsdeconvreg.m,deconvwnr.m anddeco-

nvlucy.m solve the problem of semi-blind image decon-

volution because the PSF is specified as an input argument to

these functions. The edges of the deblurred image obtained

with these three functions may show ringing, which can be

reduced by calling the function edgetaper.m before the

deblurring function is called. The function edgetaper.m

requires the PSF as one of its arguments, and it can therefore

only be used for solving the problem of semi-blind image

deconvolution.

The function deconvblind.m is different because only

an estimate of the PSF, rather than the exact PSF, need be

specified as an input argument, but the computed PSF is very

dependent on the estimate of its size, and less by the entries

of the matrix that defines it. A comparison of these four func-

tions and the Sylvester resultant matrix for the computation

of a deblurred image is in [30,31], and it is noted in [15] that

the best deblurred image obtained from the four functions

requires visual inspection of several deblurred images that

differ in the values of the input arguments, for example, the

number of iterations and the noise power.

A different problem is solved in this paper because prior

information on the PSF is not assumed (apart from the

property of spatial invariance), and thus both the size and

coefficients of the PSF are calculated. The method of image

deblurring described in this paper considers F ,G and H

to be bivariate polynomials, and deblurring is achieved by

performing polynomial computations on G and H. This

approach is justified by the convolution operation, which

defines the multiplication of two polynomials and the for-

mation of a blurred image by a spatially invariant PSF. It

therefore follows that if the pixel values of F ,G and H are

the coefficients of their polynomial forms, f (x, y), g(x, y)

and h(x, y), respectively, then g(x, y) = f (x, y)h(x, y).

The polynomial computations are implemented by resultant

matrices, of which there are several types, but only the Bézout

matrix [12,20,21] and the Sylvester matrix [11,22,24,30,31]

have been used for image deblurring. Section 2 contains a

comparison of these matrices for greatest common divisor

(GCD) computations, which are required for the determina-

tion of the size of the PSF and the solution of the problem of

BID. The application of these matrices to image deblurring

is considered in Sect. 3 and it is shown that, as for GCD com-

putations, the Sylvester matrix yields better results than the

Bézout matrix. Section 4 contains a summary of the paper.

The computations in all the examples were performed

using Matlab (64 bits).

2 Resultant Matrices and GCD Computations

It was stated in Sect. 1 that the convolution operation is com-

mon to polynomial multiplication and the formation of a
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blurred image by a spatially invariant PSF. The equivalence

of these operations is now summarised, and more details are

in [30]. In particular, if the PSF is separable, then only one

blurred image G is required for its determination, and this

allows a deblurred form of G to be computed. The calculation

of the PSF requires two GCD computations, one computa-

tion for the degree and coefficients of the column component

hc(x) of the PSF and one computation for the degree and

coefficients of the row component hr (y) of the PSF, and

the PSF is equal to hc(x)hr (y). A deblurred image is then

obtained by two deconvolution computations, where the first

computation yields a partially deblurred image F̃ by decon-

volving hc(x) (hr (y)) from the given blurred imageG, and the

second computation yields a fully deblurred image by decon-

volving hr (y) (hc(x)) from F̃ . The GCD computations can

be implemented by resultant matrices, of which the Sylvester

and Bézout are the most popular, and the deconvolution com-

putation reduces to the solution of a linear algebraic equation

whose coefficient matrix is Toeplitz. Both these computa-

tions are ill-posed and thus noise, which is present in all

images, makes the computation of their improved forms

difficult. In particular, the presence of noise implies it is nec-

essary to consider an approximate greatest common divisor

(AGCD), rather than the GCD, of two polynomials [36]. It

is, however, convenient to consider the Sylvester and Bézout

resultant matrices for the computation of the GCD of two

exact polynomials, and to defer a discussion of their use for

the computation of an AGCD of two noisy polynomials to

Sect. 3, which considers the application of resultant matrices

to image deblurring.

The Bézout matrix B( f , g) of two polynomials f (y) and

g(y), which are of degrees m and n, m ≥ n, respectively,

f (y) =

m
∑

i=0

ai ym−i and g(y) =

n
∑

i=0

bi yn−i , (2)

is used for GCD computations [4] and image deblurring [12,

20,21]. The matrix B( f , g) is defined by

f (x)g(y) − f (y)g(x)

x − y

=
[

xm−1 xm−2 · · · 1
]

B( f , g)

⎡

⎢

⎢

⎢

⎣

ym−1

ym−2

...

1

⎤

⎥

⎥

⎥

⎦

,

from which it follows that it is square and symmetric, and of

order m. It is clear that if f (y) and g(y) are redefined as

f ∗(y) =

m
∑

i=0

ai yi and g∗(y) =

n
∑

i=0

bi yi ,

respectively, then

B( f , g) = J B( f ∗, g∗)J ,

where J is the reverse unit matrix of order m.

The Sylvester matrix S( f , g) of f (y) and g(y) is square

and of order m + n,

S( f , g) =
[

C( f ) D(g)
]

, C( f ) ∈ R
(m+n)×n,

D(g) ∈ R
(m+n)×m,

where C( f ) and D(g) are Toeplitz matrices whose entries

are the coefficients of f (y) and g(y), respectively [4],

C( f ) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

a0

a1

. . .

.

.

.
. . . a0

am−1

.

.

. a1

am
. . .

.

.

.

. . . am−1

am

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, D(g) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

b0

b1

. . .

.

.

.
. . . b0

bn−1

.

.

. b1

bn
. . .

.

.

.

. . . bn−1

bn

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

(3)

Theorem 1 shows that the degree and coefficients of the GCD

of f (y) and g(y) can be computed from the QR decomposi-

tion of their Sylvester matrix [8, Theorems 2.5.2 and 2.5.3]

and Bézout matrix [8, Theorems 2.6.7 and 2.6.11]. Theo-

rem 2 shows that the degree and coefficients of the GCD of

f (y) and g(y) can also be calculated from the leading prin-

cipal submatrices of their Bézout matrix [5, Algorithm 9.1]

and [8, Corollary 2.7.6 and Algorithm Bézout GCD].

Theorem 1 Let the degree of the GCD of f (y) and g(y),

which are defined in (2), be d. Let Q B RB be the QR decom-

position of B( f , g) and let QS RS be the QR decomposition

of S( f , g). Then the rank loss of B( f , g) and S( f , g) is

equal to d,

rank B( f , g) = m − d and rank S( f , g) = m + n − d, (4)

and the coefficients of the GCD are in the last non-zero rows

of RB and RS .

Theorem 2 Let Bk( f , g) be the k × k leading principal sub-

matrix of B( f , g). The degree of the GCD of f (y) and g(y)

is equal to d if and only if the following two conditions are

satisfied:

det Bk( f , g) = 0, k = m − d + 1, . . . , m,

det Bk( f , g) �= 0, k = m − d.
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The coefficients of the GCD are obtained from computations

on the solution x of the equation Bm−d x = d, where the

entries of d are functions of the coefficients of f (y) and g(y).

Theorem 3 shows that the GCD of f (y) and g(y) can also

be computed from their Sylvester matrix and its subresul-

tant matrices Sk( f , g), k = 1, . . . , min(m, n), S1( f , g) =

S( f , g), where the subresultant matrices are obtained by the

deletion of rows and columns from S( f , g). Examples of

this computation when f (y), g(y) and their GCD contain

multiple roots of high degree are in [32,33].

Theorem 3 Let f (y) and g(y) be real polynomials of degrees

m and n, respectively, and let S( f , g) be their Sylvester

matrix. Let Sk( f , g), which is of order (m + n − k + 1) ×

(m + n − 2k + 2), be the kth Sylvester subresultant matrix,

k = 1, . . . , min(m, n), where S1( f , g) = S( f , g). The

degree d of their GCD is equal to the largest value of k

for which Sk( f , g) is rank deficient,

rank Sk( f , g) < m + n − 2k + 2, k = 1, . . . , d,

rank Sk( f , g) = m + n − 2k + 2, k = d + 1, . . . , min(m, n).

(5)

The coefficients of the coprime polynomials lie in the null

space of Sd( f , g).

Proof Since the degree of the GCD of f (y) and g(y) is d,

there exist quotient polynomials uk(y) and vk(y), and a com-

mon divisor polynomial tk(y), such that

tk(y) =
f (y)

uk(y)
=

g(y)

vk(y)
,

deg vk < deg g = n, deg uk < deg f = m, (6)

for k = 1, . . . , d, where

uk(y) =

m−k
∑

i=0

uk,i ym−k−i , vk(y) =

n−k
∑

i=0

vk,i yn−k−i ,

tk(y) =

k
∑

i=0

dk,i yk−i .

It follows from (6) that

vk(y) f (y) = uk(y)g(y), k = 1, . . . , d, (7)

and if uk(y) and vk(y) are equal to the zero polynomial for

k = d + 1, . . . , min(m, n), because deg GCD ( f , g) = d,

uk(y) ≡ 0 and vk(y) ≡ 0, k = d + 1, . . . , min(m, n),

(8)

then (7) and (8) can be written in matrix form as

[

Ck( f ) Dk(g)
]

[

vk

−uk

]

= Sk( f , g)

[

vk

−uk

]

= 0,

k = 1, . . . , min(m, n), (9)

where

uk =
[

uk,0 uk,1 · · · uk,m−k−1 uk,m−k

]T
∈ R

m−k+1,

vk =
[

vk,0 vk,1 · · · vk,n−k−1 vk,n−k

]T
∈ R

n−k+1,

Ck( f ) ∈ R
(m+n−k+1)×(n−k+1) and Dk(g) ∈

R
(m+n−k+1)×(m−k+1) are Toeplitz matrices of the form (3),

and

Sk( f , g) =
[

Ck( f ) Dk(g)
]

, (10)

is the kth Sylvester subresultant matrix. The vectors uk and

vk in (9) satisfy

uk �= 0, vk �= 0, k = 1, . . . , d,

uk = 0, vk = 0, k = d + 1, . . . , min(m, n),

because the polynomials f (y) and g(y) possess common

divisors of degrees 1, . . . , d, but they do not possess a com-

mon divisor of degree k > d. The result (5) follows from (9).

�

Theorem 2 does not assign a value to, or limits on the

values of, det Bk( f , g) for k = 1, . . . , m − d − 1. This must

be compared with Theorem 3, which distinguishes between

the singular and non-singular subresultant matrices Sk( f , g)

for all values of k and therefore allows the value of k for which

a change from singularity to non-singularity, as k increases,

to be calculated. This property of the subresultant matrices

is used in Sect. 3 to determine the size of the PSF that is used

to blur an image.

Table 1 lists some differences between the Sylvester

matrix S( f̃ , g̃) and Bézout matrix B( f̃ , g̃) of the polyno-

mials f̃ (y) and g̃(y),

f̃ (y) =

m
∑

i=0

ãi ym−i and g̃(y) =

n
∑

i=0

b̃i yn−i . (11)

The properties of the Sylvester and Bézout matrices in

Table 1 suggest that the Bézout matrix is preferred to the

Sylvester matrix [28]. This preference is clear for the GCD

computations in image deblurring, which require that m = n

and thus the Bézout matrix is half the size of the Sylvester

matrix for this application, and it is also symmetric. Also,

Boito [8, page 84] notes that the computation of the GCD of

f (y) and g(y) using the QR decomposition of S( f , g) and

B( f , g) may miss large common roots, and that this problem
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Table 1 The properties of the

Sylvester matrix S( f̃ , g̃) and

Bézout matrix B( f̃ , g̃), where

f̃ (y) and g̃(y), which are of

degrees m and n, respectively,

are defined in (11)

Property Sylvester matrix S( f̃ , g̃) Bézout matrix B( f̃ , g̃)

Size (m + n) × (m + n) max(m, n) × max(m, n)

Symmetric No Yes

Additive Yes: S( f̃1, g̃1) + S( f̃2, g̃2) No: B( f̃1, g̃1) + B( f̃2, g̃2)

= S( f̃1 + f̃2, g̃1 + g̃2) �= B( f̃1 + f̃2, g̃1 + g̃2)

Entry (p, q) ãi or b̃ j or zero
∑

i, j (ãi b̃ j − ã j b̃i )

Structure
[

T1( f̃ ) T2(g̃)
]

; T1, T2 Toeplitz Every entry is a bilinear term

The polynomials f̃1(y) and f̃2(y) are of the same degree, and similarly, the polynomials g̃1(y) and g̃2(y) are

of the same degree

affects the Sylvester matrix more than the Bézout matrix. It is

shown, however, in [33] that significantly improved results

are obtained with the Sylvester matrix and its subresultant

matrices Sk( f , g), k = 1, . . . , min(m, n), if f (y) and g(y)

are processed by three operations before computations are

performed on these matrices:

1. Normalisation Equation (10) shows that the coefficients

of f (y) and g(y) are decoupled in Sk( f , g) because they

occupy, respectively, its first n − k + 1 columns and last

m − k + 1 columns. If the coefficients of g(y) are much

larger than the coefficients of f (y), then the left par-

tition Ck( f ) is approximately equal to the zero matrix

with respect to the right partition Dk(g). This imbalance

between the partitions of Sk( f , g) can lead to incorrect

results for GCD computations, and thus the first prepro-

cessing operation is the normalisation of the coefficients

of f (y) and g(y) in order to balance the left and right

partitions of Sk( f , g).

2. Scale g(y) by a ConstantThe GCD of two polynomials is

defined up to an arbitrary non-zero constant α, and thus

GCD ( f , g) ∼ GCD ( f , αg), α ∈ R\0,

where ∼ denotes equivalence to within an arbitrary non-

zero constant. The matrices Sk( f , g) are therefore written

as

Sk( f , αg) =
[

Ck( f ) αDk(g)
]

, ‖ f ‖2 = ‖g‖2 = 1,

where α is a constant whose optimal value is determined

from the solution of a linear programming problem. This

issue is discussed below.

3. Scale the Independent Variable Computations on matri-

ces whose entries vary widely in magnitude may cause

numerical problems, and it is therefore desirable to min-

imise the ratio r of the maximum entry to the minimum

entry of Sk( f , αg), for every value of k. This is accom-

plished by the substitution y = θw in (2), where w is the

new independent variable and θ is a parameter. It is shown

in [33] that α0 and θ0, the optimal values of α and θ , are

chosen to minimise r , and that they are the solution of a

linear programming problem. Furthermore, these optimal

values are valid for all values of k = 1, . . . , min(m, n),

and thus the linear programming problem need only be

solved once.

The application of these three preprocessing operations to

the polynomials f (y) and g(y) in (2) yields the polynomi-

als f̄ (w) and α0 ḡ(w) whose coefficients are āiθ
m−i
0 , i =

0, . . . , m, and α0b̄ jθ
n− j
0 , j = 0, . . . , n, respectively,

f̄ (w) =

m
∑

i=0

(

āiθ
m−i
0

)

wm−i

and

α0 ḡ(w) = α0

n
∑

j=0

(

b̄ jθ
n− j
0

)

wn− j ,

where āi and b̄ j are the normalised coefficients of f (y) and

g(y), respectively. All computations are performed on the

Sylvester matrix and its subresultant matrices Sk( f̄ , α0 ḡ),

k = 1, . . . , min(m, n), and the importance of these oper-

ations for GCD computations with the Sylvester matrix is

shown in [32,33]. They are also required for the computation

of multiple roots of a polynomial, where the multiplicities of

its distinct roots are obtained by a series of GCD computa-

tions and polynomial deconvolutions [29,34].

Examples 1 and 2 consider Theorems 1, 2 and 3 for the

calculation of the degree of the GCD of two polynomials.

Example 1 Consider the polynomials f (y) and g(y) whose

GCD is of degree d = 9,

f (y) = (y + 2)2(y + 1)2(y − 1)3(y − 3)(y − 5)3(y − 7),

and

g(y) = (y + 2)4(y − 1)3(y − 3)(y − 5)3(y − 8),
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and for which m = 12. Noise δai and δb j was added to the

coefficients ai and b j of, respectively, f (y) and g(y),

δai = εri ai , i = 0, . . . , 12,

and

δb j = εr j b j , j = 0, . . . , 12,

where ε = 10−5, and ri and r j are uniformly distributed ran-

dom variables in the interval [− 1, 1]. Figure 1 shows the nor-

malised singular values of B( f , g), with and without noise,

and it is seen that, in the absence of noise, the rank of B( f , g)

is equal to 3, as required from (4) because m = 12 and d = 9.

The figure also shows that the addition of noise causes a sig-

nificant deterioration in the results because the maximum

change (about four orders of magnitude) in the normalised

singular values occurs between i = 3 and i = 4, but this

change is significantly smaller than in the absence of noise.

Theorem 2 requires that the rank of the principal sub-

matrices of B( f , g) be considered and Fig. 2 shows the

variation of the condition number κ (Bk( f , g)) of Bk( f , g)

with the order k of the submatrix, with and without noise. It

is seen that, in the absence of noise, it decreases slowly for

k = 12, 11, . . . , 5, 4, and that there is a significant change

in κ (Bk( f , g)) between k = 4 and k = 3. Theorem 2 sug-

gests, therefore, that the value of d is given by m − d = 3,

that is, d = 9, which is correct. The condition number

of B3( f , g) is approximately equal to 105, which is large,

but many orders of magnitude smaller than the values of

κ (Bk( f , g)) , k = 4, . . . , 12. Figure 2 shows that the degree

of the GCD of f (y) and g(y) cannot be determined in the

presence of noise.

Figure 3 shows the normalised singular values of S( f̄ ,

α0 ḡ), with and without noise. In both cases, the maximum

change in the normalised singular values occurs from i = 15

to i = 16, and thus the computed degree of the GCD is d = 9,

which is correct. Figure 4 shows the condition number of

each Sylvester subresultant matrix Sk( f̄ , α0 ḡ) and it is seen

that, in the presence of noise, the maximum change in the

condition number, about four orders of magnitude, occurs

from k = 9 to k = 10, and thus the computed degree of the

GCD is correct. �

Example 2 The Sylvester matrix and subresultant matrices,

and the Bézout matrix and principal submatrices, of the poly-

nomials

f (y) = 6y13 + 44y11 + 138y9 + 120y7

−6y6 − 39y4 − 110y2 − 74,

and

g(y) = 2y11 + 12y9 + 30y7 − 2y4 − 11y2 − 26,

were formed and the procedure described in Example 1 was

followed, except that noise was not added to the polynomials.

Figure 5 shows the normalised singular values of B( f , g),

and it is seen that the degree of the GCD of f (y) and g(y) is

four, and that this rank deficiency is clearly defined. Figure 6

shows the variation of the condition number of the princi-

pal submatrices Bk( f , g) with k, but a conclusion cannot be

drawn from the graph.

Figure 7 shows the normalised singular values of the

Sylvester matrix S( f̄ , α0 ḡ), and Fig. 8 shows the condition

numbers of the Sylvester matrix and its subresultant matrices

Sk( f̄ , α0 ḡ), k = 1, . . . , 11. These figures are consistent with

Fig. 5 because they show that the degree of the GCD of f (y)

and g(y) is four. Furthermore, the rank deficiency is clearly

defined in Figs. 5, 7 and 8, which must be compared with the

unsatisfactory result in Fig. 6.

Fig. 1 The normalised singular

values σi /σ1 of B( f , g) against

i , with and without noise, for

Example 1
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Fig. 2 The condition number of

Bk( f , g) against k, with and

without noise, for Example 1

Fig. 3 The normalised singular

values σi /σ1 of S( f̄ , α0 ḡ)

against i , with and without

noise, for Example 1

Fig. 4 The condition number of

Sk( f̄ , α0 ḡ) against k, with and

without noise, for Example 1
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Fig. 5 The normalised singular

values σi /σ1 of B( f , g) against

i for Example 2

Fig. 6 The condition number of

Bk( f , g) against k for

Example 2

Fig. 7 The normalised singular

values σi /σ1 of S( f̄ , α0 ḡ)

against i for Example 2
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Fig. 8 The condition number of

Sk( f̄ , α0 ḡ) against k for

Example 2

The polynomials f (y) and g(y) are, however, coprime,

and Table 2 shows they have four very close roots. It there-

fore follows that B( f , g) and S( f , g) are, from theoretical

considerations, non-singular, and the proximity of four roots

of f (y) to four roots of g(y) manifests itself in the near-

singularity of these matrices, with a rank loss of four, that

is, these matrices are numerically singular. This distinction

between the theoretical result, B( f , g) and S( f , g) are non-

singular, and the computational result, B( f , g) and S( f , g)

are numerically singular with a rank loss of four, can be

quantified by calculating the relative separation of the roots

in Table 2. In particular, if α1 and α2 are the roots of f (y)

with positive imaginary parts,

α1 = −0.660248786 + 1.85420355i,

α2 = 0.661093255 + 1.85335080i,

and β1 and β2 are the roots of g(y) with positive imaginary

parts,

β1 = −0.660249099 + 1.85420406i,

β2 = 0.661093571 + 1.85335129i,

then the relative separation of α1 and β1, and their complex

conjugates, is

|α1 − β1|

0.5 |α1 + β1|
= 3.04 × 10−7.

Similarly, the relative separation of α2 and β2, and their com-

plex conjugates, is equal to 2.96 × 10−7. �

The singular value decomposition (SVD) was used in

Examples 1 and 2 to calculate the degree of the GCD of

two polynomials, but it is computationally expensive. Fur-

thermore, it will be shown in Example 4 that the calculation

Table 2 Four of the roots of f (y) and four of the roots of g(y), for

Example 2

Four roots of f (y) Four roots of g(y)

− 0.660248786 ± 1.85420355i − 0.660249099 ± 1.85420406i

0.661093255 ± 1.85335080i 0.661093571 ± 1.85335129i

of the size of a separable PSF requires 25 GCD computa-

tions in each direction, which implies that a large number of

SVDs must be computed. It is therefore desirable to consider

computationally cheaper methods for the calculation of the

size of the PSF. Sections 2.1 and 2.2 consider, respectively,

methods for the computation of the degree and coefficients

of the GCD of two polynomials.

2.1 The Degree of the GCD of Two Polynomials

The Sylvester and Bézout matrices require different methods

for the calculation of the degree of the GCD of two polyno-

mials and they are therefore considered separately.

Theorem 1 shows that the degree d of the GCD of f (y)

and g(y) can be calculated from the rank loss of the Sylvester

matrix S( f , g), and Theorem 3 shows that d can also be cal-

culated from the change from singularity to non-singularity

of the Sylvester subresultant matrices. These methods require

the SVD, but the presence of noise may lead to a signif-

icant deterioration in the results, as shown in Examples 1

and 2, because the small singular values of a matrix A are

sensitive to perturbations in A. Also, the SVD is cubic in

complexity and its application to each subresultant matrix in

Theorem 3 is therefore expensive. This theorem can, how-

ever, be implemented efficiently by the QR decomposition,

which is cubic in complexity, of S( f , g), and the QR decom-

position of each subresultant matrix is then computed using
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its update formula, which is quadratic in complexity [14],

because Sk+1( f , g) is formed by the deletion of two columns

and one row from Sk( f , g). The calculation of the degree of

the GCD therefore reduces to the calculation of the singular

or non-singular nature of each subresultant matrix Sk( f , g)

from the upper triangular matrix Rk , where Qk Rk is the QR

decomposition of Sk( f , g).

Care must be exercised when the QR decomposition is

used to compute the rank r of a matrix A ∈ R
p×q , p ≥

q, because if the QR decomposition of AΠ , where Π is a

permutation matrix, is

AΠ = QR = Q

[

R11 R12

R22

]

,

where R22 ∈ R
r×r , then σq−r+1 ≤ ‖R22‖2 where σi is the

i th singular value of A and the singular values are arranged in

non-increasing order. It follows that if ‖R22‖2 is small, then

A has r small singular values, but the converse is not true

because it does not follow that, even with column pivoting,

the existence of r small singular values implies that ‖R22‖2

is small. Although ‖R22‖2 cannot be used to calculate the

rank of AΠ , Example 3 shows that the rank of Sk( f̄ , α0 ḡ)

can be calculated from the row sums and diagonal entries of

Rk , where Sk( f̄ , α0 ḡ) = Qk Rk .

Example 3 Let the degrees of the polynomials p(y) and

q(y) be 150 and 200, respectively, and let their coefficients

be uniformly distributed random variables in the ranges

[− 10, 10] and [− 10, 20], respectively. The polynomial d(y)

is of degree 70, its coefficients are uniformly distributed

random variables in the range [− 30, 30], and it satisfies

d(y) = GCD ( f , g), where f (y) are g(y) are defined by

f (y) = p(y)d(y) and g(y) = q(y)d(y).

The polynomials f̄ (w) and α0 ḡ(w) were obtained by apply-

ing the preprocessing operations to f (y) and g(y), as

described in Sect. 2. Figures 9 and 10 show, respectively,

the diagonal entries of Rk and the row sums of Rk for

k = 1, . . . , 220. The points that define the subresultant

matrix indexed by k = 70 are marked in the figures, and

it is seen that they can, in principle, be used to determine the

degree of the GCD of f (y) and g(y). The figures also show

that the diagonal entries and row sums of Rk have structure.

�

Example 3 shows that the degree d of the GCD of f (y)

and g(y) (or equivalently, the degree of the GCD of f̄ (w) and

ḡ(w)) requires the calculation of λk , the difference between

the maximum diagonal entry and the minimum diagonal

entry of Rk , and μk , the difference between the maximum

row sum and the minimum row sum of Rk ,

λk = max
i

log10

∣

∣Rk,i,i

∣

∣ − min
i

log10

∣

∣Rk,i,i

∣

∣ , (12)

μk = max
i

log10

∑

j

∣

∣Rk,i, j

∣

∣ − min
i

log10

∑

j

∣

∣Rk,i, j

∣

∣ , (13)

for k = 1, . . . , min(m, n), where Rk,i, j is entry (i, j) of Rk .

Figures 9 and 10 show that d is defined by the maximum

change in λk and μk between successive values of k,

d =

{

arg maxk(λk − λk+1), k = 1, . . . , min(m, n) − 1,

arg maxk(μk − μk+1), k = 1, . . . , min(m, n) − 1.

These methods of calculating d from the Sylvester resultant

matrix and its subresultant matrices are heuristic and they

are not mathematically rigorous. They are, however, justified

by computational experiments, which show that they lead to

good results for GCD computations. Also, Example 4 shows

that good results are obtained when they are used to calculate

the size of the PSF from a blurred image in the presence of

added noise and uncertainty in the PSF.

Example 1 shows that the SVD cannot be used to calcu-

late the degree of the GCD of two polynomials from their

Bézout matrix B( f , g) and its leading principal submatri-

ces Bk( f , g) because it yields unsatisfactory results when

the polynomials are perturbed by noise. Furthermore, Exam-

ple 2 shows that, even in the absence of added noise, the

matrices Bk( f , g) may return unsatisfactory results. These

issues are addressed in Sect. 2.3.

2.2 The Coefficients of the GCD of Two Polynomials

The computation of the coefficients of the GCD of f (y) and

g(y) from their Sylvester matrix is considered initially, after

which the Bézout matrix is considered for this computation.

It is assumed that the degree d of the GCD has been cal-

culated, and that the polynomials have been preprocessed, as

discussed in Sect. 2, thereby yielding the polynomials f̄ (w)

and α0 ḡ(w). The calculation of the coefficients of t̄(w), the

GCD of f̄ (w) and α0 ḡ(w), is addressed for Bernstein basis

polynomials in [9], and the same method can be used for

power basis polynomials. In particular, Theorem 3 shows that

Sd( f̄ , α0 ḡ), which is of order (m+n−d+1)×(m+n−2d+

2), has unit rank loss and (9) shows that the coprime polyno-

mials v̄d(w) and ūd(w) lie in the null space of Sd( f̄ , α0 ḡ).

There is therefore one equation that defines the linear depen-

dence of the columns of Sd( f̄ , α0 ḡ), and if the pth column of

Sd( f̄ , α0 ḡ) is one of these linearly dependent columns and

it is denoted by b, then the homogeneous equation (9) can be

written as

Ād x̄ ≈ b̄, Ād = Ād( f̄ , α0 ḡ) ∈ R
(m+n−d+1)×(m+n−2d+1),

(14)
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Fig. 9 The magnitudes of the

diagonal entries Rk(i, i) for

Example 3

Fig. 10 The row sums of Rk for

Example 3

where it follows from (10) that the coefficient matrix Ād is

formed by the concatenation of two Toeplitz matrices and the

subsequent removal of the pth column, the = is replaced by

an ≈ because it is assumed that f (y) and g(y) (and there-

fore f̄ (w) and ḡ(w)) are corrupted by added noise and they

therefore have an AGCD, not a GCD,

x̄ =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̄1

...

x̄ p−1

x̄ p+1

...

x̄m+n−2d+2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

x̄1

...

x̄ p−1

−1

x̄ p+1

...

x̄m+n−2d+2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

=

[

v̄d

−ūd

]

,

and v̄d and ūd are vectors that contain the coefficients of the

coprime polynomials v̄d(w) and ūd(w),

f̄ (w) ≈ ūd(w)t̄(w) and α0 ḡ(w) ≈ v̄d(w)t̄(w).

The structure of Ād allows (14) to be replaced by

( Ād + Ēd)x̃ = b̄ + ē, Ēd ∈ R
(m+n−d+1)×(m+n−2d+1),

(15)

where Ēd has the same structure as Ād , and ē has the

same structure as b̄, from which it follows that a structure-

preserving matrix method is used to compute its solution, that

is, the matrix Ēd and the vectors ē and x̃ [25]. The solution

is under-determined but it is shown in [9] that the addition of

a constraint allows a unique solution to be computed.

The approximation (14) and the exact equation (15) can

be interpreted in terms of polynomial computations. In par-

ticular, it follows from (7) that (14) is equivalent to the

approximate equality of two deconvolutions,

f̄ (w)

ūd(w)
≈

α0 ḡ(w)

v̄d(w)
,

and (15) is obtained by the addition of the polynomials

δ f̄ (w), α0δḡ(w), δūd(w) and δv̄d(w) to f̄ (w), α0 ḡ(w),
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ūd(w) and v̄d(w), respectively, such that the approximate

deconvolutions are replaced by exact deconvolutions,

f̄ (w) + δ f̄ (w)

ūd(w) + δūd(w)
=

α0 (ḡ(w) + δḡ(w))

v̄d(w) + δv̄d(w)
,

where the entries of Ēd and ē in (15) are the coefficients of

δ f̄ (w) and α0δḡ(w), and the entries of x̃ are the coefficients

of the coprime polynomials ūd(w) + δūd(w) and v̄d(w) +

δv̄d(w).

The solution of (15) yields the corrected polynomials

f̃ (w) and g̃(w), and the corrected coprime polynomials

ũd(w) and ṽd(w),

f̃ (w) = f̄ (w) + δ f̄ (w), g̃(w) = α0 (ḡ(w) + δḡ(w)) ,

ũd(w) = ūd(w) + δūd(w), ṽd(w) = v̄d(w) + δv̄d(w).

These corrected polynomials allow an AGCD t̃(w) to be

computed,

[

T (ũd )

T (ṽd )

]

t̃ =

[

f̃

g̃

]

, T (ũd )∈R
(m+1)×(d+1), T (ṽd )∈R

(n+1)×(d+1),

where T (p) is a Toeplitz matrix whose entries are the coef-

ficients of the polynomial p(w), and t̃, f̃ and g̃ are vectors

of the coefficients of t̃(w), f̃ (w) and g̃(w), respectively.

Consider now the computation of the coefficients of the

GCD t(y) of f (y) and g(y) from their Bézout matrix

B( f , g). The preprocessing operations that are necessary for

the Sylvester matrix are not required for the Bézout matrix

and computations can therefore be performed directly on

B( f , g). The simplest method requires the QR decompo-

sition of B( f , g) because the coefficients of t(y) are in the

last non-zero row of the upper triangular matrix R [8, The-

orem 2.6.11]. Another method requires the solution of the

equation Ax = b where A is a square symmetric matrix

of order m − d [5, Algorithm 9.1]. This method is used in

[20,21] to calculate the size of a separable PSF from a blurred

image, and these two methods (the QR decomposition and

the solution of Ax = b) are compared in Example 5 for the

computation of a deblurred image. Finally, it is noted that the

Bézout matrix does not satisfy an equation that is similar to

(15) because, as stated in Table 1, its entries are bilinear, not

linear.

2.3 Comparison of the Sylvester and Bézout
Matrices for AGCD Computations

Some properties of the Sylvester and Bézout matrices are

stated in Table 1, and the smaller size and symmetry of

the Bézout matrix suggest it is preferred to the Sylvester

matrix for AGCD computations. Numerical experiments

show, however, that the Sylvester matrix yields better results

because it is less sensitive to noise than the Bézout matrix,

that is, the Sylvester matrix returns the correct degree of

the GCD, and coefficients with a small backward error,

for much higher noise levels than the Bézout matrix. The

Bézout matrix B( f , g) may yield poor results because each

of its entries requires one or more computations of the form
∑

i, j (ai b j − a j bi ), which results in a large error, due to

floating point cancellation, when
∣

∣ai b j − a j bi

∣

∣ ≪ 1 [7]. Fur-

thermore, this error is significant in the presence of additive

noise, which is much larger than the error due to floating

point cancellation. By contrast, each non-zero entry of the

Sylvester matrix is either ai or b j , and thus this error does

not occur. This problem also arises when computations are

performed on the Bézout matrix of polynomials expressed in

the Bernstein basis [35], and the results in this paper show that

if f (y) and g(y) are processed before their Sylvester matrix

is formed, as discussed in Sect. 2, then the Sylvester matrix

yields significantly better results than the Bézout matrix.

Figures 2 and 6 are consistent with the results of other

examples considered by the authors, and with the result of

Bini and Gemignani [6], who obtain very large condition

numbers of the leading principal submatrices Bk( f , g). Their

results also show that the ratio of the smallest singular val-

ues of two successive leading principal submatrices exhibits

dramatic changes, such that computations based on these sin-

gular values are unreliable. These results imply that GCD

computations that require the leading principal submatrices

of B( f , g) are prone to numerical instability and they are

therefore not recommended.

3 Resultant Matrices and Image Deblurring

This section considers the Sylvester and Bézout matrices for

the solution of the problem of BID in order to determine if

the Sylvester matrix yields better deblurred images than the

Bézout matrix.

The authors of [20,21] claim they successfully solved the

problem of BID by computing a deblurred image using the

Bézout matrix. It is assumed in these references that the same

image F is blurred by two different PSFs, H1 and H2, thereby

yielding the blurred images G1 and G2,

G1 = F ∗ H1 + N1 and G2 = F ∗ H2 + N2, (16)

where N1 and N2 are the noise samples added to the first

and second blurred images, respectively, and ∗ denotes con-

volution. These equations can be expressed in polynomial

form,

g1(x, y) = f (x, y)h1(x, y) + n1(x, y),

g2(x, y) = f (x, y)h2(x, y) + n2(x, y),
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from which it follows that f (x, y) (the exact image, which

is to be computed) is an AGCD of g1(x, y) and g2(x, y) (the

given blurred images) if h1(x, y) and h2(x, y) (the PSFs) are

coprime polynomials. It is shown in [20,21] that these bivari-

ate polynomial computations can be reduced to a series of

univariate polynomial AGCD computations, from which a

deblurred image can be calculated, using the leading prin-

cipal submatrices of the Bézout matrix. The authors claim

good results for these computations, despite its numerical

problems, which are discussed in Sect. 2. The Matlab code

(which is referenced in [20,21]) was therefore examined, and

it is clear that the authors hardcode the size of the PSF as argu-

ments of the function that deblurs the images, that is, the size

of the PSF is defined, not calculated. It therefore follows that

these authors solve the problem of semi-blind deconvolution

because they calculate only the coefficients of the PSF, and

they do not calculate its size. This semi-blind deconvolution

problem is significantly easier than the totally blind deconvo-

lution problem because the calculation of the size of the PSF

is not trivial since it reduces to the calculation of the (numer-

ical) rank of a matrix whose entries are corrupted by noise.

A separable Gaussian PSF is used in [20,21], and compar-

ison of the Sylvester and Bézout matrices for BID therefore

requires that a PSF that satisfies this property be used. This

property is not realistic for practical problems, but it is the

simplest form of a PSF because a deblurred image can be

calculated from one blurred image [30,31], and the com-

putations are simplified because the Fourier transform is not

required. By contrast, two blurred images are required for the

computation of a non-separable PSF, and the Fourier trans-

form is used to reduce the two-dimensional BID problem

to two sets of GCD computations on univariate polynomi-

als. This approach is used in [22,24], but the signal-to-noise

ratios (SNRs) of the images in the examples in these ref-

erences are 50 dB and 45 dB, respectively, which are very

large values of the SNR of an image. Experimental results

by the authors of this paper showed that the solution of the

BID problem for a non-separable PSF degrades rapidly in the

presence of noise because of the use of the Fourier transform

in the computations, and it is suggested that this deteriora-

tion is the reason for the very high SNRs in the examples in

[22,24]. Since the objective of this paper is a comparison of

the Sylvester and Bézout matrices for BID, it is necessary to

remove all sources of error that could make the analysis and

interpretation of the results difficult. It therefore follows that,

for the purposes of this paper, it is necessary to consider a

separable PSF. Furthermore, this comparison is included in

Example 4, for which the SNR of the blurred and noisy image

is 12 dB, and Example 7 shows that a weakly non-separable

PSF can be approximated by a separable PSF in the absence

of noise and uncertainty in the PSF.

A blurred image G is formed by the convolution of the

exact image F and the PSF H, as shown in (16) for two

blurred images, and it necessarily follows from this model

that G is larger than F . This difference in the sizes of G and

F is not satisfied in practical problems because the given

blurred image and computed deblurred image are the same

size. Deconvolution of H from G in computational experi-

ments requires, therefore, that G be cropped to the same size

as F after it has been formed by the convolution operation,

and the borders of this cropped image must then be restored

by extrapolation, thereby yielding a modified blurred image

G∗. The best extrapolation function would return G∗ = G, in

which case deconvolution of H from G∗ would return F . It

is, however, now shown that the extrapolation of the border

pixels of the cropped form of G introduces several compli-

cations.

The number of pixels that are extrapolated is a function of

the size of the PSF because if the size of the PSF is r × s pix-

els, where r and s are odd and, by definition of the problem

of BID, unknown, then (s − 1)/2 pixels must be extrapo-

lated on the left and right borders of the cropped form of

G, and (r − 1)/2 pixels must be extrapolated at the top and

bottom borders of the cropped form of G, thereby yielding

the image G∗ that is the same size as G. Different extrapo-

lation functions give rise to different images G∗ and, in the

absence of prior information, it is necessary to compute sev-

eral deblurred images that differ in the values of r and s,

and it may also be necessary to consider different extrapo-

lation functions. If a quantitative measure of the quality of

a deblurred image cannot be developed, then visual inspec-

tion of the deblurred images is required to determine the best

deblurred image. This visual test is simplified if, for a given

extrapolation function, the difference in the deblurred images

obtained with the correct values of r and s, and with incorrect

values of r and s, is significant. The effect on the deblurred

image of a difference in the size of the PSF that is used to

blur an image, and then deblur its blurred form, is considered

in Example 6.

The discussion above shows that the problem of BID

requires careful consideration of the boundary conditions.

It is clear that exponential extrapolation functions are a natu-

ral choice because the extrapolated pixel values are positive

and they decay smoothly as the distance from the centre of

the PSF increases. These boundary conditions for the solu-

tion of the problem of BID are significantly different from the

boundary conditions that are imposed when the PSF is known

and the deblurred image is obtained from the solution of a

linear algebraic equation Ax = b. In particular, the entries of

A are functions of the PSF and they are therefore not known

when the problem of BID is to be solved. If, however, the PSF

(and therefore A) are known, the simplest boundary condi-

tion is the zero boundary condition, which yields satisfactory

results when the image outside the field of view is black,

but artefacts, for example, ringing at the boundaries, may be

obtained for images that do not satisfy this property. This has
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Fig. 11 The Gaussian PSF for

Examples 4 and 5

Fig. 12 The exact image (left)

and blurred image (right) for

Examples 4 and 5, and

Example 4, respectively

led to the development of anti-reflective boundary conditions

[2,27], synthetic boundary conditions [13], and periodic and

reflexive boundary conditions [16]. Anti-reflective bound-

ary conditions are the preferred boundary conditions in the

absence of noise because discontinuities in the image and its

derivative at its edges are not imposed, thereby minimising

the effects of ringing. None of these boundary conditions are

physically realistic, but they are imposed in order to preserve

structure in the coefficient matrix A and thus allow fast algo-

rithms to be used [1]. They are imposed for mathematical

convenience and must be compared with the more realis-

tic boundary conditions defined by extrapolation functions,

which allow the extrapolated pixels to be estimated from the

pixels that lie in the border region of the cropped image.

The cropping and extrapolation procedures required for

the solution of the problem of BID are not implemented in

[20,21], and comparison of the Sylvester and Bézout matrices

therefore requires that the blurred image G, rather than the

cropped and extrapolated image G∗, be used. Although this

is not realistic in practical problems (as noted above), it is

appropriate for the work considered in this paper because the

extrapolation procedure introduces errors in G∗. Specifically,

if G∗ is used, it may not be possible to identify the cause of

the differences between the deblurred images obtained from

the Sylvester and Bézout matrices, that is, differences that

arise from the cropping and extrapolation procedures, and

differences that arise from the properties of the Sylvester

and Bézout matrices.

The coefficients of the GCD of f (y) and g(y) are con-

tained in the last non-zero row of the upper triangular matrix

R of the QR decomposition of B( f , g), and similarly for

S( f , g), and Chang and Paige [10] show that an error ǫ in

a matrix A = Q R introduces an error in R that is much

smaller than ǫκ(A), where κ(A) is the condition number of

A. Examples 4 and 5 show, however, that superior results for

the coefficients of the GCD are obtained by using a structure-

preserving matrix method to solve (15), which is derived from

the Sylvester subresultant matrix Sd( f̄ , α0 ḡ), rather than by

using the QR decomposition of the Bézout matrix.

Example 4 Figure 11 shows a separable Gaussian PSF, which

is 29 × 29 pixels, and Fig. 12 shows an exact image and the

blurred image formed by convolving the exact image with the

PSF. Noise was not included in the formation of the blurred

image.

The calculation of the size of the PSF using the Sylvester

and Bézout matrices is described in [30,31] and it requires

that the same procedure be used for both matrices. Con-

123



1298 Journal of Mathematical Imaging and Vision (2018) 60:1284–1305

sider initially the calculation of the horizontal extent of the

PSF, which requires the selection of 25 random pairs of rows

of the blurred image, thus forming 25 pairs of polynomials

whose coefficients are the pixel values of the chosen rows.

This enables 25 GCD computations to be performed, and

the length of the row component of the PSF is therefore

equal to one plus the mode of the degree of the GCD from

these 25 computations. This procedure is repeated for the

column component of the PSF by selecting 25 random pairs

of columns of the blurred image. Although this method of

selecting 25 pairs of rows and 25 pairs of columns was used

for the Sylvester and Bézout matrices, the computation of

the degrees of the GCDs (one GCD for the row component

of the PSF and one GCD for the column component of the

PSF) from these 25 pairs of rows and 25 pairs of columns

was performed differently for these two matrices. In partic-

ular, Theorems 1 and 3, respectively, were used to compute

the rank of the Bézout matrix, and the rank of the Sylvester

matrix and each of its subresultant matrices.

Consider initially the Bézout matrix, whose rank loss was

computed using the SVD. This matrix was formed for each

of the 25 pairs of rows, and each of the 25 pairs of columns,

of the blurred image G, and the SVD was used to calculate

the rank (and therefore the rank loss) of each of these 50

matrices. By contrast, the rank loss of the Sylvester matrix

and its subresultant matrices was computed using the QR

decomposition, as described in Sect. 2.1 and Example 3. In

particular, the degree of the GCD was computed using (12),

and identical results were obtained using (13).

Figures 13 and 14 show the histograms of the results for

the computation of the size of the PSF obtained from the

Bézout matrix and the correct degree, 28, is achieved in 24

of the 25 trials for the row component of the PSF, and in

all the trials for the column component of the PSF. Slightly

better results were obtained when the Sylvester matrix was

used because the correct degree was achieved in all the trials

for the row and column components of the PSF.

These results from the histograms for the degrees of the

GCD in the horizontal and vertical directions (and there-

Fig. 13 The computation of the

degree of the row component of

the PSF, in the absence of noise,

using the Bézout matrix, for

Example 4

Fig. 14 The computation of the

degree of the column

component of the PSF, in the

absence of noise, using the

Bézout matrix, for Example 4
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fore the size of the PSF) allow the coefficients of the PSF

to be calculated, as described in Sect. 2.2 for the Sylvester

matrix, or, as shown in Theorem 1, from the upper triangu-

lar matrix R of the QR decomposition of the Bézout matrix.

For both methods, the deblurred image is then obtained by

two deconvolution operations, one operation for the decon-

volution of the row (column) component of the PSF from the

given blurred image, thereby yielding a partially deblurred

image F̃ , and one operation for the deconvolution of the col-

umn (row) component of the PSF from F̃ , thereby yielding

a fully deblurred image.

The experiment was repeated but uncertainty E was

included in the PSF and noise N was added, such that the

blurred image is defined by

G = F ∗ (H + E) + N ,

which can be expressed in polynomial form as

g(x, y) = f (x, y) (h(x, y) + e(x, y)) + n(x, y).

If gi, j , fi, j , hi, j , ei, j and ni, j are the coefficients of the

polynomials g(x, y), f (x, y), h(x, y), e(x, y) and n(x, y),

respectively, then the relative uncertainty in each coefficient

of the PSF and the relative error due to the noise were defined

by

0 <

∣

∣ei, j

∣

∣

hi, j

≤ εi, j ,

and

0 <

∣

∣ni, j

∣

∣

(

f (x, y)
(

h(x, y) + e(x, y)
)

)

i, j

≤ εi, j ,

respectively, where εi, j is a uniformly distributed random

variable in the range
[

10−6, 10−5
]

. This range of values of

εi, j yields a normwise relative error of the blurred image

with respect to the exact image of 0.25, which corresponds

to a signal-to-noise ratio of 12 dB.

The dependence of the uncertainty E in the PSF and noise

N on the pixel coordinates i and j is included for two reasons:

1. It cannot be assumed in real images that εi, j is approxi-

mately constant for all values of i and j , that is, across the

entire image, and thus a variation of one order of magni-

tude
([

10−6, 10−5
])

in the relative errors defines a more

realistic scenario.

2. It makes the inclusion of a tolerance, which is dependent

on the relative error, for the determination of the size

of the PSF difficult, and it therefore provides a stringent

test for the calculation of the size of the PSF from the

numerical rank of a matrix.

Figures 15 and 16 show the histograms of the results obtained

when the rank deficiency of the Bézout matrix was used to

determine the size of the PSF. It is clear that bad results were

obtained because the correct degrees (28 for both compo-

nents) were not obtained in any of the 50 trials. Much better

results were obtained when the Sylvester matrix and its subre-

sultant matrices were used because, as shown in Figs. 17 and

18, the correct degrees of the row and column components of

the PSF were achieved in 14 and 13 trials, respectively, and

the mode of each set of results therefore returned the correct

degree of each GCD, and therefore the correct size of the

PSF. �

The discussion in Sect. 2.3 and Example 4 show that the

Bézout matrix cannot be used for GCD computations and

image deblurring because even a modest level of noise causes

unsatisfactory results to be obtained since it does not yield the

correct degree of the GCD, and therefore the correct size of

the PSF. Example 5 extends these examples by considering

the application of this matrix to BID when neither additive

noise nor uncertainty in the PSF are included in the formation

of a blurred image.

Fig. 15 The computation of the

degree of the row component of

the PSF, in the presence of

noise, using the Bézout matrix,

for Example 4
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Fig. 16 The computation of the

degree of the column

component of the PSF, in the

presence of noise, using the

Bézout matrix, for Example 4

Fig. 17 The computation of the

degree of the row component of

the PSF in the presence of noise,

using the Sylvester matrix, for

Example 4

Fig. 18 The computation of the

degree of the column

component of the PSF in the

presence of noise, using the

Sylvester matrix, for Example 4

Example 5 Consider the Gaussian PSF and exact image in

Figs. 11 and 12 (left), respectively. A blurred form of this

image was formed by convolving it with the PSF, and neither

noise nor uncertainty in the PSF were added. The Bézout

matrix was used to obtain two deblurred images:

1. The size of the PSF was calculated using the method

described in Example 4 and the coefficients of its column

component hc(x) were computed from the last non-zero

row of the upper triangular matrix R from the QR decom-

position of the Bézout matrix, as stated in Theorem 1.
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Fig. 19 The deblurred images

using the QR decomposition of

the Bézout matrix (left) and the

Matlab code in [20,21] (right),

for Example 5

This procedure was repeated in order to calculate the

coefficients of the row component hr (y) of the PSF.

The deblurred image was then obtained by performing

two deconvolutions, one deconvolution for hc(x) and one

deconvolution for hr (y).

2. The Matlab code in [20,21] was executed, for which the

semi-blind deconvolution problem was solved because

the size of the PSF was defined (hardcoded) and not cal-

culated. The coefficients of the PSF in each direction

were then calculated from a leading principal submatrix

of B( f , g), as stated in Theorem 2 and [5, Algorithm

9.1].

The deblurred images are shown in Fig. 19 and they are of

poor quality because they show spurious artefacts. The rela-

tive errors in the images obtained using methods (1) and (2)

are 5.64×10−2 and 1.04×10−1, respectively. The deblurred

image obtained from the Sylvester matrix is shown in Fig. 20,

and it is clear that it is superior to the deblurred images in

Fig. 19. Its relative error is 2.14×10−9, which is many orders

of magnitude smaller. �

The solution of the problem of BID requires that the size

and coefficients of the PSF be computed, and the former com-

putation is significantly harder than the latter computation

because it reduces to the determination of the (numerical)

rank of a matrix, which is a difficult problem. The effect

on a deblurred image of a difference in the size of the PSF

for blurring an image and then deblurring the blurred image,

which occurs when the computed rank of the resultant matrix

is incorrect, is considered in Example 6.

Example 6 The image in Fig. 21 was blurred by the separable

Gaussian PSF shown in Fig. 22. The size of the PSF is 17 ×

17 pixels, and the blurred image was deblurred by square

separable Gaussian PSFs of widths 9, 11, . . . , 17, . . . , 23, 25

pixels using the Sylvester matrix, as described in Example 4.

Fig. 20 The deblurred image using the Sylvester matrix, for Example 5

The variation of the relative error of each deblurred image

with the error in the width of the PSF is shown in Fig. 23,

where the error in the width of the PSF is defined as

error in width of PSF = width of PSF for blurring

−width of PSF for deblurring.

The graph has a sharp minimum when the error in the width of

the PSF used to deblur the blurred image is zero. If, however,

the widths of the PSF used to blur the exact image and then

deblur its blurred form differ, then the relative error in the

deblurred image is very large. �

The result of Example 6 is consistent with the function

deconvblind.m in Matlab, for which the computed PSF

is affected strongly by the initial estimate of its size, and less

strongly by the values of the entries of its matrix form, or

equivalently, by the coefficients of its polynomial represen-

tation [15].
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Fig. 21 The exact image for Examples 6 and 7

The PSFs in Examples 4, 5 and 6 are separable, but, as

noted above, although this restriction is appropriate for some

theoretical investigations, it is not realistic because the PSF in

most imaging systems is not separable. If the PSF is weakly

separable, that is, h(x, y) ≈ hc(x)hr (y), then it may be

possible to approximate a non-separable PSF by a separa-

ble PSF, which would make the computation of a deblurred

image simpler and faster. Example 7 considers the error in

the deblurred image that results from this approximation.

Example 7 The image in Fig. 21 was blurred by a Gaussian

PSF of width 15 × 15 pixels and whose covariance matrix

was

R =

[

σ1 σ2

σ2 σ1

]

, σ1 = 2.5,

where the conditions σ2 = 0 and σ2 > 0 define a separable

PSF and a non-separable PSF, respectively. Eleven blurred

images, which differ in the value of σ2, were formed,

σ2 = {0.000, 0.025, 0.050, 0.075, 0.100,

0.125, 0.150, 0.175, 0.200, 0.225, 0.250} ,

and each blurred image was deblurred assuming σ2 = 0. It

follows that ten of the eleven blurred images were formed

Fig. 22 The Gaussian PSF for

Example 6

Fig. 23 The variation of the

relative error in the deblurred

image with the error in the width

of the PSF used to deblur the

blurred image, for Example 6
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Fig. 24 The variation of the

relative error in the deblurred

image with σ2, for Example 7

with a non-separable PSF (σ2 > 0), and all these blurred

images were deblurred assuming a separable PSF (σ2 = 0).

The method described in Example 4 was used to deblur each

image, and thus the size of the PSF was calculated using the

QR decomposition of the Sylvester matrix and histograms of

the results were drawn, as shown in Figs. 17 and 18.

The effect of σ2 > 0 is, as expected, a decrease in the

number of occurrences of the mode of each histogram, that

is, the correct degrees of the PSF (14 in the horizontal and

vertical directions) are achieved less frequently. This causes

an increase in the error in the computed PSF, and therefore an

increase in the relative error in the deblurred image. This error

was calculated for each deblurred image, and its variation

with σ2 is shown in Fig. 24. The minimum error occurs, as

expected, at σ2 = 0, and the error then increases, initially

rapidly and then more slowly, as σ2 increases. The relative

error in the deblurred image when σ2 = 0.25 is 2.54×10−2,

but this image is of high quality, as shown in Fig. 25. �

Example 7 shows that a weakly non-separable PSF can

be approximated by a separable PSF in the absence of noise

and uncertainty in the PSF, which makes the computation

of a deblurred image simpler and faster. Further investiga-

tion is, however, required to determine the validity of this

approximation in the presence of noise and uncertainty in

the PSF.

4 Summary

This paper has considered the Sylvester and Bézout matrices

for AGCD computations and the solution of the problem

of BID. It has been shown that the Bézout matrix does not

yield good results because floating point cancellation may

occur when its entries are computed since it is necessary to

Fig. 25 The deblurred image for σ2 = 0.25, for Example 7

evaluate terms of the form
∑

i, j (ai b j − a j bi ) where ai and

b j are the coefficients of the polynomials f (y) and g(y),

respectively. This problem does not arise when the entries

of the Sylvester matrix are formed because each of its non-

zero entries is either the coefficient ai or the coefficient b j .

Also, computations on the leading principal submatrices of

the Bézout matrix are not recommended because they yield

unstable results. Computations on the Sylvester subresultant

matrices are, however, much more reliable and they can be

used for AGCD computations.

Examples showed that the Bézout matrix cannot be used

to compute the size of the PSF in the presence of noise

and uncertainty in the PSF, which is a disadvantage of this

matrix because these degradations are present in images

obtained in practical problems. The Sylvester matrix yields

good results because it allows high quality deblurred images

to be computed, even when these degradations are present.
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The improved results obtained with the Sylvester matrix jus-

tify its use, even though it is not symmetric (unlike the Bézout

matrix, which is symmetric), and it is larger than the Bézout

matrix.
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