
This is a repository copy of Generalised Reactive Processes in Isabelle/UTP.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129381/

Monograph:
Foster, Simon David orcid.org/0000-0002-9889-9514 and Canham, Samuel James
Generalised Reactive Processes in Isabelle/UTP. Working Paper. (Unpublished)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Generalised Reactive Processes in Isabelle/UTP

Simon Foster Samuel Canham

April 6, 2018

Abstract

Hoare and He’s UTP theory of reactive processes provides a unifying foundation for the
semantics of process calculi and reactive programming. A reactive process is a form of UTP
relation which can refer to both state variables and also a trace history of events. In their
original presentation, a trace was modelled solely by a discrete sequence of events. Here,
we generalise the trace model using “trace algebra”, which characterises traces abstractly
using cancellative monoids, and thus enables application of the theory to a wider family of
computational models, including hybrid computation. We recast the reactive healthiness
conditions in this setting, and prove all the associated distributivity laws. We tackle parallel
composition of reactive processes using the “parallel-by-merge” scheme from UTP. We also
identify the associated theory of “reactive relations”, and use it to define generic reactive
laws, a Hoare logic, and a weakest precondition calculus.

Contents

1 Reactive Processes Core Definitions 2

1.1 Alphabet and Signature . 2
1.2 Reactive Lemmas . 4
1.3 Trace contribution lens . 5

2 Reactive Healthiness Conditions 6

2.1 R1: Events cannot be undone . 6
2.2 R2: No dependence upon trace history . 9
2.3 R3: No activity while predecessor is waiting . 17
2.4 R4: The trace strictly increases . 19
2.5 R5: The trace does not increase . 20
2.6 RP laws . 20
2.7 UTP theories . 21

3 Reactive Parallel-by-Merge 22

4 Reactive Relations 26

4.1 Healthiness Conditions . 26
4.2 Reactive relational operators . 27
4.3 Unrestriction and substitution laws . 28
4.4 Closure laws . 29
4.5 Reactive relational calculus . 34
4.6 UTP theory . 36
4.7 Instantaneous Reactive Relations . 37

1

5 Reactive Conditions 37

5.1 Healthiness Conditions . 38
5.2 Closure laws . 39

6 Reactive Programs 41

6.1 Stateful reactive alphabet . 41
6.2 State Lifting . 43
6.3 Reactive Program Operators . 44

6.3.1 State Substitution . 44
6.3.2 Assignment . 45
6.3.3 Conditional . 46
6.3.4 Assumptions . 47
6.3.5 State Abstraction . 47
6.3.6 Reactive Frames and Extensions . 48

6.4 Stateful Reactive specifications . 49

7 Reactive Weakest Preconditions 51

8 Reactive Hoare Logic 54

9 Meta-theory for Generalised Reactive Processes 56

1 Reactive Processes Core Definitions

theory utp-rea-core

imports

UTP−Toolkit .Trace-Algebra
UTP .utp-concurrency
UTP−Designs.utp-designs

begin recall-syntax

1.1 Alphabet and Signature

The alphabet of reactive processes contains a boolean variable wait, which denotes whether
a process is exhibiting an intermediate observation. It also has the variable tr which denotes
the trace history of a process. The type parameter ′t represents the trace model being used,
which must form a trace algebra [4], and thus provides the theory of “generalised reactive
processes” [4]. The reactive process alphabet also extends the design alphabet, and thus in-
cludes the ok variable. For more information on these, see the UTP book [5], or the associated
tutorial [2].

alphabet ′t ::trace rp-vars = des-vars +
wait :: bool
tr :: ′t

type-synonym (′t , ′α) rp = (′t , ′α) rp-vars-scheme des

type-synonym (′t , ′α, ′β) rel-rp = ((′t , ′α) rp, (′t , ′β) rp) urel
type-synonym (′t , ′α) hrel-rp = (′t , ′α) rp hrel

translations

(type) (′t , ′α) rp <= (type) (′t , ′α) rp-vars-scheme des

(type) (′t , ′α) rp <= (type) (′t , ′α) rp-vars-ext des

2

(type) (′t , ′α, ′β) rel-rp <= (type) ((′t , ′α) rp, (′γ, ′β) rp) urel
(type) (′t , ′α) hrel-rp <= (type) (′t , ′α) rp hrel

As for designs, we set up various types to represent reactive processes. The main types to be
used are (′t , ′α, ′β) rel-rp and (′t , ′α) hrel-rp, which correspond to heterogeneous/homogeneous
reactive processes whose trace model is ′t and alphabet types are ′α and ′β. We also set up
some useful syntax translations for these.

notation rp-vars-child-lensa (Σr)
notation rp-vars-child-lens (ΣR)

syntax

-svid-rea-alpha :: svid (ΣR)

translations

-svid-rea-alpha => CONST rp-vars-child-lens

Lens ΣR exists because reactive alphabets are extensible. ΣR points to the portion of the
alphabet / state space that is neither ok, wait, or tr.

declare rp-vars.splits [alpha-splits]
declare rp-vars.defs [lens-defs]
declare zero-list-def [upred-defs]
declare plus-list-def [upred-defs]
declare prefixE [elim]

The two locale interpretations below are a technicality to improve automatic proof support via
the predicate and relational tactics. This is to enable the (re-)interpretation of state spaces
to remove any occurrences of lens types after the proof tactics pred-simp and rel-simp, or any
of their derivatives have been applied. Eventually, it would be desirable to automate both
interpretations as part of a custom outer command for defining alphabets.

interpretation rp-vars:
lens-interp λ(ok , r). (ok , waitv r , trv r , more r)
apply (unfold-locales)
apply (rule injI)
apply (clarsimp)
done

interpretation rp-vars-rel : lens-interp λ(ok , ok ′, r , r ′).
(ok , ok ′, waitv r , waitv r ′, trv r , trv r ′, more r , more r ′)
apply (unfold-locales)
apply (rule injI)
apply (clarsimp)
done

The following syntactic orders exist to help to order lens names when, for example, performing
substitution, to achieve normalisation of terms.

lemma rea-var-ords [usubst]:
$tr ≺v $tr´ $wait ≺v $wait´
$ok ≺v $tr $ok´ ≺v $tr´ $ok ≺v $tr´ $ok´ ≺v $tr
$ok ≺v $wait $ok´ ≺v $wait´ $ok ≺v $wait´ $ok´ ≺v $wait
$tr ≺v $wait $tr´ ≺v $wait´ $tr ≺v $wait´ $tr´ ≺v $wait
by (simp-all add : var-name-ord-def)

abbreviation wait-f ::(′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp

3

where wait-f R ≡ R[[false/$wait]]

abbreviation wait-t ::(′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp
where wait-t R ≡ R[[true/$wait]]

syntax

-wait-f :: logic ⇒ logic (-f [1000] 1000)
-wait-t :: logic ⇒ logic (-t [1000] 1000)

translations

P f ⇋ CONST usubst (CONST subst-upd CONST id (CONST ivar CONST wait) false) P
P t ⇋ CONST usubst (CONST subst-upd CONST id (CONST ivar CONST wait) true) P

abbreviation lift-rea :: - ⇒ - (⌈-⌉R) where

⌈P⌉R ≡ P ⊕p (ΣR ×L ΣR)

abbreviation drop-rea :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′α, ′β) urel (⌊-⌋R) where

⌊P⌋R ≡ P ↾e (ΣR ×L ΣR)

abbreviation rea-pre-lift :: - ⇒ - (⌈-⌉R<) where ⌈n⌉R< ≡ ⌈⌈n⌉<⌉R

1.2 Reactive Lemmas

lemma unrest-ok-lift-rea [unrest]:
$ok ♯ ⌈P⌉R $ok´ ♯ ⌈P⌉R
by (pred-auto)+

lemma unrest-wait-lift-rea [unrest]:
$wait ♯ ⌈P⌉R $wait´ ♯ ⌈P⌉R
by (pred-auto)+

lemma unrest-tr-lift-rea [unrest]:
$tr ♯ ⌈P⌉R $tr´ ♯ ⌈P⌉R
by (pred-auto)+

lemma wait-tr-bij-lemma: bij-lens (waita +L tra +L Σr)
by (unfold-locales, auto simp add : lens-defs)

lemma des-lens-equiv-wait-tr-rest : ΣD ≈L wait +L tr +L ΣR

proof −
have wait +L tr +L ΣR = (waita +L tra +L Σr) ;L ΣD

by (simp add : plus-lens-distr wait-def tr-def rp-vars-child-lens-def)
also have ... ≈L 1L ;L ΣD

using lens-equiv-via-bij wait-tr-bij-lemma by auto

also have ... = ΣD

by (simp)
finally show ?thesis

using lens-equiv-sym by blast

qed

lemma rea-lens-bij : bij-lens (ok +L wait +L tr +L ΣR)
proof −
have ok +L wait +L tr +L ΣR ≈L ok +L ΣD

using des-lens-equiv-wait-tr-rest des-vars-indeps lens-equiv-sym lens-plus-eq-right by blast

also have ... ≈L 1L

using bij-lens-equiv-id [of ok +L ΣD] by (simp add : ok-des-bij-lens)

4

finally show ?thesis

by (simp add : bij-lens-equiv-id)
qed

lemma seqr-wait-true [usubst]: (P ;; Q) t = (P t ;; Q)
by (rel-auto)

lemma seqr-wait-false [usubst]: (P ;; Q) f = (P f ;; Q)
by (rel-auto)

1.3 Trace contribution lens

The following lens represents the portion of the state-space that is the difference between tr′

and tr, that is the contribution that a process is making to the trace history.

definition tcontr :: ′t ::trace =⇒ (′t , ′α) rp × (′t , ′α) rp (tt) where

[lens-defs]:
tcontr = (| lens-get = (λ s. get($tr´)v s − get($tr)v s) ,

lens-put = (λ s v . put($tr´)v s (get($tr)v s + v)) |)

definition itrace :: ′t ::trace =⇒ (′t , ′α) rp × (′t , ′α) rp (it) where

[lens-defs]:
itrace = (| lens-get = get($tr)v ,

lens-put = (λ s v . put($tr´)v (put($tr)v s v) v) |)

lemma tcontr-mwb-lens [simp]: mwb-lens tt

by (unfold-locales, simp-all add : lens-defs prod .case-eq-if)

lemma itrace-mwb-lens [simp]: mwb-lens it

by (unfold-locales, simp-all add : lens-defs prod .case-eq-if)

syntax

-svid-tcontr :: svid (tt)
-svid-itrace :: svid (it)

translations

-svid-tcontr == CONST tcontr

-svid-itrace == CONST itrace

lemma tcontr-alt-def : &tt = ($tr´ − $tr)
by (rel-auto)

lemma tcontr-alt-def ′: utp-expr .var tt = ($tr´ − $tr)
by (rel-auto)

lemma tt-indeps [simp]:
assumes x ⊲⊳ ($tr)v x ⊲⊳ ($tr´)v
shows x ⊲⊳ tt tt ⊲⊳ x

using assms

by (unfold lens-indep-def , safe, simp-all add : tcontr-def , (metis lens-indep-get var-update-out)+)

end

5

2 Reactive Healthiness Conditions

theory utp-rea-healths

imports utp-rea-core

begin

2.1 R1: Events cannot be undone

definition R1 :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

R1-def [upred-defs]: R1 (P) = (P ∧ ($tr ≤u $tr´))

lemma R1-idem: R1 (R1 (P)) = R1 (P)
by pred-auto

lemma R1-Idempotent [closure]: Idempotent R1

by (simp add : Idempotent-def R1-idem)

lemma R1-mono: P ⊑ Q =⇒ R1 (P) ⊑ R1 (Q)
by pred-auto

lemma R1-Monotonic: Monotonic R1

by (simp add : mono-def R1-mono)

lemma R1-Continuous: Continuous R1

by (auto simp add : Continuous-def , rel-auto)

lemma R1-unrest [unrest]: [[x ⊲⊳ in-var tr ; x ⊲⊳ out-var tr ; x ♯ P]] =⇒ x ♯ R1 (P)
by (simp add : R1-def unrest lens-indep-sym)

lemma R1-false: R1 (false) = false

by pred-auto

lemma R1-conj : R1 (P ∧ Q) = (R1 (P) ∧ R1 (Q))
by pred-auto

lemma conj-R1-closed-1 [closure]: P is R1 =⇒ (P ∧ Q) is R1

by (rel-blast)

lemma conj-R1-closed-2 [closure]: Q is R1 =⇒ (P ∧ Q) is R1

by (rel-blast)

lemma R1-disj : R1 (P ∨ Q) = (R1 (P) ∨ R1 (Q))
by pred-auto

lemma disj-R1-closed [closure]: [[P is R1 ; Q is R1]] =⇒ (P ∨ Q) is R1

by (simp add : Healthy-def R1-def utp-pred-laws.inf-sup-distrib2)

lemma R1-impl : R1 (P ⇒ Q) = ((¬ R1 (¬ P)) ⇒ R1 (Q))
by (rel-auto)

lemma R1-inf : R1 (P ⊓ Q) = (R1 (P) ⊓ R1 (Q))
by pred-auto

lemma R1-USUP :
R1 (

d
i ∈ A · P(i)) = (

d
i ∈ A · R1 (P(i)))

by (rel-auto)

6

lemma R1-Sup [closure]: [[
∧

P . P ∈ A =⇒ P is R1 ; A 6= {}]] =⇒
d

A is R1

using R1-Continuous by (auto simp add : Continuous-def Healthy-def)

lemma R1-UINF :
assumes A 6= {}
shows R1 (

⊔
i ∈ A · P(i)) = (

⊔
i ∈ A · R1 (P(i)))

using assms by (rel-auto)

lemma R1-UINF-ind :
R1 (

⊔
i · P(i)) = (

⊔
i · R1 (P(i)))

by (rel-auto)

lemma UINF-ind-R1-closed [closure]:
[[
∧

i . P(i) is R1]] =⇒ (
d

i · P(i)) is R1

by (rel-blast)

lemma UINF-R1-closed [closure]:
[[
∧

i . P i is R1]] =⇒ (
d

i ∈ A · P i) is R1

by (rel-blast)

lemma tr-ext-conj-R1 [closure]:
$tr´ =u $tr ˆu e ∧ P is R1

by (rel-auto, simp add : Prefix-Order .prefixI)

lemma tr-id-conj-R1 [closure]:
$tr´ =u $tr ∧ P is R1

by (rel-auto)

lemma R1-extend-conj : R1 (P ∧ Q) = (R1 (P) ∧ Q)
by pred-auto

lemma R1-extend-conj ′: R1 (P ∧ Q) = (P ∧ R1 (Q))
by pred-auto

lemma R1-cond : R1 (P ⊳ b ⊲ Q) = (R1 (P) ⊳ b ⊲ R1 (Q))
by (rel-auto)

lemma R1-cond ′: R1 (P ⊳ b ⊲ Q) = (R1 (P) ⊳ R1 (b) ⊲ R1 (Q))
by (rel-auto)

lemma R1-negate-R1 : R1 (¬ R1 (P)) = R1 (¬ P)
by pred-auto

lemma R1-wait-true [usubst]: (R1 P)t = R1 (P)t
by pred-auto

lemma R1-wait-false [usubst]: (R1 P) f = R1 (P) f

by pred-auto

lemma R1-wait ′-true [usubst]: (R1 P)[[true/$wait´]] = R1 (P [[true/$wait´]])
by (rel-auto)

lemma R1-wait ′-false [usubst]: (R1 P)[[false/$wait´]] = R1 (P [[false/$wait´]])
by (rel-auto)

7

lemma R1-wait-false-closed [closure]: P is R1 =⇒ P [[false/$wait]] is R1

by (rel-auto)

lemma R1-wait ′-false-closed [closure]: P is R1 =⇒ P [[false/$wait´]] is R1

by (rel-auto)

lemma R1-skip: R1 (II) = II

by (rel-auto)

lemma skip-is-R1 [closure]: II is R1

by (rel-auto)

lemma subst-R1 : [[$tr ♯ σ; $tr´ ♯ σ]] =⇒ σ † (R1 P) = R1 (σ † P)
by (simp add : R1-def usubst)

lemma subst-R1-closed [closure]: [[$tr ♯ σ; $tr´ ♯ σ; P is R1]] =⇒ σ † P is R1

by (metis Healthy-def subst-R1)

lemma R1-by-refinement :
P is R1 ←→ (($tr ≤u $tr´) ⊑ P)
by (rel-blast)

lemma R1-trace-extension [closure]:
$tr´ ≥u $tr ˆu e is R1

by (rel-auto)

lemma tr-le-trans:
(($tr ≤u $tr´) ;; ($tr ≤u $tr´)) = ($tr ≤u $tr´)
by (rel-auto)

lemma R1-seqr :
R1 (R1 (P) ;; R1 (Q)) = (R1 (P) ;; R1 (Q))
by (rel-auto)

lemma R1-seqr-closure [closure]:
assumes P is R1 Q is R1

shows (P ;; Q) is R1

using assms unfolding R1-by-refinement

by (metis seqr-mono tr-le-trans)

lemma R1-power [closure]: P is R1 =⇒ Pˆn is R1

by (induct n, simp-all add : upred-semiring .power-Suc closure)

lemma R1-true-comp [simp]: (R1 (true) ;; R1 (true)) = R1 (true)
by (rel-auto)

lemma R1-ok ′-true: (R1 (P))t = R1 (P t)
by pred-auto

lemma R1-ok ′-false: (R1 (P))f = R1 (Pf)
by pred-auto

lemma R1-ok-true: (R1 (P))[[true/$ok]] = R1 (P [[true/$ok]])
by pred-auto

8

lemma R1-ok-false: (R1 (P))[[false/$ok]] = R1 (P [[false/$ok]])
by pred-auto

lemma seqr-R1-true-right : ((P ;; R1 (true)) ∨ P) = (P ;; ($tr ≤u $tr´))
by (rel-auto)

lemma conj-R1-true-right : (P ;;R1 (true) ∧ Q ;;R1 (true)) ;; R1 (true) = (P ;;R1 (true) ∧ Q ;;R1 (true))
apply (rel-auto) using dual-order .trans by blast+

lemma R1-extend-conj-unrest : [[$tr ♯ Q ; $tr´ ♯ Q]] =⇒ R1 (P ∧ Q) = (R1 (P) ∧ Q)
by pred-auto

lemma R1-extend-conj-unrest ′: [[$tr ♯ P ; $tr´ ♯ P]] =⇒ R1 (P ∧ Q) = (P ∧ R1 (Q))
by pred-auto

lemma R1-tr ′-eq-tr : R1 ($tr´ =u $tr) = ($tr´ =u $tr)
by (rel-auto)

lemma R1-tr-less-tr ′: R1 ($tr <u $tr´) = ($tr <u $tr´)
by (rel-auto)

lemma tr-strict-prefix-R1-closed [closure]: $tr <u $tr´ is R1

by (rel-auto)

lemma R1-H2-commute: R1 (H2 (P)) = H2 (R1 (P))
by (simp add : H2-split R1-def usubst , rel-auto)

2.2 R2: No dependence upon trace history

There are various ways of expressing R2, which are enumerated below.

definition R2a :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R2a (P) = (
d

s · P [[≪s≫,≪s≫+($tr´−$tr)/$tr ,$tr´]])

definition R2a ′ :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R2a ′ P = (R2a(P) ⊳ R1 (true) ⊲ P)

definition R2s :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R2s (P) = (P [[0/$tr]][[($tr´−$tr)/$tr´]])

definition R2 :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R2 (P) = R1 (R2s(P))

definition R2c :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R2c(P) = (R2s(P) ⊳ R1 (true) ⊲ P)

R2a and R2s are the standard definitions from the UTP book [5]. An issue with these forms is
that their definition depends upon R1 also being satisfied [4], since otherwise the trace minus
operator is not well defined. We overcome this with our own version, R2c, which applies R2s

if R1 holds, and otherwise has no effect. This latter healthiness condition can therefore be
reasoned about independently of R1, which is useful in some circumstances.

lemma unrest-ok-R2s [unrest]: $ok ♯ P =⇒ $ok ♯ R2s(P)
by (simp add : R2s-def unrest)

9

lemma unrest-ok ′-R2s [unrest]: $ok´ ♯ P =⇒ $ok´ ♯ R2s(P)
by (simp add : R2s-def unrest)

lemma unrest-ok-R2c [unrest]: $ok ♯ P =⇒ $ok ♯ R2c(P)
by (simp add : R2c-def unrest)

lemma unrest-ok ′-R2c [unrest]: $ok´ ♯ P =⇒ $ok´ ♯ R2c(P)
by (simp add : R2c-def unrest)

lemma R2s-unrest [unrest]: [[vwb-lens x ; x ⊲⊳ in-var tr ; x ⊲⊳ out-var tr ; x ♯ P]] =⇒ x ♯ R2s(P)
by (simp add : R2s-def unrest usubst lens-indep-sym)

lemma R2s-subst-wait-true [usubst]:
(R2s(P))[[true/$wait]] = R2s(P [[true/$wait]])
by (simp add : R2s-def usubst unrest)

lemma R2s-subst-wait ′-true [usubst]:
(R2s(P))[[true/$wait´]] = R2s(P [[true/$wait´]])
by (simp add : R2s-def usubst unrest)

lemma R2-subst-wait-true [usubst]:
(R2 (P))[[true/$wait]] = R2 (P [[true/$wait]])
by (simp add : R2-def R1-def R2s-def usubst unrest)

lemma R2-subst-wait ′-true [usubst]:
(R2 (P))[[true/$wait´]] = R2 (P [[true/$wait´]])
by (simp add : R2-def R1-def R2s-def usubst unrest)

lemma R2-subst-wait-false [usubst]:
(R2 (P))[[false/$wait]] = R2 (P [[false/$wait]])
by (simp add : R2-def R1-def R2s-def usubst unrest)

lemma R2-subst-wait ′-false [usubst]:
(R2 (P))[[false/$wait´]] = R2 (P [[false/$wait´]])
by (simp add : R2-def R1-def R2s-def usubst unrest)

lemma R2c-R2s-absorb: R2c(R2s(P)) = R2s(P)
by (rel-auto)

lemma R2a-R2s: R2a(R2s(P)) = R2s(P)
by (rel-auto)

lemma R2s-R2a: R2s(R2a(P)) = R2a(P)
by (rel-auto)

lemma R2a-equiv-R2s: P is R2a ←→ P is R2s

by (metis Healthy-def ′ R2a-R2s R2s-R2a)

lemma R2a-idem: R2a(R2a(P)) = R2a(P)
by (rel-auto)

lemma R2a ′-idem: R2a ′(R2a ′(P)) = R2a ′(P)
by (rel-auto)

lemma R2a-mono: P ⊑ Q =⇒ R2a(P) ⊑ R2a(Q)

10

by (rel-blast)

lemma R2a ′-mono: P ⊑ Q =⇒ R2a ′(P) ⊑ R2a ′(Q)
by (rel-blast)

lemma R2a ′-weakening : R2a ′(P) ⊑ P

apply (rel-simp)
apply (rename-tac ok wait tr more ok ′ wait ′ tr ′ more ′)
apply (rule-tac x=tr in exI)
apply (simp add : diff-add-cancel-left ′)
done

lemma R2s-idem: R2s(R2s(P)) = R2s(P)
by (pred-auto)

lemma R2-idem: R2 (R2 (P)) = R2 (P)
by (pred-auto)

lemma R2-mono: P ⊑ Q =⇒ R2 (P) ⊑ R2 (Q)
by (pred-auto)

lemma R2-implies-R1 [closure]: P is R2 =⇒ P is R1

by (rel-blast)

lemma R2c-Continuous: Continuous R2c

by (rel-simp)

lemma R2c-lit : R2c(≪x≫) = ≪x≫

by (rel-auto)

lemma tr-strict-prefix-R2c-closed [closure]: $tr <u $tr´ is R2c

by (rel-auto)

lemma R2s-conj : R2s(P ∧ Q) = (R2s(P) ∧ R2s(Q))
by (pred-auto)

lemma R2-conj : R2 (P ∧ Q) = (R2 (P) ∧ R2 (Q))
by (pred-auto)

lemma R2s-disj : R2s(P ∨ Q) = (R2s(P) ∨ R2s(Q))
by pred-auto

lemma R2s-USUP :
R2s(

d
i ∈ A · P(i)) = (

d
i ∈ A · R2s(P(i)))

by (simp add : R2s-def usubst)

lemma R2c-USUP :
R2c(

d
i ∈ A · P(i)) = (

d
i ∈ A · R2c(P(i)))

by (rel-auto)

lemma R2s-UINF :
R2s(

⊔
i ∈ A · P(i)) = (

⊔
i ∈ A · R2s(P(i)))

by (simp add : R2s-def usubst)

lemma R2c-UINF :

11

R2c(
⊔

i ∈ A · P(i)) = (
⊔

i ∈ A · R2c(P(i)))
by (rel-auto)

lemma R2-disj : R2 (P ∨ Q) = (R2 (P) ∨ R2 (Q))
by (pred-auto)

lemma R2s-not : R2s(¬ P) = (¬ R2s(P))
by pred-auto

lemma R2s-condr : R2s(P ⊳ b ⊲ Q) = (R2s(P) ⊳ R2s(b) ⊲ R2s(Q))
by (rel-auto)

lemma R2-condr : R2 (P ⊳ b ⊲ Q) = (R2 (P) ⊳ R2 (b) ⊲ R2 (Q))
by (rel-auto)

lemma R2-condr ′: R2 (P ⊳ b ⊲ Q) = (R2 (P) ⊳ R2s(b) ⊲ R2 (Q))
by (rel-auto)

lemma R2s-ok : R2s($ok) = $ok
by (rel-auto)

lemma R2s-ok ′: R2s($ok´) = $ok´
by (rel-auto)

lemma R2s-wait : R2s($wait) = $wait
by (rel-auto)

lemma R2s-wait ′: R2s($wait´) = $wait´
by (rel-auto)

lemma R2s-true: R2s(true) = true

by pred-auto

lemma R2s-false: R2s(false) = false

by pred-auto

lemma true-is-R2s:
true is R2s

by (simp add : Healthy-def R2s-true)

lemma R2s-lift-rea: R2s(⌈P⌉R) = ⌈P⌉R
by (simp add : R2s-def usubst unrest)

lemma R2c-lift-rea: R2c(⌈P⌉R) = ⌈P⌉R
by (simp add : R2c-def R2s-lift-rea cond-idem usubst unrest)

lemma R2c-true: R2c(true) = true

by (rel-auto)

lemma R2c-false: R2c(false) = false

by (rel-auto)

lemma R2c-and : R2c(P ∧ Q) = (R2c(P) ∧ R2c(Q))
by (rel-auto)

12

lemma conj-R2c-closed [closure]: [[P is R2c; Q is R2c]] =⇒ (P ∧ Q) is R2c

by (simp add : Healthy-def R2c-and)

lemma R2c-disj : R2c(P ∨ Q) = (R2c(P) ∨ R2c(Q))
by (rel-auto)

lemma R2c-inf : R2c(P ⊓ Q) = (R2c(P) ⊓ R2c(Q))
by (rel-auto)

lemma R2c-not : R2c(¬ P) = (¬ R2c(P))
by (rel-auto)

lemma R2c-ok : R2c($ok) = ($ok)
by (rel-auto)

lemma R2c-ok ′: R2c($ok´) = ($ok´)
by (rel-auto)

lemma R2c-wait : R2c($wait) = $wait
by (rel-auto)

lemma R2c-wait ′: R2c($wait´) = $wait´
by (rel-auto)

lemma R2c-wait ′-true [usubst]: (R2c P)[[true/$wait´]] = R2c(P [[true/$wait´]])
by (rel-auto)

lemma R2c-wait ′-false [usubst]: (R2c P)[[false/$wait´]] = R2c(P [[false/$wait´]])
by (rel-auto)

lemma R2c-tr ′-minus-tr : R2c($tr´ =u $tr) = ($tr´ =u $tr)
apply (rel-auto) using minus-zero-eq by blast

lemma R2c-tr ′-ge-tr : R2c($tr´ ≥u $tr) = ($tr´ ≥u $tr)
by (rel-auto)

lemma R2c-tr-less-tr ′: R2c($tr <u $tr´) = ($tr <u $tr´)
by (rel-auto)

lemma R2c-condr : R2c(P ⊳ b ⊲ Q) = (R2c(P) ⊳ R2c(b) ⊲ R2c(Q))
by (rel-auto)

lemma R2c-shAll : R2c (∀ x · P x) = (∀ x · R2c(P x))
by (rel-auto)

lemma R2c-impl : R2c(P ⇒ Q) = (R2c(P) ⇒ R2c(Q))
by (metis (no-types, lifting) R2c-and R2c-not double-negation impl-alt-def not-conj-deMorgans)

lemma R2c-skip-r : R2c(II) = II

proof −
have R2c(II) = R2c($tr´ =u $tr ∧ II ↾αtr)
by (subst skip-r-unfold [of tr], simp-all)

also have ... = (R2c($tr´ =u $tr) ∧ II ↾αtr)
by (simp add : R2c-and , simp add : R2c-def R2s-def usubst unrest cond-idem)

also have ... = ($tr´ =u $tr ∧ II ↾αtr)

13

by (simp add : R2c-tr ′-minus-tr)
finally show ?thesis

by (subst skip-r-unfold [of tr], simp-all)
qed

lemma R1-R2c-commute: R1 (R2c(P)) = R2c(R1 (P))
by (rel-auto)

lemma R1-R2c-is-R2 : R1 (R2c(P)) = R2 (P)
by (rel-auto)

lemma R1-R2s-R2c: R1 (R2s(P)) = R1 (R2c(P))
by (rel-auto)

lemma R1-R2s-tr-wait :
R1 (R2s ($tr´ =u $tr ∧ $wait´)) = ($tr´ =u $tr ∧ $wait´)
apply rel-auto using minus-zero-eq by blast

lemma R1-R2s-tr ′-eq-tr :
R1 (R2s ($tr´ =u $tr)) = ($tr´ =u $tr)
apply (rel-auto) using minus-zero-eq by blast

lemma R1-R2s-tr ′-extend-tr :
[[$tr ♯ v ; $tr´ ♯ v]] =⇒ R1 (R2s ($tr´ =u $tr ˆu v)) = ($tr´ =u $tr ˆu v)
apply (rel-auto)
apply (metis append-minus)
apply (simp add : Prefix-Order .prefixI)
done

lemma R2-tr-prefix : R2 ($tr ≤u $tr´) = ($tr ≤u $tr´)
by (pred-auto)

lemma R2-form:
R2 (P) = (∃ tt0 · P [[0/$tr]][[≪tt0≫/$tr´]] ∧ $tr´ =u $tr + ≪tt0≫)
by (rel-auto, metis trace-class .add-diff-cancel-left trace-class .le-iff-add)

lemma R2-subst-tr :
assumes P is R2

shows [$tr 7→s tr0, $tr´ 7→s tr0 + t] † P = [$tr 7→s 0 , $tr´ 7→s t] † P
proof −
have [$tr 7→s tr0, $tr´ 7→s tr0 + t] † R2 P = [$tr 7→s 0 , $tr´ 7→s t] † R2 P

by (rel-auto)
thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma R2-seqr-form:
shows (R2 (P) ;; R2 (Q)) =

(∃ tt1 · ∃ tt2 · ((P [[0/$tr]][[≪tt1≫/$tr´]]) ;; (Q [[0/$tr]][[≪tt2≫/$tr´]]))
∧ ($tr´ =u $tr + ≪tt1≫ + ≪tt2≫))

proof −
have (R2 (P) ;; R2 (Q)) = (∃ tr0 · (R2 (P))[[≪tr0≫/$tr´]] ;; (R2 (Q))[[≪tr0≫/$tr]])
by (subst seqr-middle[of tr], simp-all)

also have ... =
(∃ tr0 · ∃ tt1 · ∃ tt2 · ((P [[0/$tr]][[≪tt1≫/$tr´]] ∧ ≪tr0≫ =u $tr + ≪tt1≫) ;;

14

(Q [[0/$tr]][[≪tt2≫/$tr´]] ∧ $tr´ =u ≪tr0≫ + ≪tt2≫)))
by (simp add : R2-form usubst unrest uquant-lift , rel-blast)

also have ... =
(∃ tr0 · ∃ tt1 · ∃ tt2 · ((≪tr0≫ =u $tr + ≪tt1≫ ∧ P [[0/$tr]][[≪tt1≫/$tr´]]) ;;

(Q [[0/$tr]][[≪tt2≫/$tr´]] ∧ $tr´ =u ≪tr0≫ + ≪tt2≫)))
by (simp add : conj-comm)

also have ... =
(∃ tt1 · ∃ tt2 · ∃ tr0 · ((P [[0/$tr]][[≪tt1≫/$tr´]]) ;; (Q [[0/$tr]][[≪tt2≫/$tr´]]))

∧ ≪tr0≫ =u $tr + ≪tt1≫ ∧ $tr´ =u ≪tr0≫ + ≪tt2≫)
by (rel-blast)

also have ... =
(∃ tt1 · ∃ tt2 · ((P [[0/$tr]][[≪tt1≫/$tr´]]) ;; (Q [[0/$tr]][[≪tt2≫/$tr´]]))

∧ (∃ tr0 · ≪tr0≫ =u $tr + ≪tt1≫ ∧ $tr´ =u ≪tr0≫ + ≪tt2≫))
by (rel-auto)

also have ... =
(∃ tt1 · ∃ tt2 · ((P [[0/$tr]][[≪tt1≫/$tr´]]) ;; (Q [[0/$tr]][[≪tt2≫/$tr´]]))

∧ ($tr´ =u $tr + ≪tt1≫ + ≪tt2≫))
by (rel-auto)

finally show ?thesis .

qed

lemma R2-seqr-form ′:
assumes P is R2 Q is R2

shows P ;; Q =
(∃ tt1 · ∃ tt2 · ((P [[0/$tr]][[≪tt1≫/$tr´]]) ;; (Q [[0/$tr]][[≪tt2≫/$tr´]]))

∧ ($tr´ =u $tr + ≪tt1≫ + ≪tt2≫))
using R2-seqr-form[of P Q] by (simp add : Healthy-if assms)

lemma R2-seqr-form ′′:
assumes P is R2 Q is R2

shows P ;; Q =
(∃ (tt1, tt2) · ((P [[0 ,≪tt1≫/$tr ,$tr´]]) ;; (Q [[0 ,≪tt2≫/$tr ,$tr´]]))

∧ ($tr´ =u $tr + ≪tt1≫ + ≪tt2≫))
by (subst R2-seqr-form ′, simp-all add : assms, rel-auto)

lemma R2-tr-middle:
assumes P is R2 Q is R2

shows (∃ tr0 · (P [[≪tr0≫/$tr´]] ;; Q [[≪tr0≫/$tr]]) ∧ ≪tr0≫ ≤u $tr´) = (P ;; Q)
proof −
have (P ;; Q) = (∃ tr0 · (P [[≪tr0≫/$tr´]] ;; Q [[≪tr0≫/$tr]]))
by (simp add : seqr-middle)

also have ... = (∃ tr0 · ((R2 P)[[≪tr0≫/$tr´]] ;; (R2 Q)[[≪tr0≫/$tr]]))
by (simp add : assms Healthy-if)

also have ... = (∃ tr0 · ((R2 P)[[≪tr0≫/$tr´]] ;; (R2 Q)[[≪tr0≫/$tr]]) ∧ ≪tr0≫ ≤u $tr´)
by (rel-auto)

also have ... = (∃ tr0 · (P [[≪tr0≫/$tr´]] ;; Q [[≪tr0≫/$tr]]) ∧ ≪tr0≫ ≤u $tr´)
by (simp add : assms Healthy-if)

finally show ?thesis ..

qed

lemma R2-seqr-distribute:
fixes P :: (′t ::trace, ′α, ′β) rel-rp and Q :: (′t , ′β, ′γ) rel-rp
shows R2 (R2 (P) ;; R2 (Q)) = (R2 (P) ;; R2 (Q))

proof −
have R2 (R2 (P) ;; R2 (Q)) =

15

((∃ tt1 · ∃ tt2 · (P [[0/$tr]][[≪tt1≫/$tr´]] ;; Q [[0/$tr]][[≪tt2≫/$tr´]])[[($tr´ − $tr)/$tr´]]
∧ $tr´ − $tr =u ≪tt1≫ + ≪tt2≫) ∧ $tr´ ≥u $tr)

by (simp add : R2-seqr-form, simp add : R2s-def usubst unrest , rel-auto)
also have ... =
((∃ tt1 · ∃ tt2 · (P [[0/$tr]][[≪tt1≫/$tr´]] ;; Q [[0/$tr]][[≪tt2≫/$tr´]])[[(≪tt1≫ + ≪tt2≫)/$tr´]]
∧ $tr´ − $tr =u ≪tt1≫ + ≪tt2≫) ∧ $tr´ ≥u $tr)
by (subst subst-eq-replace, simp)

also have ... =
((∃ tt1 · ∃ tt2 · (P [[0/$tr]][[≪tt1≫/$tr´]] ;; Q [[0/$tr]][[≪tt2≫/$tr´]])
∧ $tr´ − $tr =u ≪tt1≫ + ≪tt2≫) ∧ $tr´ ≥u $tr)
by (rel-auto)

also have ... =
(∃ tt1 · ∃ tt2 · (P [[0/$tr]][[≪tt1≫/$tr´]] ;; Q [[0/$tr]][[≪tt2≫/$tr´]])
∧ ($tr´ − $tr =u ≪tt1≫ + ≪tt2≫ ∧ $tr´ ≥u $tr))

by pred-auto

also have ... =
((∃ tt1 · ∃ tt2 · (P [[0/$tr]][[≪tt1≫/$tr´]] ;; Q [[0/$tr]][[≪tt2≫/$tr´]])
∧ $tr´ =u $tr + ≪tt1≫ + ≪tt2≫))

proof −
have

∧
tt1 tt2. ((($tr´ − $tr =u ≪tt1≫ + ≪tt2≫) ∧ $tr´ ≥u $tr) :: (′t , ′α, ′γ) rel-rp)

= ($tr´ =u $tr + ≪tt1≫ + ≪tt2≫)
apply (rel-auto)
apply (metis add .assoc diff-add-cancel-left ′)
apply (simp add : add .assoc)
apply (meson le-add order-trans)
done

thus ?thesis by simp

qed

also have ... = (R2 (P) ;; R2 (Q))
by (simp add : R2-seqr-form)

finally show ?thesis .

qed

lemma R2-seqr-closure [closure]:
assumes P is R2 Q is R2

shows (P ;; Q) is R2

by (metis Healthy-def ′ R2-seqr-distribute assms(1) assms(2))

lemma false-R2 [closure]: false is R2

by (rel-auto)

lemma R1-R2-commute:
R1 (R2 (P)) = R2 (R1 (P))
by pred-auto

lemma R2-R1-form: R2 (R1 (P)) = R1 (R2s(P))
by (rel-auto)

lemma R2s-H1-commute:
R2s(H1 (P)) = H1 (R2s(P))
by (rel-auto)

lemma R2s-H2-commute:
R2s(H2 (P)) = H2 (R2s(P))
by (simp add : H2-split R2s-def usubst)

16

lemma R2-R1-seq-drop-left :
R2 (R1 (P) ;; R1 (Q)) = R2 (P ;; R1 (Q))
by (rel-auto)

lemma R2c-idem: R2c(R2c(P)) = R2c(P)
by (rel-auto)

lemma R2c-Idempotent [closure]: Idempotent R2c

by (simp add : Idempotent-def R2c-idem)

lemma R2c-Monotonic [closure]: Monotonic R2c

by (rel-auto)

lemma R2c-H2-commute: R2c(H2 (P)) = H2 (R2c(P))
by (simp add : H2-split R2c-disj R2c-def R2s-def usubst , rel-auto)

lemma R2c-seq : R2c(R2 (P) ;; R2 (Q)) = (R2 (P) ;; R2 (Q))
by (metis (no-types, lifting) R1-R2c-commute R1-R2c-is-R2 R2-seqr-distribute R2c-idem)

lemma R2-R2c-def : R2 (P) = R1 (R2c(P))
by (rel-auto)

lemma R2-comp-def : R2 = R1 ◦ R2c
by (auto simp add : R2-R2c-def)

lemma R2c-R1-seq : R2c(R1 (R2c(P)) ;; R1 (R2c(Q))) = (R1 (R2c(P)) ;; R1 (R2c(Q)))
using R2c-seq [of P Q] by (simp add : R2-R2c-def)

lemma R1-R2c-seqr-distribute:
fixes P :: (′t ::trace, ′α, ′β) rel-rp and Q :: (′t , ′β, ′γ) rel-rp
assumes P is R1 P is R2c Q is R1 Q is R2c

shows R1 (R2c(P ;; Q)) = P ;; Q
by (metis Healthy-if R1-seqr R2c-R1-seq assms)

lemma R2-R1-true:
R2 (R1 (true)) = R1 (true)
by (simp add : R2-R1-form R2s-true)

lemma R1-true-R2 [closure]: R1 (true) is R2

by (rel-auto)

lemma R1-R2s-R1-true-lemma:
R1 (R2s(R1 (¬ R2s P) ;; R1 true)) = R1 (R2s((¬ P) ;; R1 true))
by (rel-auto)

lemma R2c-healthy-R2s: P is R2c =⇒ R1 (R2s(P)) = R1 (P)
by (simp add : Healthy-def R1-R2s-R2c)

2.3 R3: No activity while predecessor is waiting

definition R3 :: (′t ::trace, ′α) hrel-rp ⇒ (′t , ′α) hrel-rp where

[upred-defs]: R3 (P) = (II ⊳ $wait ⊲ P)

lemma R3-idem: R3 (R3 (P)) = R3 (P)
by (rel-auto)

17

lemma R3-Idempotent [closure]: Idempotent R3

by (simp add : Idempotent-def R3-idem)

lemma R3-mono: P ⊑ Q =⇒ R3 (P) ⊑ R3 (Q)
by (rel-auto)

lemma R3-Monotonic: Monotonic R3

by (simp add : mono-def R3-mono)

lemma R3-Continuous: Continuous R3

by (rel-auto)

lemma R3-conj : R3 (P ∧ Q) = (R3 (P) ∧ R3 (Q))
by (rel-auto)

lemma R3-disj : R3 (P ∨ Q) = (R3 (P) ∨ R3 (Q))
by (rel-auto)

lemma R3-USUP :
assumes A 6= {}
shows R3 (

d
i ∈ A · P(i)) = (

d
i ∈ A · R3 (P(i)))

using assms by (rel-auto)

lemma R3-UINF :
assumes A 6= {}
shows R3 (

⊔
i ∈ A · P(i)) = (

⊔
i ∈ A · R3 (P(i)))

using assms by (rel-auto)

lemma R3-condr : R3 (P ⊳ b ⊲ Q) = (R3 (P) ⊳ b ⊲ R3 (Q))
by (rel-auto)

lemma R3-skipr : R3 (II) = II

by (rel-auto)

lemma R3-form: R3 (P) = (($wait ∧ II) ∨ (¬ $wait ∧ P))
by (rel-auto)

lemma wait-R3 :
($wait ∧ R3 (P)) = (II ∧ $wait´)
by (rel-auto)

lemma nwait-R3 :
(¬$wait ∧ R3 (P)) = (¬$wait ∧ P)
by (rel-auto)

lemma R3-semir-form:
(R3 (P) ;; R3 (Q)) = R3 (P ;; R3 (Q))
by (rel-auto)

lemma R3-semir-closure:
assumes P is R3 Q is R3

shows (P ;; Q) is R3

using assms

by (metis Healthy-def ′ R3-semir-form)

18

lemma R1-R3-commute: R1 (R3 (P)) = R3 (R1 (P))
by (rel-auto)

lemma R2-R3-commute: R2 (R3 (P)) = R3 (R2 (P))
apply (rel-auto)
using minus-zero-eq apply blast+
done

2.4 R4: The trace strictly increases

definition R4 :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R4 (P) = (P ∧ $tr <u $tr´)

lemma R4-implies-R1 [closure]: P is R4 =⇒ P is R1

using less-iff by rel-blast

lemma R4-iff-refine:
P is R4 ←→ ($tr <u $tr´) ⊑ P

by (rel-blast)

lemma R4-idem: R4 (R4 P) = R4 P

by (rel-auto)

lemma R4-false: R4 (false) = false

by (rel-auto)

lemma R4-conj : R4 (P ∧ Q) = (R4 (P) ∧ R4 (Q))
by (rel-auto)

lemma R4-disj : R4 (P ∨ Q) = (R4 (P) ∨ R4 (Q))
by (rel-auto)

lemma R4-is-R4 [closure]: R4 (P) is R4

by (rel-auto)

lemma false-R4 [closure]: false is R4

by (rel-auto)

lemma UINF-R4-closed [closure]:
[[
∧

i . P i is R4]] =⇒ (
d

i · P i) is R4

by (rel-blast)

lemma conj-R4-closed [closure]:
[[P is R4 ; Q is R4]] =⇒ (P ∧ Q) is R4

by (simp add : Healthy-def R4-conj)

lemma disj-R4-closed [closure]:
[[P is R4 ; Q is R4]] =⇒ (P ∨ Q) is R4

by (simp add : Healthy-def R4-disj)

lemma seq-R4-closed-1 [closure]:
[[P is R4 ; Q is R1]] =⇒ (P ;; Q) is R4

using less-le-trans by rel-blast

lemma seq-R4-closed-2 [closure]:

19

[[P is R1 ; Q is R4]] =⇒ (P ;; Q) is R4

using le-less-trans by rel-blast

2.5 R5: The trace does not increase

definition R5 :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: R5 (P) = (P ∧ $tr =u $tr´)

lemma R5-implies-R1 [closure]: P is R5 =⇒ P is R1

using eq-iff by rel-blast

lemma R5-iff-refine:
P is R5 ←→ ($tr =u $tr´) ⊑ P

by (rel-blast)

lemma R5-conj : R5 (P ∧ Q) = (R5 (P) ∧ R5 (Q))
by (rel-auto)

lemma R5-disj : R5 (P ∨ Q) = (R5 (P) ∨ R5 (Q))
by (rel-auto)

lemma R4-R5 : R4 (R5 P) = false

by (rel-auto)

lemma R5-R4 : R5 (R4 P) = false

by (rel-auto)

lemma UINF-R5-closed [closure]:
[[
∧

i . P i is R5]] =⇒ (
d

i · P i) is R5

by (rel-blast)

lemma conj-R5-closed [closure]:
[[P is R5 ; Q is R5]] =⇒ (P ∧ Q) is R5

by (simp add : Healthy-def R5-conj)

lemma disj-R5-closed [closure]:
[[P is R5 ; Q is R5]] =⇒ (P ∨ Q) is R5

by (simp add : Healthy-def R5-disj)

lemma seq-R5-closed [closure]:
[[P is R5 ; Q is R5]] =⇒ (P ;; Q) is R5

by (rel-auto, metis)

2.6 RP laws

definition RP-def [upred-defs]: RP(P) = R1 (R2c(R3 (P)))

lemma RP-comp-def : RP = R1 ◦ R2c ◦ R3
by (auto simp add : RP-def)

lemma RP-alt-def : RP(P) = R1 (R2 (R3 (P)))
by (metis R1-R2c-is-R2 R1-idem RP-def)

lemma RP-intro: [[P is R1 ; P is R2 ; P is R3]] =⇒ P is RP

by (simp add : Healthy-def ′ RP-alt-def)

20

lemma RP-idem: RP(RP(P)) = RP(P)
by (simp add : R1-R2c-is-R2 R2-R3-commute R2-idem R3-idem RP-def)

lemma RP-Idempotent [closure]: Idempotent RP

by (simp add : Idempotent-def RP-idem)

lemma RP-mono: P ⊑ Q =⇒ RP(P) ⊑ RP(Q)
by (simp add : R1-R2c-is-R2 R2-mono R3-mono RP-def)

lemma RP-Monotonic: Monotonic RP

by (simp add : mono-def RP-mono)

lemma RP-Continuous: Continuous RP

by (simp add : Continuous-comp R1-Continuous R2c-Continuous R3-Continuous RP-comp-def)

lemma RP-skip:
RP(II) = II

by (simp add : R1-skip R2c-skip-r R3-skipr RP-def)

lemma RP-skip-closure:
II is RP

by (simp add : Healthy-def ′ RP-skip)

lemma RP-seq-closure:
assumes P is RP Q is RP

shows (P ;; Q) is RP

proof (rule RP-intro)
show (P ;; Q) is R1

by (metis Healthy-def R1-seqr RP-def assms)
thus (P ;; Q) is R2

by (metis Healthy-def ′ R2-R2c-def R2c-R1-seq RP-def assms)
show (P ;; Q) is R3

by (metis (no-types, lifting) Healthy-def ′ R1-R2c-is-R2 R2-R3-commute R3-idem R3-semir-form

RP-def assms)
qed

2.7 UTP theories

typedecl REA

abbreviation REA ≡ UTHY (REA, (′t ::trace, ′α) rp)

overloading

rea-hcond == utp-hcond :: (REA, (′t ::trace, ′α) rp) uthy ⇒ ((′t , ′α) rp × (′t , ′α) rp) health
rea-unit == utp-unit :: (REA, (′t ::trace, ′α) rp) uthy ⇒ (′t , ′α) hrel-rp

begin

definition rea-hcond :: (REA, (′t ::trace, ′α) rp) uthy ⇒ ((′t , ′α) rp × (′t , ′α) rp) health
where [upred-defs]: rea-hcond T = RP

definition rea-unit :: (REA, (′t ::trace, ′α) rp) uthy ⇒ (′t , ′α) hrel-rp
where [upred-defs]: rea-unit T = II

end

interpretation rea-utp-theory : utp-theory UTHY (REA, (′t ::trace, ′α) rp)
rewrites carrier (uthy-order REA) = [[RP]]H
by (simp-all add : rea-hcond-def utp-theory-def RP-idem)

interpretation rea-utp-theory-mono: utp-theory-continuous UTHY (REA, (′t ::trace, ′α) rp)

21

rewrites carrier (uthy-order REA) = [[RP]]H
by (unfold-locales, simp-all add : RP-Continuous rea-hcond-def)

interpretation rea-utp-theory-rel : utp-theory-unital UTHY (REA, (′t ::trace, ′α) rp)
rewrites carrier (uthy-order REA) = [[RP]]H
by (unfold-locales, simp-all add : rea-hcond-def rea-unit-def RP-seq-closure RP-skip-closure)

lemma rea-top: ⊤REA = ($wait ∧ II)
proof −
have ⊤REA = RP(false)
by (simp add : rea-utp-theory-mono.healthy-top, simp add : rea-hcond-def)

also have ... = ($wait ∧ II)
by (rel-auto, metis minus-zero-eq)

finally show ?thesis .

qed

lemma rea-top-left-zero:
assumes P is RP

shows (⊤REA ;; P) = ⊤REA
proof −
have (⊤REA ;; P) = (($wait ∧ II) ;; R3 (P))

by (metis (no-types, lifting) Healthy-def R1-R2c-is-R2 R2-R3-commute R3-idem RP-def assms

rea-top)
also have ... = ($wait ∧ R3 (P))
by (rel-auto)

also have ... = ($wait ∧ II)
by (metis R3-skipr wait-R3)

also have ... = ⊤REA
by (simp add : rea-top)

finally show ?thesis .

qed

lemma rea-bottom: ⊥REA = R1 ($wait ⇒ II)
proof −
have ⊥REA = RP(true)
by (simp add : rea-utp-theory-mono.healthy-bottom, simp add : rea-hcond-def)

also have ... = R1 ($wait ⇒ II)
by (rel-auto, metis minus-zero-eq)

finally show ?thesis .

qed

end

3 Reactive Parallel-by-Merge

theory utp-rea-parallel

imports utp-rea-healths

begin

We show closure of parallel by merge under the reactive healthiness conditions by means of
suitable restrictions on the merge predicate [4]. We first define healthiness conditions for R1
and R2 merge predicates.

definition R1m :: (′t :: trace, ′α) rp merge ⇒ (′t , ′α) rp merge

where [upred-defs]: R1m(M) = (M ∧ $tr< ≤u $tr´)

22

definition R1m ′ :: (′t :: trace, ′α) rp merge ⇒ (′t , ′α) rp merge

where [upred-defs]: R1m ′(M) = (M ∧ $tr< ≤u $tr´ ∧ $tr< ≤u $0−tr ∧ $tr< ≤u $1−tr)

A merge predicate can access the history through tr, as usual, but also through 0.tr and 1.tr.
Thus we have to remove the latter two histories as well to satisfy R2 for the overall construction.

term M [[0 ,x ,k/y ,z ,a]]

term M [[0 ,$tr´ − $tr<,$0−tr − $tr<,$1−tr − $tr</$tr<,$tr´,$0−tr ,$1−tr]]

definition R2m :: (′t :: trace, ′α) rp merge ⇒ (′t , ′α) rp merge

where [upred-defs]: R2m(M) = R1m(M [[0 ,$tr´ − $tr<,$0−tr − $tr<,$1−tr − $tr</$tr<,$tr´,$0−tr ,$1−tr]])

definition R2m ′ :: (′t :: trace, ′α) rp merge ⇒ (′t , ′α) rp merge

where [upred-defs]: R2m ′(M) = R1m ′(M [[0 ,$tr´ − $tr<,$0−tr − $tr<,$1−tr − $tr</$tr<,$tr´,$0−tr ,$1−tr]])

definition R2cm :: (′t :: trace, ′α) rp merge ⇒ (′t , ′α) rp merge

where [upred-defs]: R2cm(M) = M [[0 ,$tr´ − $tr<,$0−tr − $tr<,$1−tr − $tr</$tr<,$tr´,$0−tr ,$1−tr]]
⊳ $tr< ≤u $tr´ ⊲ M

lemma R2m ′-form:
R2m ′(M) =
(∃ (ttp, tt0, tt1) · M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]]

∧ $tr´ =u $tr< + ≪ttp≫

∧ $0−tr =u $tr< + ≪tt0≫

∧ $1−tr =u $tr< + ≪tt1≫)
by (rel-auto, metis diff-add-cancel-left ′)

lemma R1m-idem: R1m(R1m(P)) = R1m(P)
by (rel-auto)

lemma R1m-seq-lemma: R1m(R1m(M) ;; R1 (P)) = R1m(M) ;; R1 (P)
by (rel-auto)

lemma R1m-seq [closure]:
assumes M is R1m P is R1

shows M ;; P is R1m

proof −
from assms have R1m(M ;; P) = R1m(R1m(M) ;; R1 (P))
by (simp add : Healthy-if)

also have ... = R1m(M) ;; R1 (P)
by (simp add : R1m-seq-lemma)

also have ... = M ;; P
by (simp add : Healthy-if assms)

finally show ?thesis

by (simp add : Healthy-def)
qed

lemma R2m-idem: R2m(R2m(P)) = R2m(P)
by (rel-auto)

lemma R2m-seq-lemma: R2m ′(R2m ′(M) ;; R2 (P)) = R2m ′(M) ;; R2 (P)
apply (simp add : R2m ′-form R2-form)
apply (rel-auto)
apply (metis (no-types, lifting) add .assoc)+
done

23

lemma R2m ′-seq [closure]:
assumes M is R2m ′ P is R2

shows M ;; P is R2m ′

by (metis Healthy-def ′ R2m-seq-lemma assms(1) assms(2))

lemma R1-par-by-merge [closure]:
M is R1m =⇒ (P ‖M Q) is R1

by (rel-blast)

lemma R2-R2m ′-pbm: R2 (P ‖M Q) = (R2 (P) ‖R2m ′(M) R2 (Q))

proof −
have (R2 (P) ‖R2m ′(M) R2 (Q)) = ((R2 (P) ‖s R2 (Q)) ;;

(∃ (ttp, tt0, tt1) · M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]]
∧ $tr´ =u $tr< + ≪ttp≫

∧ $0−tr =u $tr< + ≪tt0≫

∧ $1−tr =u $tr< + ≪tt1≫))
by (simp add : par-by-merge-def R2m ′-form)

also have ... = (∃ (ttp, tt0, tt1) · ((R2 (P) ‖s R2 (Q)) ;; (M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]]
∧ $tr´ =u $tr< + ≪ttp≫

∧ $0−tr =u $tr< + ≪tt0≫

∧ $1−tr =u $tr< + ≪tt1≫)))
by (rel-blast)

also have ... = (∃ (ttp, tt0, tt1) · (((R2 (P) ‖s R2 (Q)) ∧ $0−tr´ =u $tr<´ + ≪tt0≫ ∧ $1−tr´ =u

$tr<´ + ≪tt1≫) ;;
(M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]] ∧ $tr´ =u $tr< +

≪ttp≫)))
by (rel-blast)

also have ... = (∃ (ttp, tt0, tt1) · (((R2 (P) ‖s R2 (Q)) ∧ $0−tr´ =u $tr<´ + ≪tt0≫ ∧ $1−tr´ =u

$tr<´ + ≪tt1≫) ;;
(M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]])) ∧ $tr´ =u $tr +

≪ttp≫)
by (rel-blast)

also have ... = (∃ (ttp, tt0, tt1) · (((R2 (P) ∧ $tr´ =u $tr + ≪tt0≫) ‖s (R2 (Q) ∧ $tr´ =u $tr +
≪tt1≫)) ;;

(M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]])) ∧ $tr´ =u $tr +
≪ttp≫)

by (rel-auto, blast , metis le-add trace-class .add-diff-cancel-left)
also have ... = (∃ (ttp, tt0, tt1) · ((((∃ tt0

′
· P [[0 ,≪tt0

′
≫/$tr ,$tr´]] ∧ $tr´ =u $tr + ≪tt0

′
≫) ∧

$tr´ =u $tr + ≪tt0≫)
‖s ((∃ tt1

′
· Q [[0 ,≪tt1

′
≫/$tr ,$tr´]] ∧ $tr´ =u $tr + ≪tt1

′
≫) ∧ $tr´ =u

$tr + ≪tt1≫)) ;;
(M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]])) ∧ $tr´ =u $tr +

≪ttp≫)
by (simp add : R2-form usubst)

also have ... = (∃ (ttp, tt0, tt1) · (((P [[0 ,≪tt0≫/$tr ,$tr´]] ∧ $tr´ =u $tr + ≪tt0≫)
‖s (Q [[0 ,≪tt1≫/$tr ,$tr´]] ∧ $tr´ =u $tr + ≪tt1≫)) ;;
(M [[0 ,≪ttp≫,≪tt0≫,≪tt1≫/$tr<,$tr´,$0−tr ,$1−tr]])) ∧ $tr´ =u $tr +

≪ttp≫)
by (rel-auto, metis left-cancel-monoid-class .add-left-imp-eq , blast)

also have ... = R2 (P ‖M Q)
by (rel-auto, blast , metis diff-add-cancel-left ′)

finally show ?thesis ..

qed

24

lemma R2m-R2m ′-pbm: (R2 (P) ‖R2m(M) R2 (Q)) = (R2 (P) ‖R2m ′(M) R2 (Q))

by (rel-blast)

lemma R2-par-by-merge [closure]:
assumes P is R2 Q is R2 M is R2m

shows (P ‖M Q) is R2

by (metis Healthy-def ′ R2-R2m ′-pbm R2m-R2m ′-pbm assms(1) assms(2) assms(3))

lemma R2-par-by-merge ′ [closure]:
assumes P is R2 Q is R2 M is R2m ′

shows (P ‖M Q) is R2

by (metis Healthy-def ′ R2-R2m ′-pbm assms(1) assms(2) assms(3))

lemma R1m-skip-merge: R1m(skipm) = skipm

by (rel-auto)

lemma R1m-disj : R1m(P ∨ Q) = (R1m(P) ∨ R1m(Q))
by (rel-auto)

lemma R1m-conj : R1m(P ∧ Q) = (R1m(P) ∧ R1m(Q))
by (rel-auto)

lemma R2m-skip-merge: R2m(skipm) = skipm

apply (rel-auto) using minus-zero-eq by blast

lemma R2m-disj : R2m(P ∨ Q) = (R2m(P) ∨ R2m(Q))
by (rel-auto)

lemma R2m-conj : R2m(P ∧ Q) = (R2m(P) ∧ R2m(Q))
by (rel-auto)

definition R3m :: (′t :: trace, ′α) rp merge ⇒ (′t , ′α) rp merge where

[upred-defs]: R3m(M) = skipm ⊳ $wait< ⊲ M

lemma R3-par-by-merge:
assumes

P is R3 Q is R3 M is R3m

shows (P ‖M Q) is R3

proof −
have (P ‖M Q) = ((P ‖M Q)[[true/$wait]] ⊳ $wait ⊲ (P ‖M Q))
by (metis cond-L6 cond-var-split in-var-uvar wait-vwb-lens)

also have ... = (((R3 P)[[true/$wait]] ‖(R3m M)[[true/$wait<]] (R3 Q)[[true/$wait]]) ⊳ $wait ⊲ (P ‖M
Q))

by (subst-tac, simp add : Healthy-if assms)
also have ... = ((II [[true/$wait]] ‖skipm[[true/$wait<]] II [[true/$wait]]) ⊳ $wait ⊲ (P ‖M Q))

by (simp add : R3-def R3m-def usubst)
also have ... = ((II ‖skipm

II)[[true/$wait]] ⊳ $wait ⊲ (P ‖M Q))

by (subst-tac)
also have ... = (II ⊳ $wait ⊲ (P ‖M Q))
by (simp add : cond-var-subst-left par-by-merge-skip)

also have ... = R3 (P ‖M Q)
by (simp add : R3-def)

finally show ?thesis

by (simp add : Healthy-def)
qed

25

lemma SymMerge-R1-true [closure]:
M is SymMerge =⇒ M ;; R1 (true) is SymMerge

by (rel-auto)

end

4 Reactive Relations

theory utp-rea-rel

imports

utp-rea-healths

UTP−KAT .utp-kleene
begin

This theory defines a reactive relational calculus for R1 -R2 predicates as an extension of the
standard alphabetised predicate calculus. This enables us to formally characterise relational
programs that refer to both state variables and a trace history. For more details on reactive
relations, please see the associated journal paper [3].

4.1 Healthiness Conditions

definition RR :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: RR(P) = (∃ {$ok ,$ok´,$wait ,$wait´} · R2 (P))

lemma RR-idem: RR(RR(P)) = RR(P)
by (rel-auto)

lemma RR-Idempotent [closure]: Idempotent RR

by (simp add : Idempotent-def RR-idem)

lemma RR-Continuous [closure]: Continuous RR

by (rel-blast)

lemma R1-RR: R1 (RR(P)) = RR(P)
by (rel-auto)

lemma R2c-RR: R2c(RR(P)) = RR(P)
by (rel-auto)

lemma RR-implies-R1 [closure]: P is RR =⇒ P is R1

by (metis Healthy-def R1-RR)

lemma RR-implies-R2c: P is RR =⇒ P is R2c

by (metis Healthy-def R2c-RR)

lemma RR-implies-R2 [closure]: P is RR =⇒ P is R2

by (metis Healthy-def R1-RR R2-R2c-def R2c-RR)

lemma RR-intro:
assumes $ok ♯ P $ok´ ♯ P $wait ♯ P $wait´ ♯ P P is R1 P is R2c

shows P is RR

by (simp add : RR-def Healthy-def ex-plus R2-R2c-def , simp add : Healthy-if assms ex-unrest)

lemma RR-R2-intro:

26

assumes $ok ♯ P $ok´ ♯ P $wait ♯ P $wait´ ♯ P P is R2

shows P is RR

by (simp add : RR-def Healthy-def ex-plus , simp add : Healthy-if assms ex-unrest)

lemma RR-unrests [unrest]:
assumes P is RR

shows $ok ♯ P $ok´ ♯ P $wait ♯ P $wait´ ♯ P
proof −
have $ok ♯ RR(P) $ok´ ♯ RR(P) $wait ♯ RR(P) $wait´ ♯ RR(P)
by (simp-all add : RR-def ex-plus unrest)

thus $ok ♯ P $ok´ ♯ P $wait ♯ P $wait´ ♯ P
by (simp-all add : assms Healthy-if)

qed

lemma RR-refine-intro:
assumes P is RR Q is RR

∧
t . P [[0 ,≪t≫/$tr ,$tr´]] ⊑ Q [[0 ,≪t≫/$tr ,$tr´]]

shows P ⊑ Q

proof −
have

∧
t . (RR P)[[0 ,≪t≫/$tr ,$tr´]] ⊑ (RR Q)[[0 ,≪t≫/$tr ,$tr´]]

by (simp add : Healthy-if assms)
hence RR(P) ⊑ RR(Q)
by (rel-auto)

thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma R4-RR-closed [closure]:
assumes P is RR

shows R4 (P) is RR

proof −
have R4 (RR(P)) is RR

by (rel-blast)
thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma R5-RR-closed [closure]:
assumes P is RR

shows R5 (P) is RR

proof −
have R5 (RR(P)) is RR

using minus-zero-eq by rel-auto

thus ?thesis

by (simp add : Healthy-if assms)
qed

4.2 Reactive relational operators

named-theorems rpred

abbreviation rea-true :: (′t ::trace, ′α, ′β) rel-rp (truer) where

truer ≡ R1 (true)

definition rea-not :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp (¬r - [40] 40)
where [upred-defs]: (¬r P) = R1 (¬ P)

27

definition rea-diff :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp (infixl −r 65)
where [upred-defs]: rea-diff P Q = (P ∧ ¬r Q)

definition rea-impl ::
(′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp (infixr ⇒r 25)

where [upred-defs]: (P ⇒r Q) = (¬r P ∨ Q)

definition rea-lift :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp ([-]r)
where [upred-defs]: [P]r = R1 (P)

definition rea-skip :: (′t ::trace, ′α) hrel-rp (II r)
where [upred-defs]: II r = ($tr´ =u $tr ∧ $ΣR´ =u $ΣR)

definition rea-assert :: (′t ::trace, ′α) hrel-rp ⇒ (′t , ′α) hrel-rp ({-}r)
where [upred-defs]: {b}r = (II r ∨ ¬r b)

Trace contribution substitution: make a substitution for the trace contribution lens tt, and apply
R1 to make the resulting predicate healthy again.

definition rea-subst :: (′t ::trace, ′α) hrel-rp ⇒ (′t , (′t , ′α) rp) hexpr ⇒ (′t , ′α) hrel-rp (-[[-]]r [999 ,0]
999)
where [upred-defs]: P [[v]]r = R1 (P [[v/&tt]])

4.3 Unrestriction and substitution laws

lemma rea-true-unrest [unrest]:
[[x ⊲⊳ ($tr)v; x ⊲⊳ ($tr´)v]] =⇒ x ♯ truer
by (simp add : R1-def unrest lens-indep-sym)

lemma rea-not-unrest [unrest]:
[[x ⊲⊳ ($tr)v; x ⊲⊳ ($tr´)v; x ♯ P]] =⇒ x ♯ ¬r P

by (simp add : rea-not-def R1-def unrest lens-indep-sym)

lemma rea-impl-unrest [unrest]:
[[x ⊲⊳ ($tr)v; x ⊲⊳ ($tr´)v; x ♯ P ; x ♯ Q]] =⇒ x ♯ (P ⇒r Q)
by (simp add : rea-impl-def unrest)

lemma rea-true-usubst [usubst]:
[[$tr ♯ σ; $tr´ ♯ σ]] =⇒ σ † truer = truer
by (simp add : R1-def usubst)

lemma rea-not-usubst [usubst]:
[[$tr ♯ σ; $tr´ ♯ σ]] =⇒ σ † (¬r P) = (¬r σ † P)
by (simp add : rea-not-def R1-def usubst)

lemma rea-impl-usubst [usubst]:
[[$tr ♯ σ; $tr´ ♯ σ]] =⇒ σ † (P ⇒r Q) = (σ † P ⇒r σ † Q)
by (simp add : rea-impl-def usubst R1-def)

lemma rea-true-usubst-tt [usubst]:
R1 (true)[[e/&tt]] = true

by (rel-simp)

lemma unrest-rea-subst [unrest]:
[[mwb-lens x ; x ⊲⊳ ($tr)v; x ⊲⊳ ($tr´)v; x ♯ v ; x ♯ P]] =⇒ x ♯ P [[v]]r
by (simp add : rea-subst-def R1-def unrest lens-indep-sym)

28

lemma rea-substs [usubst]:
truer[[v]]r = truer true[[v]]r = truer false[[v]]r = false

(¬r P)[[v]]r = (¬r P [[v]]r) (P ∧ Q)[[v]]r = (P [[v]]r ∧ Q [[v]]r) (P ∨ Q)[[v]]r = (P [[v]]r ∨ Q [[v]]r)
(P ⇒r Q)[[v]]r = (P [[v]]r ⇒r Q [[v]]r)
by rel-auto+

lemma rea-substs-lattice [usubst]:
(
d

i · P(i))[[v]]r = (
d

i · (P(i))[[v]]r)
(
d

i∈A · P(i))[[v]]r = (
d

i∈A · (P(i))[[v]]r)
(
⊔

i · P(i))[[v]]r = (
⊔

i · (P(i))[[v]]r)
by (rel-auto)+

lemma rea-subst-USUP-set [usubst]:
A 6= {} =⇒ (

⊔
i∈A · P(i))[[v]]r = (

⊔
i∈A · (P(i))[[v]]r)

by (rel-auto)+

4.4 Closure laws

lemma rea-lift-R1 [closure]: [P]r is R1

by (rel-simp)

lemma R1-rea-not : R1 (¬r P) = (¬r P)
by rel-auto

lemma R1-rea-not ′: R1 (¬r P) = (¬r R1 (P))
by rel-auto

lemma R2c-rea-not : R2c(¬r P) = (¬r R2c(P))
by rel-auto

lemma RR-rea-not : RR(¬r RR(P)) = (¬r RR(P))
by (rel-auto)

lemma R1-rea-impl : R1 (P ⇒r Q) = (P ⇒r R1 (Q))
by (rel-auto)

lemma R1-rea-impl ′: R1 (P ⇒r Q) = (R1 (P) ⇒r R1 (Q))
by (rel-auto)

lemma R2c-rea-impl : R2c(P ⇒r Q) = (R2c(P) ⇒r R2c(Q))
by (rel-auto)

lemma RR-rea-impl : RR(RR(P) ⇒r RR(Q)) = (RR(P) ⇒r RR(Q))
by (rel-auto)

lemma rea-true-R1 [closure]: truer is R1

by (rel-auto)

lemma rea-true-R2c [closure]: truer is R2c

by (rel-auto)

lemma rea-true-RR [closure]: truer is RR

by (rel-auto)

lemma rea-not-R1 [closure]: ¬r P is R1

29

by (rel-auto)

lemma rea-not-R2c [closure]: P is R2c =⇒ ¬r P is R2c

by (simp add : Healthy-def rea-not-def R1-R2c-commute[THEN sym] R2c-not)

lemma rea-not-R2-closed [closure]:
P is R2 =⇒ (¬r P) is R2

by (simp add : Healthy-def ′ R1-rea-not ′ R2-R2c-def R2c-rea-not)

lemma rea-no-RR [closure]:
[[P is RR]] =⇒ (¬r P) is RR

by (metis Healthy-def ′ RR-rea-not)

lemma rea-impl-R1 [closure]:
Q is R1 =⇒ (P ⇒r Q) is R1

by (rel-blast)

lemma rea-impl-R2c [closure]:
[[P is R2c; Q is R2c]] =⇒ (P ⇒r Q) is R2c

by (simp add : rea-impl-def Healthy-def rea-not-def R1-R2c-commute[THEN sym] R2c-not R2c-disj)

lemma rea-impl-R2 [closure]:
[[P is R2 ; Q is R2]] =⇒ (P ⇒r Q) is R2

by (rel-blast)

lemma rea-impl-RR [closure]:
[[P is RR; Q is RR]] =⇒ (P ⇒r Q) is RR

by (metis Healthy-def ′ RR-rea-impl)

lemma conj-RR [closure]:
[[P is RR; Q is RR]] =⇒ (P ∧ Q) is RR

by (meson RR-implies-R1 RR-implies-R2c RR-intro RR-unrests(1−4) conj-R1-closed-1 conj-R2c-closed

unrest-conj)

lemma disj-RR [closure]:
[[P is RR; Q is RR]] =⇒ (P ∨ Q) is RR

by (metis Healthy-def ′R1-RR R1-idem R1-rea-not ′RR-rea-impl RR-rea-not disj-comm double-negation

rea-impl-def rea-not-def)

lemma USUP-mem-RR-closed [closure]:
assumes

∧
i . i ∈ A =⇒ P i is RR A 6= {}

shows (
⊔

i∈A · P(i)) is RR

proof −
have 1 :(

⊔
i∈A · P(i)) is R1

by (unfold Healthy-def , subst R1-UINF , simp-all add : Healthy-if assms closure cong : USUP-cong)
have 2 :(

⊔
i∈A · P(i)) is R2c

by (unfold Healthy-def , subst R2c-UINF , simp-all add : Healthy-if assms RR-implies-R2c closure

cong : USUP-cong)
show ?thesis

using 1 2 by (rule-tac RR-intro, simp-all add : unrest assms)
qed

lemma USUP-ind-RR-closed [closure]:
assumes

∧
i . P i is RR

shows (
⊔

i · P(i)) is RR

30

using USUP-mem-RR-closed [of UNIV P] by (simp add : assms)

lemma UINF-mem-RR-closed [closure]:
assumes

∧
i . P i is RR

shows (
d

i∈A · P(i)) is RR

proof −
have 1 :(

d
i∈A · P(i)) is R1

by (unfold Healthy-def , subst R1-USUP , simp-all add : Healthy-if assms closure)
have 2 :(

d
i∈A · P(i)) is R2c

by (unfold Healthy-def , subst R2c-USUP , simp-all add : Healthy-if assms RR-implies-R2c closure)
show ?thesis

using 1 2 by (rule-tac RR-intro, simp-all add : unrest assms)
qed

lemma UINF-ind-RR-closed [closure]:
assumes

∧
i . P i is RR

shows (
d

i · P(i)) is RR

using UINF-mem-RR-closed [of P UNIV] by (simp add : assms)

lemma USUP-elem-RR [closure]:
assumes

∧
i . P i is RR A 6= {}

shows (
⊔

i ∈ A · P i) is RR

proof −
have 1 :(

⊔
i∈A · P(i)) is R1

by (unfold Healthy-def , subst R1-UINF , simp-all add : Healthy-if assms closure)
have 2 :(

⊔
i∈A · P(i)) is R2c

by (unfold Healthy-def , subst R2c-UINF , simp-all add : Healthy-if assms RR-implies-R2c closure)
show ?thesis

using 1 2 by (rule-tac RR-intro, simp-all add : unrest assms)
qed

lemma seq-RR-closed [closure]:
assumes P is RR Q is RR

shows P ;; Q is RR

unfolding Healthy-def

by (simp add : RR-def Healthy-if assms closure RR-implies-R2 ex-unrest unrest)

lemma power-Suc-RR-closed [closure]:
P is RR =⇒ P ;; P ˆ i is RR

by (induct i , simp-all add : closure upred-semiring .power-Suc)

lemma seqr-iter-RR-closed [closure]:
[[I 6= [];

∧
i . i ∈ set(I) =⇒ P(i) is RR]] =⇒ (;; i : I · P(i)) is RR

apply (induct I , simp-all)
apply (rename-tac i I)
apply (case-tac I)
apply (simp-all add : seq-RR-closed)

done

lemma cond-tt-RR-closed [closure]:
assumes P is RR Q is RR

shows P ⊳ $tr´ =u $tr ⊲ Q is RR

apply (rule RR-intro)
apply (simp-all add : unrest assms)
apply (simp-all add : Healthy-def)

31

apply (simp-all add : R1-cond R2c-condr Healthy-if assms RR-implies-R2c closure R2c-tr ′-minus-tr)
done

lemma rea-skip-RR [closure]:
II r is RR

apply (rel-auto) using minus-zero-eq by blast

lemma tr ′-eq-tr-RR-closed [closure]: $tr´ =u $tr is RR

apply (rel-auto) using minus-zero-eq by auto

lemma inf-RR-closed [closure]:
[[P is RR; Q is RR]] =⇒ P ⊓ Q is RR

by (simp add : disj-RR uinf-or)

lemma conj-tr-strict-RR-closed [closure]:
assumes P is RR

shows (P ∧ $tr <u $tr´) is RR

proof −
have RR(RR(P) ∧ $tr <u $tr´) = (RR(P) ∧ $tr <u $tr´)
by (rel-auto)

thus ?thesis

by (metis Healthy-def assms)
qed

lemma rea-assert-RR-closed [closure]:
assumes b is RR

shows {b}r is RR

by (simp add : closure assms rea-assert-def)

lemma upower-RR-closed [closure]:
[[i > 0 ; P is RR]] =⇒ P ˆ i is RR

apply (induct i , simp-all)
apply (rename-tac i)
apply (case-tac i = 0)
apply (simp-all add : closure upred-semiring .power-Suc)
done

lemma seq-power-RR-closed [closure]:
assumes P is RR Q is RR

shows (P ˆ i) ;; Q is RR

by (metis assms neq0-conv seq-RR-closed seqr-left-unit upower-RR-closed upred-semiring .power-0)

lemma ustar-right-RR-closed [closure]:
assumes P is RR Q is RR

shows P ;; Q⋆ is RR

proof −
have P ;; Q⋆ = P ;; (

d
i ∈ {0 ..} · Q ˆ i)

by (simp add : ustar-def)
also have ... = P ;; (II ⊓ (

d
i ∈ {1 ..} · Q ˆ i))

by (metis One-nat-def UINF-atLeast-first upred-semiring .power-0)
also have ... = (P ∨ P ;; (

d
i ∈ {1 ..} · Q ˆ i))

by (simp add : disj-upred-def [THEN sym] seqr-or-distr)
also have ... is RR

proof −
have (

d
i ∈ {1 ..} · Q ˆ i) is RR

32

by (rule UINF-mem-Continuous-closed , simp-all add : assms closure)
thus ?thesis

by (simp add : assms closure)
qed

finally show ?thesis .

qed

lemma ustar-left-RR-closed [closure]:
assumes P is RR Q is RR

shows P⋆ ;; Q is RR

proof −
have P⋆ ;; Q = (

d
i ∈ {0 ..} · P ˆ i) ;; Q

by (simp add : ustar-def)
also have ... = (II ⊓ (

d
i ∈ {1 ..} · P ˆ i)) ;; Q

by (metis One-nat-def UINF-atLeast-first upred-semiring .power-0)
also have ... = (Q ∨ (

d
i ∈ {1 ..} · P ˆ i) ;; Q)

by (simp add : disj-upred-def [THEN sym] seqr-or-distl)
also have ... is RR

proof −
have (

d
i ∈ {1 ..} · P ˆ i) is RR

by (rule UINF-mem-Continuous-closed , simp-all add : assms closure)
thus ?thesis

by (simp add : assms closure)
qed

finally show ?thesis .

qed

lemma uplus-RR-closed [closure]: P is RR =⇒ P+ is RR

by (simp add : uplus-def ustar-right-RR-closed)

lemma trace-ext-prefix-RR [closure]:
[[$tr ♯ e; $ok ♯ e; $wait ♯ e; outα ♯ e]] =⇒ $tr ˆu e ≤u $tr´ is RR

apply (rel-auto)
apply (metis (no-types, lifting) Prefix-Order .same-prefix-prefix less-eq-list-def prefix-concat-minus zero-list-def)
apply (metis append-minus list-append-prefixD minus-cancel-le order-refl)

done

lemma rea-subst-R1-closed [closure]: P [[v]]r is R1

by (rel-auto)

lemma R5-comp [rpred]:
assumes P is RR Q is RR

shows R5 (P ;; Q) = R5 (P) ;; R5 (Q)
proof −
have R5 (RR(P) ;; RR(Q)) = R5 (RR(P)) ;; R5 (RR(Q))
by (rel-auto; force)

thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma R4-comp [rpred]:
assumes P is R4 Q is RR

shows R4 (P ;; Q) = P ;; Q
proof −
have R4 (R4 (P) ;; RR(Q)) = R4 (P) ;; RR(Q)

33

by (rel-auto, blast)
thus ?thesis

by (simp add : Healthy-if assms)
qed

4.5 Reactive relational calculus

lemma rea-skip-unit [rpred]:
assumes P is RR

shows P ;; II r = P II r ;; P = P

proof −
have 1 : RR(P) ;; II r = RR(P)
by (rel-auto)

have 2 : II r ;; RR(P) = RR(P)
by (rel-auto)

from 1 2 show P ;; II r = P II r ;; P = P

by (simp-all add : Healthy-if assms)
qed

lemma rea-true-conj [rpred]:
assumes P is R1

shows (truer ∧ P) = P (P ∧ truer) = P

using assms

by (simp-all add : Healthy-def R1-def utp-pred-laws.inf-commute)

lemma rea-true-disj [rpred]:
assumes P is R1

shows (truer ∨ P) = truer (P ∨ truer) = truer
using assms by (metis Healthy-def R1-disj disj-comm true-disj-zero)+

lemma rea-not-not [rpred]: P is R1 =⇒ (¬r ¬r P) = P

by (simp add : rea-not-def R1-negate-R1 Healthy-if)

lemma rea-not-rea-true [simp]: (¬r truer) = false

by (simp add : rea-not-def R1-negate-R1 R1-false)

lemma rea-not-false [simp]: (¬r false) = truer
by (simp add : rea-not-def)

lemma rea-true-impl [rpred]:
P is R1 =⇒ (truer ⇒r P) = P

by (simp add : rea-not-def rea-impl-def R1-negate-R1 R1-false Healthy-if)

lemma rea-true-impl ′ [rpred]:
P is R1 =⇒(true ⇒r P) = P

by (simp add : rea-not-def rea-impl-def R1-negate-R1 R1-false Healthy-if)

lemma rea-false-impl [rpred]:
P is R1 =⇒ (false ⇒r P) = truer
by (simp add : rea-impl-def rpred Healthy-if)

lemma rea-impl-true [simp]: (P ⇒r truer) = truer
by (rel-auto)

lemma rea-impl-false [simp]: (P ⇒r false) = (¬r P)
by (rel-simp)

34

lemma rea-imp-refl [rpred]: P is R1 =⇒ (P ⇒r P) = truer
by (rel-blast)

lemma rea-impl-conj [rpred]:
(P ⇒r Q ⇒r R) = ((P ∧ Q) ⇒r R)
by (rel-auto)

lemma rea-impl-mp [rpred]:
(P ∧ (P ⇒r Q)) = (P ∧ Q)
by (rel-auto)

lemma rea-impl-conj-combine [rpred]:
((P ⇒r Q) ∧ (P ⇒r R)) = (P ⇒r Q ∧ R)
by (rel-auto)

lemma rea-impl-alt-def :
assumes Q is R1

shows (P ⇒r Q) = R1 (P ⇒ Q)
proof −
have (P ⇒r R1 (Q)) = R1 (P ⇒ Q)
by (rel-auto)

thus ?thesis

by (simp add : assms Healthy-if)
qed

lemma rea-not-true [simp]: (¬r true) = false

by (rel-auto)

lemma rea-not-demorgan1 [simp]:
(¬r (P ∧ Q)) = (¬r P ∨ ¬r Q)
by (rel-auto)

lemma rea-not-demorgan2 [simp]:
(¬r (P ∨ Q)) = (¬r P ∧ ¬r Q)
by (rel-auto)

lemma rea-not-or [rpred]:
P is R1 =⇒ (P ∨ ¬r P) = truer
by (rel-blast)

lemma rea-not-and [simp]:
(P ∧ ¬r P) = false

by (rel-auto)

lemma rea-not-INFIMUM [simp]:
(¬r (

⊔
i∈A. Q(i))) = (

d
i∈A. ¬r Q(i))

by (rel-auto)

lemma rea-not-USUP [simp]:
(¬r (

⊔
i∈A · Q(i))) = (

d
i∈A · ¬r Q(i))

by (rel-auto)

lemma rea-not-SUPREMUM [simp]:
A 6= {} =⇒ (¬r (

d
i∈A. Q(i))) = (

⊔
i∈A. ¬r Q(i))

35

by (rel-auto)

lemma rea-not-UINF [simp]:
A 6= {} =⇒ (¬r (

d
i∈A · Q(i))) = (

⊔
i∈A · ¬r Q(i))

by (rel-auto)

lemma USUP-mem-rea-true [simp]: A 6= {} =⇒ (
⊔

i ∈ A · truer) = truer
by (rel-auto)

lemma USUP-ind-rea-true [simp]: (
⊔

i · truer) = truer
by (rel-auto)

lemma UINF-ind-rea-true [rpred]: A 6= {} =⇒ (
d

i∈A · truer) = truer
by (rel-auto)

lemma UINF-rea-impl : (
d

P∈A · F (P) ⇒r G(P)) = ((
⊔

P∈A · F (P)) ⇒r (
d

P∈A · G(P)))
by (rel-auto)

lemma rea-not-shEx [rpred]: (¬r shEx P) = (shAll (λ x . ¬r P x))
by (rel-auto)

lemma rea-assert-true:
{truer}r = II r
by (rel-auto)

lemma rea-false-true:
{false}r = truer
by (rel-auto)

declare R4-idem [rpred]
declare R4-false [rpred]
declare R4-conj [rpred]
declare R4-disj [rpred]

declare R4-R5 [rpred]
declare R5-R4 [rpred]

declare R5-conj [rpred]
declare R5-disj [rpred]

lemma R4-USUP [rpred]: I 6= {} =⇒ R4 (
⊔

i∈I · P(i)) = (
⊔

i∈I · R4 (P(i)))
by (rel-auto)

lemma R5-USUP [rpred]: I 6= {} =⇒ R5 (
⊔

i∈I · P(i)) = (
⊔

i∈I · R5 (P(i)))
by (rel-auto)

lemma R4-UINF [rpred]: R4 (
d

i∈I · P(i)) = (
d

i∈I · R4 (P(i)))
by (rel-auto)

lemma R5-UINF [rpred]: R5 (
d

i∈I · P(i)) = (
d

i∈I · R5 (P(i)))
by (rel-auto)

4.6 UTP theory

We create a UTP theory of reactive relations which in particular provides Kleene star theorems

36

typedecl RREL

abbreviation RREL ≡ UTHY (RREL, (′t ::trace, ′α) rp)

overloading

rrel-hcond == utp-hcond :: (RREL, (′t ::trace, ′α) rp) uthy ⇒ ((′t , ′α) rp × (′t , ′α) rp) health
rrel-unit == utp-unit :: (RREL, (′t ::trace, ′α) rp) uthy ⇒ (′t , ′α) hrel-rp

begin

definition rrel-hcond :: (RREL, (′t ::trace, ′α) rp) uthy ⇒ ((′t , ′α) rp × (′t , ′α) rp) health where

[upred-defs]: rrel-hcond T = RR

definition rrel-unit :: (RREL, (′t ::trace, ′α) rp) uthy ⇒ (′t , ′α) hrel-rp where

[upred-defs]: rrel-unit T = II r
end

interpretation rrel-thy : utp-theory-kleene UTHY (RREL, (′t ::trace, ′α) rp)
rewrites

∧
P . P ∈ carrier (uthy-order RREL) ←→ P is RR

and P is HRREL ←→ P is RR

and carrier (uthy-order RREL) → carrier (uthy-order RREL) ≡ [[RR]]H → [[RR]]H
and [[HRREL]]H → [[HRREL]]H ≡ [[RR]]H → [[RR]]H
and ⊤RREL = false

and IIRREL = II r
and le (uthy-order RREL) = op ⊑

proof −
interpret lat : utp-theory-continuous UTHY (RREL, (′t ::trace, ′α) rp)
by (unfold-locales, simp-all add : rrel-hcond-def rrel-unit-def closure Healthy-if rpred)

show 1 : ⊤RREL = (false :: (′t , ′α) hrel-rp)
by (metis Healthy-if lat .healthy-top rea-no-RR rea-not-rea-true rea-true-RR rrel-hcond-def)

thus utp-theory-kleene UTHY (RREL, (′t , ′α) rp)
by (unfold-locales, simp-all add : rrel-hcond-def rrel-unit-def closure Healthy-if rpred)

qed (simp-all add : rrel-hcond-def rrel-unit-def closure Healthy-if rpred)

declare rrel-thy .top-healthy [simp del]
declare rrel-thy .bottom-healthy [simp del]

abbreviation rea-star :: - ⇒ - (-⋆r [999] 999) where

P⋆r ≡ P⋆RREL

4.7 Instantaneous Reactive Relations

Instantaneous Reactive Relations, where the trace stays the same.

abbreviation Instant :: (′t ::trace, ′α) hrel-rp ⇒ (′t , ′α) hrel-rp where

Instant(P) ≡ RID(tr)(P)

lemma skip-rea-Instant [closure]: II r is Instant

by (rel-auto)

end

5 Reactive Conditions

theory utp-rea-cond

imports utp-rea-rel

begin

37

5.1 Healthiness Conditions

definition RC1 :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: RC1 (P) = (¬r (¬r P) ;; truer)

definition RC :: (′t ::trace, ′α, ′β) rel-rp ⇒ (′t , ′α, ′β) rel-rp where

[upred-defs]: RC = RC1 ◦ RR

lemma RC-intro: [[P is RR; ((¬r (¬r P) ;; truer) = P)]] =⇒ P is RC

by (simp add : Healthy-def RC1-def RC-def)

lemma RC-intro ′: [[P is RR; P is RC1]] =⇒ P is RC

by (simp add : Healthy-def RC1-def RC-def)

lemma RC1-idem: RC1 (RC1 (P)) = RC1 (P)
by (rel-auto, (blast intro: dual-order .trans)+)

lemma RC1-mono: P ⊑ Q =⇒ RC1 (P) ⊑ RC1 (Q)
by (rel-blast)

lemma RC1-prop:
assumes P is RC1

shows (¬r P) ;; R1 true = (¬r P)
proof −
have (¬r P) = (¬r (RC1 P))
by (simp add : Healthy-if assms)

also have ... = (¬r P) ;; R1 true

by (simp add : RC1-def rpred closure)
finally show ?thesis ..

qed

lemma R2-RC : R2 (RC P) = RC P

proof −
have ¬r RR P is RR

by (metis (no-types) Healthy-Idempotent RR-Idempotent RR-rea-not)
then show ?thesis

by (metis (no-types) Healthy-def ′ R1-R2c-seqr-distribute R2-R2c-def RC1-def RC-def RR-implies-R1

RR-implies-R2c comp-apply rea-not-R2-closed rea-true-R1 rea-true-R2c)
qed

lemma RC-R2-def : RC = RC1 ◦ RR
by (auto simp add : RC-def fun-eq-iff R1-R2c-commute[THEN sym] R1-R2c-is-R2)

lemma RC-implies-R2 : P is RC =⇒ P is R2

by (metis Healthy-def ′ R2-RC)

lemma RC-ex-ok-wait : (∃ {$ok , $ok´, $wait , $wait´} · RC P) = RC P

by (rel-auto)

An important property of reactive conditions is they are monotonic with respect to the trace.
That is, P with a shorter trace is refined by P with a longer trace.

lemma RC-prefix-refine:
assumes P is RC s ≤ t

shows P [[0 ,≪s≫/$tr ,$tr´]] ⊑ P [[0 ,≪t≫/$tr ,$tr´]]
proof −
from assms(2) have (RC P)[[0 ,≪s≫/$tr ,$tr´]] ⊑ (RC P)[[0 ,≪t≫/$tr ,$tr´]]

38

apply (rel-auto)
using dual-order .trans apply blast

done

thus ?thesis

by (simp only : assms(1) Healthy-if)
qed

5.2 Closure laws

lemma RC-implies-RR [closure]:
assumes P is RC

shows P is RR

by (metis Healthy-def RC-ex-ok-wait RC-implies-R2 RR-def assms)

lemma RC-implies-RC1 : P is RC =⇒ P is RC1

by (metis Healthy-def RC-R2-def RC-implies-RR comp-eq-dest-lhs)

lemma RC1-trace-ext-prefix :
outα ♯ e =⇒ RC1 (¬r $tr ˆu e ≤u $tr´) = (¬r $tr ˆu e ≤u $tr´)
by (rel-auto, blast , metis (no-types, lifting) dual-order .trans)

lemma RC1-conj : RC1 (P ∧ Q) = (RC1 (P) ∧ RC1 (Q))
by (rel-blast)

lemma conj-RC1-closed [closure]:
[[P is RC1 ; Q is RC1]] =⇒ P ∧ Q is RC1

by (simp add : Healthy-def RC1-conj)

lemma disj-RC1-closed [closure]:
assumes P is RC1 Q is RC1

shows (P ∨ Q) is RC1

proof −
have 1 :RC1 (RC1 (P) ∨ RC1 (Q)) = (RC1 (P) ∨ RC1 (Q))
apply (rel-auto) using dual-order .trans by blast+

show ?thesis

by (metis (no-types) Healthy-def 1 assms)
qed

lemma conj-RC-closed [closure]:
assumes P is RC Q is RC

shows (P ∧ Q) is RC

by (metis Healthy-def RC-R2-def RC-implies-RR assms comp-apply conj-RC1-closed conj-RR)

lemma rea-true-RC [closure]: truer is RC

by (rel-auto)

lemma false-RC [closure]: false is RC

by (rel-auto)

lemma disj-RC-closed [closure]: [[P is RC ; Q is RC]] =⇒ (P ∨ Q) is RC

by (metis Healthy-def RC-R2-def RC-implies-RR comp-apply disj-RC1-closed disj-RR)

lemma UINF-mem-RC1-closed [closure]:
assumes

∧
i . P i is RC1

shows (
d

i∈A · P i) is RC1

proof −

39

have 1 :RC1 (
d

i∈A · RC1 (P i)) = (
d

i∈A · RC1 (P i))
by (rel-auto, meson order .trans)

show ?thesis

by (metis (mono-tags, lifting) 1 Healthy-def ′ UINF-all-cong UINF-alt-def assms)
qed

lemma UINF-mem-RC-closed [closure]:
assumes

∧
i . P i is RC

shows (
d

i∈A · P i) is RC

proof −
have RC (

d
i∈A · P i) = (RC1 ◦ RR)(

d
i∈A · P i)

by (simp add : RC-def)
also have ... = RC1 (

d
i∈A · RR(P i))

by (rel-blast)
also have ... = RC1 (

d
i∈A · RC1 (P i))

by (simp add : Healthy-if RC-implies-RR RC-implies-RC1 assms)
also have ... = (

d
i∈A · RC1 (P i))

by (rel-auto, meson order .trans)
also have ... = (

d
i∈A · P i)

by (simp add : Healthy-if RC-implies-RC1 assms)
finally show ?thesis

by (simp add : Healthy-def)
qed

lemma UINF-ind-RC-closed [closure]:
assumes

∧
i . P i is RC

shows (
d

i · P i) is RC

by (metis (no-types) UINF-as-Sup-collect ′ UINF-as-Sup-image UINF-mem-RC-closed assms)

lemma USUP-mem-RC1-closed [closure]:
assumes

∧
i . i ∈ A =⇒ P i is RC1 A 6= {}

shows (
⊔

i∈A · P i) is RC1

proof −
have RC1 (

⊔
i∈A · P i) = RC1 (

⊔
i∈A · RC1 (P i))

by (simp add : Healthy-if assms(1) cong : USUP-cong)
also from assms(2) have ... = (

⊔
i∈A · RC1 (P i))

using dual-order .trans by (rel-blast)
also have ... = (

⊔
i∈A · P i)

by (simp add : Healthy-if assms(1) cong : USUP-cong)
finally show ?thesis

using Healthy-def by blast

qed

lemma USUP-mem-RC-closed [closure]:
assumes

∧
i . i ∈ A =⇒ P i is RC A 6= {}

shows (
⊔

i∈A · P i) is RC

by (rule RC-intro ′, simp-all add : closure assms RC-implies-RC1)

lemma neg-trace-ext-prefix-RC [closure]:
[[$tr ♯ e; $ok ♯ e; $wait ♯ e; outα ♯ e]] =⇒ ¬r $tr ˆu e ≤u $tr´ is RC

by (rule RC-intro, simp add : closure, metis RC1-def RC1-trace-ext-prefix)

lemma RC1-unrest :
[[mwb-lens x ; x ⊲⊳ tr]] =⇒ $x´ ♯ RC1 (P)
by (simp add : RC1-def unrest)

40

lemma RC-unrest-dashed [unrest]:
[[P is RC ; mwb-lens x ; x ⊲⊳ tr]] =⇒ $x´ ♯ P
by (metis Healthy-if RC1-unrest RC-implies-RC1)

lemma RC1-RR-closed : P is RR =⇒ RC1 (P) is RR

by (simp add : RC1-def closure)

end

6 Reactive Programs

theory utp-rea-prog

imports utp-rea-cond

begin

6.1 Stateful reactive alphabet

R3 as presented in the UTP book and related publications is not sensitive to state, although
reactive programs often need this property. Thus is is necessary to use a modification of R3 from
Butterfield et al. [1] that explicitly states that intermediate waiting states do not propogate final
state variables. In order to do this we need an additional observational variable that capture
the program state that we call st. Upon this foundation, we can define operators for reactive
programs [3].

alphabet ′s rsp-vars = ′t rp-vars +
st :: ′s

declare rsp-vars.defs [lens-defs]

type-synonym (′s, ′t , ′α) rsp = (′t , (′s, ′α) rsp-vars-scheme) rp
type-synonym (′s, ′t , ′α, ′β) rel-rsp = ((′s, ′t , ′α) rsp, (′s, ′t , ′β) rsp) urel
type-synonym (′s, ′t , ′α) hrel-rsp = (′s, ′t , ′α) rsp hrel

type-synonym (′s, ′t) rdes = (′s, ′t ,unit) hrel-rsp

translations

(type) (′s, ′t , ′α) rsp <= (type) (′t , (′s, ′α) rsp-vars-ext) rp
(type) (′s, ′t , ′α) rsp <= (type) (′t , (′s, ′α) rsp-vars-scheme) rp
(type) (′s, ′t ,unit) rsp <= (type) (′t , ′s rsp-vars) rp
(type) (′s, ′t , ′α, ′β) rel-rsp <= (type) ((′s, ′t , ′α) rsp, (′s1 , ′t1 , ′β) rsp) urel
(type) (′s, ′t , ′α) hrel-rsp <= (type) (′s, ′t , ′α) rsp hrel

(type) (′s, ′t) rdes <= (type) (′s, ′t , unit) hrel-rsp

notation rsp-vars-child-lensa (Σs)
notation rsp-vars-child-lens (ΣS)

syntax

-svid-st-alpha :: svid (ΣS)

translations

-svid-st-alpha => CONST rsp-vars-child-lens

lemma srea-var-ords [usubst]:
$st ≺v $st´
$ok ≺v $st $ok´ ≺v $st´ $ok ≺v $st´ $ok´ ≺v $st

41

$st ≺v $wait $st´ ≺v $wait´ $st ≺v $wait´ $st´ ≺v $wait
$st ≺v $tr $st´ ≺v $tr´ $st ≺v $tr´ $st´ ≺v $tr
by (simp-all add : var-name-ord-def)

lemma st-bij-lemma: bij-lens (sta +L Σs)
by (unfold-locales, auto simp add : lens-defs)

lemma rea-lens-equiv-st-rest : ΣR ≈L st +L ΣS

proof −
have st +L ΣS = (sta +L Σs) ;L ΣR

by (simp add : plus-lens-distr st-def rsp-vars-child-lens-def)
also have ... ≈L 1L ;L ΣR

using lens-equiv-via-bij st-bij-lemma by auto

also have ... = ΣR

by (simp)
finally show ?thesis

using lens-equiv-sym by blast

qed

lemma srea-lens-bij : bij-lens (ok +L wait +L tr +L st +L ΣS)
proof −
have ok +L wait +L tr +L st +L ΣS ≈L ok +L wait +L tr +L ΣR

by (auto intro!:lens-plus-cong , rule lens-equiv-sym, simp add : rea-lens-equiv-st-rest)
also have ... ≈L 1L

using bij-lens-equiv-id [of ok +L wait +L tr +L ΣR] by (simp add : rea-lens-bij)
finally show ?thesis

by (simp add : bij-lens-equiv-id)
qed

lemma st-qual-alpha [alpha]: x ;L fstL ;L st ×L st = ($st :x)v
by (metis (no-types, hide-lams) in-var-def in-var-prod-lens lens-comp-assoc st-vwb-lens vwb-lens-wb)

interpretation alphabet-state:
lens-interp λ(ok , wait , tr , r). (ok , wait , tr , stv r , more r)
apply (unfold-locales)
apply (rule injI)
apply (clarsimp)
done

interpretation alphabet-state-rel : lens-interp λ(ok , ok ′, wait , wait ′, tr , tr ′, r , r ′).
(ok , ok ′, wait , wait ′, tr , tr ′, stv r , stv r ′, more r , more r ′)
apply (unfold-locales)
apply (rule injI)
apply (clarsimp)
done

lemma unrest-st ′-neg-RC [unrest]:
assumes P is RR P is RC

shows $st´ ♯ P
proof −
have P = (¬r ¬r P)
by (simp add : closure rpred assms)

also have ... = (¬r (¬r P) ;; truer)
by (metis Healthy-if RC1-def RC-implies-RC1 assms(2) calculation)

also have $st´ ♯ ...

42

by (rel-auto)
finally show ?thesis .

qed

lemma ex-st ′-RR-closed [closure]:
assumes P is RR

shows (∃ $st´ · P) is RR

proof −
have RR (∃ $st´ · RR(P)) = (∃ $st´ · RR(P))
by (rel-auto)

thus ?thesis

by (metis Healthy-def assms)
qed

lemma unrest-st ′-R4 [unrest]:
$st´ ♯ P =⇒ $st´ ♯ R4 (P)
by (rel-auto)

lemma unrest-st ′-R5 [unrest]:
$st´ ♯ P =⇒ $st´ ♯ R5 (P)
by (rel-auto)

6.2 State Lifting

abbreviation lift-state-rel (⌈-⌉S)
where ⌈P⌉S ≡ P ⊕p (st ×L st)

abbreviation drop-state-rel (⌊-⌋S)
where ⌊P⌋S ≡ P ↾e (st ×L st)

abbreviation lift-state-pre (⌈-⌉S<)
where ⌈p⌉S< ≡ ⌈⌈p⌉<⌉S

abbreviation drop-state-pre (⌊-⌋S<)
where ⌊p⌋S< ≡ ⌊⌊p⌋S⌋<

abbreviation lift-state-post (⌈-⌉S>)
where ⌈p⌉S> ≡ ⌈⌈p⌉>⌉S

abbreviation drop-state-post (⌊-⌋S>)
where ⌊p⌋S> ≡ ⌊⌊p⌋S⌋>

lemma st ′-unrest-st-lift-pred [unrest]:
$st´ ♯ ⌈a⌉S<

by (pred-auto)

lemma out-alpha-unrest-st-lift-pre [unrest]:
outα ♯ ⌈a⌉S<

by (rel-auto)

lemma R1-st ′-unrest [unrest]: $st´ ♯ P =⇒ $st´ ♯ R1 (P)
by (simp add : R1-def unrest)

lemma R2c-st ′-unrest [unrest]: $st´ ♯ P =⇒ $st´ ♯ R2c(P)
by (simp add : R2c-def unrest)

43

lemma st-lift-R1-true-right : ⌈b⌉S< ;; R1 (true) = ⌈b⌉S<

by (rel-auto)

lemma R2c-lift-state-pre: R2c(⌈b⌉S<) = ⌈b⌉S<

by (rel-auto)

6.3 Reactive Program Operators

6.3.1 State Substitution

Lifting substitutions on the reactive state

definition usubst-st-lift ::
′s usubst ⇒ ((′s, ′t ::trace, ′α) rsp × (′s, ′t , ′β) rsp) usubst (⌈-⌉Sσ) where

[upred-defs]: ⌈σ⌉Sσ = ⌈σ ⊕s st⌉s

abbreviation st-subst :: ′s usubst ⇒ (′s, ′t ::trace, ′α, ′β) rel-rsp ⇒ (′s, ′t , ′α, ′β) rel-rsp (infixr †S 80)
where

σ †S P ≡ ⌈σ⌉Sσ † P

translations

σ †S P <= ⌈σ ⊕s st⌉s † P
σ †S P <= ⌈σ⌉Sσ † P

lemma st-lift-lemma:
⌈σ⌉Sσ = σ ⊕s (fstL ;L (st ×L st))
by (auto simp add : upred-defs lens-defs prod .case-eq-if)

lemma unrest-st-lift [unrest]:
fixes x :: ′a =⇒ (′s, ′t ::trace, ′α) rsp × (′s, ′t , ′α) rsp
assumes x ⊲⊳ ($st)v
shows x ♯ ⌈σ⌉Sσ (is ?P)
by (simp add : st-lift-lemma)
(metis assms in-var-def in-var-prod-lens lens-comp-left-id st-vwb-lens unrest-subst-alpha-ext vwb-lens-wb)

lemma id-st-subst [usubst]:
⌈id⌉Sσ = id

by (pred-auto)

lemma st-subst-comp [usubst]:
⌈σ⌉Sσ ◦ ⌈̺⌉Sσ = ⌈σ ◦ ̺⌉Sσ

by (rel-auto)

definition lift-cond-srea (⌈-⌉S←) where

[upred-defs]: ⌈b⌉S← = ⌈b⌉S<

lemma unrest-lift-cond-srea [unrest]:
x ♯ ⌈b⌉S< =⇒ x ♯ ⌈b⌉S←
by (simp add : lift-cond-srea-def)

lemma st-subst-RR-closed [closure]:
assumes P is RR

shows ⌈σ⌉Sσ † P is RR

proof −
have RR(⌈σ⌉Sσ † RR(P)) = ⌈σ⌉Sσ † RR(P)
by (rel-auto)

44

thus ?thesis

by (metis Healthy-def assms)
qed

lemma subst-lift-cond-srea [usubst]: σ †S ⌈P⌉S← = ⌈σ † P⌉S←
by (rel-auto)

lemma st-subst-rea-not [usubst]: σ †S (¬r P) = (¬r σ †S P)
by (rel-auto)

lemma st-subst-seq [usubst]: σ †S (P ;; Q) = σ †S P ;; Q
by (rel-auto)

lemma st-subst-RC-closed [closure]:
assumes P is RC

shows σ †S P is RC

apply (rule RC-intro, simp add : closure assms)
apply (simp add : st-subst-rea-not [THEN sym] st-subst-seq [THEN sym])
apply (metis Healthy-if RC1-def RC-implies-RC1 assms)

done

6.3.2 Assignment

definition rea-assigns :: (′s ⇒ ′s) ⇒ (′s, ′t ::trace, ′α) hrel-rsp (〈-〉r) where

[upred-defs]: 〈σ〉r = ($tr´ =u $tr ∧ ⌈〈σ〉a⌉S ∧ $ΣS´ =u $ΣS)

syntax

-assign-rea :: svids ⇒ uexprs ⇒ logic (′(- ′) :=r
′(- ′))

-assign-rea :: svids ⇒ uexprs ⇒ logic (infixr :=r 90)

translations

-assign-rea xs vs => CONST rea-assigns (-mk-usubst (CONST id) xs vs)
-assign-rea x v <= CONST rea-assigns (CONST subst-upd (CONST id) x v)
-assign-rea x v <= -assign-rea (-spvar x) v
x ,y :=r u,v <= CONST rea-assigns (CONST subst-upd (CONST subst-upd (CONST id) (CONST

svar x) u) (CONST svar y) v)

lemma rea-assigns-RR-closed [closure]:
〈σ〉r is RR

apply (rel-auto) using minus-zero-eq by auto

lemma st-subst-assigns-rea [usubst]:
σ †S 〈̺〉r = 〈̺ ◦ σ〉r
by (rel-auto)

lemma st-subst-rea-skip [usubst]:
σ †S II r = 〈σ〉r
by (rel-auto)

lemma rea-assigns-comp [rpred]:
assumes P is RR

shows 〈σ〉r ;; P = σ †S P

proof −
have 〈σ〉r ;; (RR P) = σ †S (RR P)
by (rel-auto)

thus ?thesis

45

by (metis Healthy-def assms)
qed

lemma st-subst-RR [closure]:
assumes P is RR

shows (σ †S P) is RR

proof −
have (σ †S RR(P)) is RR

by (rel-auto)
thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma rea-assigns-st-subst [usubst]:
⌈σ ⊕s st⌉s † 〈̺〉r = 〈̺ ◦ σ〉r
by (rel-auto)

6.3.3 Conditional

We guard the reactive conditional condition so that it can’t be simplified by alphabet laws
unless explicitly simplified.

abbreviation cond-srea ::
(′s, ′t ::trace, ′α, ′β) rel-rsp ⇒
′s upred ⇒
(′s, ′t , ′α, ′β) rel-rsp ⇒
(′s, ′t , ′α, ′β) rel-rsp ((3- ⊳ - ⊲R/ -) [52 ,0 ,53] 52) where

cond-srea P b Q ≡ P ⊳ ⌈b⌉S← ⊲ Q

lemma st-cond-assigns [rpred]:
〈σ〉r ⊳ b ⊲R 〈̺〉r = 〈σ ⊳ b ⊲s ̺〉r
by (rel-auto)

lemma cond-srea-RR-closed [closure]:
assumes P is RR Q is RR

shows P ⊳ b ⊲R Q is RR

proof −
have RR(RR(P) ⊳ b ⊲R RR(Q)) = RR(P) ⊳ b ⊲R RR(Q)
by (rel-auto)

thus ?thesis

by (metis Healthy-def ′ assms(1) assms(2))
qed

lemma cond-srea-RC1-closed :
assumes P is RC1 Q is RC1

shows P ⊳ b ⊲R Q is RC1

proof −
have RC1 (RC1 (P) ⊳ b ⊲R RC1 (Q)) = RC1 (P) ⊳ b ⊲R RC1 (Q)
using dual-order .trans by (rel-blast)

thus ?thesis

by (metis Healthy-def ′ assms)
qed

lemma cond-srea-RC-closed [closure]:
assumes P is RC Q is RC

shows P ⊳ b ⊲R Q is RC

46

by (rule RC-intro ′, simp-all add : closure cond-srea-RC1-closed RC-implies-RC1 assms)

lemma R4-cond [rpred]: R4 (P ⊳ b ⊲R Q) = (R4 (P) ⊳ b ⊲R R4 (Q))
by (rel-auto)

lemma R5-cond [rpred]: R5 (P ⊳ b ⊲R Q) = (R5 (P) ⊳ b ⊲R R5 (Q))
by (rel-auto)

6.3.4 Assumptions

definition rea-assume :: ′s upred ⇒ (′s, ′t ::trace, ′α) hrel-rsp ([-]⊤r) where

[upred-defs]: [b]⊤r = (II r ⊳ b ⊲R false)

lemma rea-assume-RR [closure]: [b]⊤r is RR

by (simp add : rea-assume-def closure)

lemma rea-assume-false [rpred]: [false]⊤r = false

by (rel-auto)

lemma rea-assume-true [rpred]: [true]⊤r = II r
by (rel-auto)

lemma rea-assume-comp [rpred]: [b]⊤r ;; [c]⊤r = [b ∧ c]⊤r

by (rel-auto)

6.3.5 State Abstraction

We introduce state abstraction by creating some lens functors that allow us to lift a lens on the
state-space to one on the whole stateful reactive alphabet.

definition lmapR :: (′a =⇒ ′b) ⇒ (′t ::trace, ′a) rp =⇒ (′t , ′b) rp where

[lens-defs]: lmapR = lmapD ◦ lmap[rp-vars]

definition map-rsp-st ::
(′σ ⇒ ′τ) ⇒
(′σ, ′α) rsp-vars-scheme ⇒ (′τ , ′α) rsp-vars-scheme where

[lens-defs]: map-rsp-st f = (λr . (|stv = f (stv r), . . . = rsp-vars.more r |))

definition map-st-lens ::
(′σ =⇒ ′ψ) ⇒
((′σ, ′τ ::trace, ′α) rsp =⇒ (′ψ, ′τ ::trace, ′α) rsp) (map ′-stL) where

[lens-defs]:
map-st-lens l = lmapR (|
lens-get = map-rsp-st (get l),
lens-put = map-rsp-st o (put l) o rsp-vars.stv|)

lemma map-set-vwb [simp]: vwb-lens X =⇒ vwb-lens (map-stL X)
apply (unfold-locales, simp-all add : lens-defs)
apply (metis des-vars.surjective rp-vars .surjective rsp-vars .surjective)+
done

abbreviation abs-stL ≡ (map-stL 0L) ×L (map-stL 0L)

abbreviation abs-st (〈-〉S) where

abs-st P ≡ P ↾e abs-stL

47

6.3.6 Reactive Frames and Extensions

definition rea-frame :: (′a =⇒ ′α) ⇒ (′α, ′t ::trace) rdes ⇒ (′α, ′t) rdes where

[upred-defs]: rea-frame x P = frame (ok +L wait +L tr +L (x ;L st)) P

definition rea-frame-ext :: (′α =⇒ ′β) ⇒ (′α, ′t ::trace) rdes ⇒ (′β, ′t) rdes where

[upred-defs]: rea-frame-ext a P = rea-frame a (rel-aext P (map-stL a))

syntax

-rea-frame :: salpha ⇒ logic ⇒ logic (-:[-]r [99 ,0] 100)
-rea-frame-ext :: salpha ⇒ logic ⇒ logic (-:[-]r

+ [99 ,0] 100)

translations

-rea-frame x P => CONST rea-frame x P

-rea-frame (-salphaset (-salphamk x)) P <= CONST rea-frame x P

-rea-frame-ext x P => CONST rea-frame-ext x P

-rea-frame-ext (-salphaset (-salphamk x)) P <= CONST rea-frame-ext x P

lemma rea-frame-RR-closed [closure]:
assumes P is RR

shows x :[P]r is RR

proof −
have RR(x :[RR P]r) = x :[RR P]r
by (rel-auto)

thus ?thesis

by (metis Healthy-if Healthy-intro assms)
qed

lemma rea-aext-RR [closure]:
assumes P is RR

shows rel-aext P (map-stL x) is RR

proof −
have rel-aext (RR P) (map-stL x) is RR

by (rel-auto)
thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma rea-frame-ext-RR-closed [closure]:
P is RR =⇒ x :[P]r

+ is RR

by (simp add : rea-frame-ext-def closure)

lemma rel-aext-st-Instant-closed [closure]:
P is Instant =⇒ rel-aext P (map-stL x) is Instant

by (rel-auto)

lemma rea-frame-ext-false [frame]:
x :[false]r

+ = false

by (rel-auto)

lemma rea-frame-ext-skip [frame]:
vwb-lens x =⇒ x :[II r]r

+ = II r
by (rel-auto)

lemma rea-frame-ext-assigns [frame]:
vwb-lens x =⇒ x :[〈σ〉r]r

+ = 〈σ ⊕s x 〉r

48

by (rel-auto)

lemma rea-frame-ext-cond [frame]:
x :[P ⊳ b ⊲R Q]r

+ = x :[P]r
+ ⊳ (b ⊕p x) ⊲R x :[Q]r

+

by (rel-auto)

lemma rea-frame-ext-seq [frame]:
vwb-lens x =⇒ x :[P ;; Q]r

+ = x :[P]r
+ ;; x :[Q]r

+

apply (simp add : rea-frame-ext-def rea-frame-def alpha frame)
apply (subst frame-seq)

apply (simp-all add : plus-vwb-lens closure)
apply (rel-auto)+
done

lemma rea-frame-ext-subst-indep [usubst]:
assumes x ⊲⊳ y Σ ♯ v P is RR

shows σ(y 7→s v) †S x :[P]r
+ = (σ †S x :[P]r

+) ;; y :=r v

proof −
from assms(1−2) have σ(y 7→s v) †S x :[RR P]r

+ = (σ †S x :[RR P]r
+) ;; y :=r v

by (rel-auto, (metis (no-types, lifting) lens-indep.lens-put-comm lens-indep-get)+)
thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma rea-frame-ext-subst-within [usubst]:
assumes vwb-lens x vwb-lens y Σ ♯ v P is RR

shows σ(x :y 7→s v) †S x :[P]r
+ = (σ †S x :[y :=r (v ↾e x) ;; P]r

+)
proof −
from assms(1 ,3) have σ(x :y 7→s v) †S x :[RR P]r

+ = (σ †S x :[y :=r (v ↾e x) ;; RR(P)]r
+)

by (rel-auto, metis+)
thus ?thesis

by (simp add : assms Healthy-if)
qed

6.4 Stateful Reactive specifications

definition rea-st-rel :: ′s hrel ⇒ (′s, ′t ::trace, ′α, ′β) rel-rsp ([-]S) where

[upred-defs]: rea-st-rel b = (⌈b⌉S ∧ $tr´ =u $tr)

definition rea-st-rel ′ :: ′s hrel ⇒ (′s, ′t ::trace, ′α, ′β) rel-rsp ([-]S
′) where

[upred-defs]: rea-st-rel ′ b = R1 (⌈b⌉S)

definition rea-st-cond :: ′s upred ⇒ (′s, ′t ::trace, ′α, ′β) rel-rsp ([-]S<) where

[upred-defs]: rea-st-cond b = R1 (⌈b⌉S<)

definition rea-st-post :: ′s upred ⇒ (′s, ′t ::trace, ′α, ′β) rel-rsp ([-]S>) where

[upred-defs]: rea-st-post b = R1 (⌈b⌉S>)

lemma lift-state-pre-unrest [unrest]: x ⊲⊳ ($st)v =⇒ x ♯ ⌈P⌉S<

by (rel-simp, simp add : lens-indep-def)

lemma rea-st-rel-unrest [unrest]:
[[x ⊲⊳ ($tr)v; x ⊲⊳ ($tr´)v; x ⊲⊳ ($st)v; x ⊲⊳ ($st´)v]] =⇒ x ♯ [P]S<

by (simp add : add : rea-st-cond-def R1-def unrest lens-indep-sym)

lemma rea-st-cond-unrest [unrest]:

49

[[x ⊲⊳ ($tr)v; x ⊲⊳ ($tr´)v; x ⊲⊳ ($st)v]] =⇒ x ♯ [P]S<

by (simp add : add : rea-st-cond-def R1-def unrest lens-indep-sym)

lemma subst-st-cond [usubst]: ⌈σ⌉Sσ † [P]S< = [σ † P]S<

by (rel-auto)

lemma rea-st-cond-R1 [closure]: [b]S< is R1

by (rel-auto)

lemma rea-st-cond-R2c [closure]: [b]S< is R2c

by (rel-auto)

lemma rea-st-rel-RR [closure]: [P]S is RR

using minus-zero-eq by (rel-auto)

lemma rea-st-rel ′-RR [closure]: [P]S
′ is RR

by (rel-auto)

lemma st-subst-rel [usubst]:
σ †S [P]S = [⌈σ⌉s † P]S
by (rel-auto)

lemma st-rel-cond [rpred]:
[P ⊳ b ⊲r Q]S = [P]S ⊳ b ⊲R [Q]S
by (rel-auto)

lemma st-rel-false [rpred]: [false]S = false

by (rel-auto)

lemma st-rel-skip [rpred]:
[II]S = (II r :: (′s, ′t ::trace) rdes)
by (rel-auto)

lemma st-rel-seq [rpred]:
[P ;; Q]S = [P]S ;; [Q]S
by (rel-auto)

lemma st-rel-conj [rpred]:
[P ∧ Q]S = ([P]S ∧ [Q]S)
by (rel-auto)

lemma rea-st-cond-RR [closure]: [b]S< is RR

by (rule RR-intro, simp-all add : unrest closure)

lemma rea-st-cond-RC [closure]: [b]S< is RC

by (rule RC-intro, simp add : closure, rel-auto)

lemma rea-st-cond-true [rpred]: [true]S< = truer
by (rel-auto)

lemma rea-st-cond-false [rpred]: [false]S< = false

by (rel-auto)

lemma st-cond-not [rpred]: (¬r [P]S<) = [¬ P]S<

by (rel-auto)

50

lemma st-cond-conj [rpred]: ([P]S< ∧ [Q]S<) = [P ∧ Q]S<

by (rel-auto)

lemma st-rel-assigns [rpred]:
[〈σ〉a]S = (〈σ〉r :: (′α, ′t ::trace) rdes)
by (rel-auto)

lemma cond-st-distr : (P ⊳ b ⊲R Q) ;; R = (P ;; R ⊳ b ⊲R Q ;; R)
by (rel-auto)

lemma cond-st-miracle [rpred]: P is R1 =⇒ P ⊳ b ⊲R false = ([b]S< ∧ P)
by (rel-blast)

lemma cond-st-true [rpred]: P ⊳ true ⊲R Q = P

by (rel-blast)

lemma cond-st-false [rpred]: P ⊳ false ⊲R Q = Q

by (rel-blast)

lemma st-cond-true-or [rpred]: P is R1 =⇒ (R1 true ⊳ b ⊲R P) = ([b]S< ∨ P)
by (rel-blast)

lemma st-cond-left-impl-RC-closed [closure]:
P is RC =⇒ ([b]S< ⇒r P) is RC

by (simp add : rea-impl-def rpred closure)

end

7 Reactive Weakest Preconditions

theory utp-rea-wp

imports utp-rea-prog

begin

Here, we create a weakest precondition calculus for reactive relations, using the recast boolean
algebra and relational operators. Please see our journal paper [3] for more information.

definition wp-rea ::
(′t ::trace, ′α) hrel-rp ⇒
(′t , ′α) hrel-rp ⇒
(′t , ′α) hrel-rp (infix wpr 60)

where [upred-defs]: P wpr Q = (¬r P ;; (¬r Q))

lemma in-var-unrest-wp-rea [unrest]: [[$x ♯ P ; tr ⊲⊳ x]] =⇒ $x ♯ (P wpr Q)
by (simp add : wp-rea-def unrest R1-def rea-not-def)

lemma out-var-unrest-wp-rea [unrest]: [[$x´ ♯ Q ; tr ⊲⊳ x]] =⇒ $x´ ♯ (P wpr Q)
by (simp add : wp-rea-def unrest R1-def rea-not-def)

lemma wp-rea-R1 [closure]: P wpr Q is R1

by (rel-auto)

lemma wp-rea-RR-closed [closure]: [[P is RR; Q is RR]] =⇒ P wpr Q is RR

by (simp add : wp-rea-def closure)

51

lemma wp-rea-impl-lemma:
((P wpr Q) ⇒r (R1 (P) ;; R1 (Q ⇒r R))) = ((P wpr Q) ⇒r (R1 (P) ;; R1 (R)))
by (rel-auto, blast)

lemma wpR-R1-right [wp]:
P wpr R1 (Q) = P wpr Q

by (rel-auto)

lemma wp-rea-true [wp]: P wpr true = truer
by (rel-auto)

lemma wp-rea-conj [wp]: P wpr (Q ∧ R) = (P wpr Q ∧ P wpr R)
by (simp add : wp-rea-def seqr-or-distr)

lemma wp-rea-USUP-mem [wp]:
A 6= {} =⇒ P wpr (

⊔
i∈A · Q(i)) = (

⊔
i∈A · P wpr Q(i))

by (simp add : wp-rea-def seq-UINF-distl)

lemma wp-rea-Inf-pre [wp]:
P wpr (

⊔
i∈{0 ..n::nat}. Q(i)) = (

⊔
i∈{0 ..n}. P wpr Q(i))

by (simp add : wp-rea-def seq-SUP-distl)

lemma wp-rea-div [wp]:
(¬r P ;; truer) = truer =⇒ truer wpr P = false

by (simp add : wp-rea-def rpred , rel-blast)

lemma wp-rea-st-cond-div [wp]:
P 6= true =⇒ truer wpr [P]S< = false

by (rel-auto)

lemma wp-rea-cond [wp]:
outα ♯ b =⇒ (P ⊳ b ⊲ Q) wpr R = P wpr R ⊳ b ⊲ Q wpr R

by (simp add : wp-rea-def cond-seq-left-distr , rel-auto)

lemma wp-rea-RC-false [wp]:
P is RC =⇒ (¬r P) wpr false = P

by (metis Healthy-if RC1-def RC-implies-RC1 rea-not-false wp-rea-def)

lemma wp-rea-seq [wp]:
assumes Q is R1

shows (P ;; Q) wpr R = P wpr (Q wpr R) (is ?lhs = ?rhs)
proof −
have ?rhs = R1 (¬ P ;; R1 (Q ;; R1 (¬ R)))
by (simp add : wp-rea-def rea-not-def R1-negate-R1 assms)

also have ... = R1 (¬ P ;; (Q ;; R1 (¬ R)))
by (metis Healthy-if R1-seqr assms)

also have ... = R1 (¬ (P ;; Q) ;; R1 (¬ R))
by (simp add : seqr-assoc)

finally show ?thesis

by (simp add : wp-rea-def rea-not-def)
qed

lemma wp-rea-skip [wp]:
assumes Q is R1

shows II wpr Q = Q

52

by (simp add : wp-rea-def rpred assms Healthy-if)

lemma wp-rea-rea-skip [wp]:
assumes Q is RR

shows II r wpr Q = Q

by (simp add : wp-rea-def rpred closure assms Healthy-if)

lemma power-wp-rea-RR-closed [closure]:
[[R is RR; P is RR]] =⇒ R ˆ i wpr P is RR

by (induct i , simp-all add : wp closure)

lemma wp-rea-rea-assigns [wp]:
assumes P is RR

shows 〈σ〉r wpr P = ⌈σ⌉Sσ † P
proof −
have 〈σ〉r wpr (RR P) = ⌈σ⌉Sσ † (RR P)
by (rel-auto)

thus ?thesis

by (metis Healthy-def assms)
qed

lemma wp-rea-miracle [wp]: false wpr Q = truer
by (simp add : wp-rea-def)

lemma wp-rea-disj [wp]: (P ∨ Q) wpr R = (P wpr R ∧ Q wpr R)
by (rel-blast)

lemma wp-rea-UINF [wp]:
assumes A 6= {}
shows (

d
x∈A · P(x)) wpr Q = (

⊔
x∈A · P(x) wpr Q)

by (simp add : wp-rea-def rea-not-def seq-UINF-distr not-UINF R1-UINF assms)

lemma wp-rea-choice [wp]:
(P ⊓ Q) wpr R = (P wpr R ∧ Q wpr R)
by (rel-blast)

lemma wp-rea-UINF-ind [wp]:
(
d

i · P(i)) wpr Q = (
⊔

i · P(i) wpr Q)
by (simp add : wp-rea-def rea-not-def seq-UINF-distr ′ not-UINF-ind R1-UINF-ind)

lemma rea-assume-wp [wp]:
assumes P is RC

shows ([b]⊤r wpr P) = ([b]S< ⇒r P)
proof −
have ([b]⊤r wpr RC P) = ([b]S< ⇒r RC P)
by (rel-auto)

thus ?thesis

by (simp add : Healthy-if assms)
qed

lemma rea-star-wp [wp]:
assumes P is RR Q is RR

shows P⋆r wpr Q = (
⊔

i · P ˆ i wpr Q)
proof −
have P⋆r wpr Q = (Q ∧ P+ wpr Q)

53

by (simp add : assms rrel-thy .Star-alt-def wp-rea-choice wp-rea-rea-skip)
also have ... = (II wpr Q ∧ (

⊔
i · P ˆ Suc i wpr Q))

by (simp add : uplus-power-def wp closure assms)
also have ... = (

⊔
i · P ˆ i wpr Q)

proof −
have P⋆ wpr Q = P⋆r wpr Q

by (metis (no-types) RA1 assms(2) rea-no-RR rea-skip-unit(2) rrel-thy .Star-def wp-rea-def)
then show ?thesis

by (simp add : calculation ustar-def wp-rea-UINF-ind)
qed

finally show ?thesis .

qed

lemma wp-rea-R2-closed [closure]:
[[P is R2 ; Q is R2]] =⇒ P wpr Q is R2

by (simp add : wp-rea-def closure)

lemma wp-rea-false-RC1 ′: P is R2 =⇒ RC1 (P wpr false) = P wpr false

by (simp add : wp-rea-def RC1-def closure rpred seqr-assoc)

lemma wp-rea-false-RC1 : P is R2 =⇒ P wpr false is RC1

by (simp add :Healthy-def wp-rea-false-RC1 ′)

lemma wp-rea-false-RR:
[[$ok ♯ P ; $wait ♯ P ; P is R2]] =⇒ P wpr false is RR

by (rule RR-R2-intro, simp-all add : unrest closure)

lemma wp-rea-false-RC :
[[$ok ♯ P ; $wait ♯ P ; P is R2]] =⇒ P wpr false is RC

by (rule RC-intro ′, simp-all add : wp-rea-false-RC1 wp-rea-false-RR)

lemma wp-rea-RC1 : [[P is RR; Q is RC]] =⇒ P wpr Q is RC1

by (rule Healthy-intro, simp add : wp-rea-def RC1-def rpred closure seqr-assoc RC1-prop RC-implies-RC1)

lemma wp-rea-RC [closure]: [[P is RR; Q is RC]] =⇒ P wpr Q is RC

by (rule RC-intro ′, simp-all add : wp-rea-RC1 closure)

lemma wpR-power-RC-closed [closure]:
assumes P is RR Q is RC

shows P ˆ i wpr Q is RC

by (metis RC-implies-RR RR-implies-R1 assms power .power-eq-if power-Suc-RR-closed wp-rea-RC

wp-rea-skip)

end

8 Reactive Hoare Logic

theory utp-rea-hoare

imports utp-rea-prog

begin

definition hoare-rp :: ′α upred ⇒ (′α, real pos) rdes ⇒ ′α upred ⇒ bool ({|-|}/ -/ {|-|}r) where

[upred-defs]: hoare-rp p Q r = ((⌈p⌉S< ⇒ ⌈r⌉S>) ⊑ Q)

lemma hoare-rp-conseq :

54

[[‘p ⇒ p ′‘ ; ‘q ′⇒ q‘ ; {|p ′|}S{|q ′|}r]] =⇒ {|p|}S{|q |}r
by (rel-auto)

lemma hoare-rp-weaken:
[[‘p ⇒ p ′‘ ; {|p ′|}S{|q |}r]] =⇒ {|p|}S{|q |}r
by (rel-auto)

lemma hoare-rp-strengthen:
[[‘q ′⇒ q‘ ; {|p|}S{|q ′|}r]] =⇒ {|p|}S{|q |}r
by (rel-auto)

lemma false-pre-hoare-rp [hoare-safe]: {|false|}P{|q |}r
by (rel-auto)

lemma true-post-hoare-rp [hoare-safe]: {|p|}Q{|true|}r
by (rel-auto)

lemma miracle-hoare-rp [hoare-safe]: {|p|}false{|q |}r
by (rel-auto)

lemma assigns-hoare-rp [hoare-safe]: ‘p ⇒ σ † q‘ =⇒ {|p|}〈σ〉r{|q |}r
by rel-auto

lemma skip-hoare-rp [hoare-safe]: {|p|}II r{|p|}r
by rel-auto

lemma seq-hoare-rp: [[{|p|}Q1{|s|}r ; {|s|}Q2{|r |}r]] =⇒ {|p|}Q1 ;; Q2{|r |}r
by (rel-auto)

lemma seq-est-hoare-rp [hoare-safe]:
[[{|true|}Q1{|p|}r ; {|p|}Q2{|p|}r]] =⇒ {|true|}Q1 ;; Q2{|p|}r
by (rel-auto)

lemma seq-inv-hoare-rp [hoare-safe]:
[[{|p|}Q1{|p|}r ; {|p|}Q2{|p|}r]] =⇒ {|p|}Q1 ;; Q2{|p|}r
by (rel-auto)

lemma cond-hoare-rp [hoare-safe]:
[[{|b ∧ p|}P{|r |}r; {|¬b ∧ p|}Q{|r |}r]] =⇒ {|p|}P ⊳ b ⊲R Q{|r |}r
by (rel-auto)

lemma repeat-hoare-rp [hoare-safe]:
{|p|}Q{|p|}r =⇒ {|p|}Q ˆ n{|p|}r
by (induct n, rel-auto+)

lemma UINF-ind-hoare-rp [hoare-safe]:
[[
∧

i . {|p|}Q(i){|r |}r]] =⇒ {|p|}
d

i · Q(i){|r |}r
by (rel-auto)

lemma star-hoare-rp [hoare-safe]:
{|p|}Q{|p|}r =⇒ {|p|}Q⋆{|p|}r
by (simp add : ustar-def hoare-safe)

lemma conj-hoare-rp [hoare-safe]:
[[{|p1|}Q1{|r1|}r; {|p2|}Q2{|r2|}r]] =⇒ {|p1 ∧ p2|}Q1 ∧ Q2{|r1 ∧ r2|}r

55

by (rel-auto)

lemma iter-hoare-rp [hoare-safe]:
{|I |} P {|I |}r =⇒ {|I |} P⋆r {|I |}r
by (simp add : star-hoare-rp utp-star-def rrel-unit-def seq-inv-hoare-rp skip-hoare-rp)

end

9 Meta-theory for Generalised Reactive Processes

theory utp-reactive

imports

utp-rea-core

utp-rea-healths

utp-rea-parallel

utp-rea-rel

utp-rea-cond

utp-rea-prog

utp-rea-wp

utp-rea-hoare

begin end

References

[1] A. Butterfield, P. Gancarski, and J. Woodcock. State visibility and communication in
unifying theories of programming. Theoretical Aspects of Software Engineering, 0:47–54,
2009.

[2] A. Cavalcanti and J. Woodcock. A tutorial introduction to CSP in unifying theories of
programming. In Refinement Techniques in Software Engineering, volume 3167 of LNCS,
pages 220–268. Springer, 2006.

[3] S. Foster, A. Cavalcanti, S. Canham, J. Woodcock, and F. Zeyda. Unifying theories of
reactive design contracts. Submitted to Theoretical Computer Science, Dec 2017. Preprint:
https://arxiv.org/abs/1712.10233.

[4] S. Foster, A. Cavalcanti, J. Woodcock, and F. Zeyda. Unifying theories of time with gen-
eralised reactive processes. Information Processing Letters, 135:47–52, July 2018. Preprint:
https://arxiv.org/abs/1712.10213.

[5] T. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

56

	Reactive Processes Core Definitions
	Alphabet and Signature
	Reactive Lemmas
	Trace contribution lens

	Reactive Healthiness Conditions
	R1: Events cannot be undone
	R2: No dependence upon trace history
	R3: No activity while predecessor is waiting
	R4: The trace strictly increases
	R5: The trace does not increase
	RP laws
	UTP theories

	Reactive Parallel-by-Merge
	Reactive Relations
	Healthiness Conditions
	Reactive relational operators
	Unrestriction and substitution laws
	Closure laws
	Reactive relational calculus
	UTP theory
	Instantaneous Reactive Relations

	Reactive Conditions
	Healthiness Conditions
	Closure laws

	Reactive Programs
	Stateful reactive alphabet
	State Lifting
	Reactive Program Operators
	State Substitution
	Assignment
	Conditional
	Assumptions
	State Abstraction
	Reactive Frames and Extensions

	Stateful Reactive specifications

	Reactive Weakest Preconditions
	Reactive Hoare Logic
	Meta-theory for Generalised Reactive Processes

