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ABSTRACT 

This paper investigates the feasibility of using machine learning algorithms to predict the loads 

experienced by a landing gear during landing. For this purpose, results on drop test data and flight test data will 

be examined. This paper will focus on the use of Gaussian Process regression for the prediction of loads on 

components of a landing gear. For the learning task, comprehensive measurement data from drop tests are 

available. These include measurements of strains at key locations, such as the on the side-stay and torque link, 

as well as acceleration measurements of the drop carriage and the gear itself,  measurements of shock absorber 

travel, tyre closure, shock absorber pressure and wheel speed. Ground-to-tyre loads are also available through 

measurements made with a drop test ground reaction platform. The aim is to train the GP to predict load at a 

particular location from other available measurements, such as accelerations, or measurements of the shock 

absorber. If models can be successfully trained, then future load patterns may be predicted using only these 

measurements. The ultimate aim is to produce an accurate model that can predict the load at a number of 

locations across the landing gear by using measurements that are readily available, or may be measured more 



easily than directly measuring strain on the gear itself (for example, these may be measurements already 

available on the aircraft, or from a small number of sensors attached to the gear). The drop test data models 

provide a positive feasibility test which is the basis for moving on to the critical task of prediction on flight test 

data.  For this, a wide range of available flight test measurements is considered for potential model inputs 

(excluding strain measurements themselves), before attempting to refine the model or use a smaller number of 

measurements for the prediction. 

I. INTRODUCTION 

The landing gear of an aircraft is a unique component because it is both a structure and a system.  It is 

a complex system with controlled articulation, multiple axes of energy absorption, and it is the sole structure 

supporting the aircraft when on the ground.  It must bear extreme and varying loads when an aircraft 

manoeuvres on the ground during taxi, take-off and landing, yet it must be lightweight and compact because it 

is stowed and unused during the majority of an aircraft's flight [1]. 

The significant difference between the aircraft structure and landing gear is reflected in the difference 

between their design and approval methodologies.  Many airframe designs use a “damage tolerant" design 

philosophy, which assumes that cracks exist in the structure; the structure is designed to retain adequate strength 

until the crack is detected and corrective action is taken.  However, landing gear use a “safe life" design 

philosophy in which the component is designed to a specific service life and is removed from service before 

this elapsed time so that the probability of failure is remote [2].  This approach is followed because in most 

applications, landing gear have no structural redundancy.  Furthermore, landing gear are predominantly 

manufactured from very high strength (but relatively low toughness) steel and titanium alloys as they must be 

able to withstand high loads but have minimum weight and size [3].  In high strength materials, crack growth 

is very rapid and critical crack sizes may not be detectable.  Therefore, landing gear are designed to an assumed 

loads usage spectrum.  However, how closely the actual landing gear usage matches the assumed loads 

spectrum is unknown. 

Taking this into account, there are several areas of interest in aircraft landing gear structural health 

monitoring: understanding of the current operating environment of landing gear in order to allow for an 



improvement in the assumed loads usage spectrum used in the evaluation of fatigue design criteria, surveillance 

of the landing gear fleet in order to detect overload occurrences (and equally to indicate which occurrences 

were not overloads), and ultimately to allow the certification of the landing gear to be based on the actual life 

experienced in service [1]. 

Different approaches have be taken to determine in-service landing gear loads, such as the use of 

kinematics (accelerations, velocities and displacements) or the use of other measurements  such as pressure or 

strain.  Generally work has focused on developing inertial measurement systems to provide kinematic flight 

parameter data that can be used to calculate landing gear loads using physics-based models [4-6].  Other work 

focused on directly measuring the forces on the landing gear structure has involved directly instrumenting the 

landing gear with strain gauges [7] or by placing a transducer, such as a load pin, in a landing gear load path [8, 

9].  The development of aircraft weight and balance systems, which employ strain gauge based or fibre Bragg 

grating transducers in the landing gear axle, also provided a means for force measurements on the landing gear 

[10-12].  Additionally, landing gear shock absorber gas and hydraulic fluid measurements have been used for 

determining the loads in a single axis of the landing gear [13, 14].  In all of these methods, however, the 

additional weight and reliability issues of these systems have limited their use. 

 If landing gear loads can be inferred from flight parameters through machine learning techniques, it 

will avoid the undesirable scenario of having to place additional systems on the aircraft to determine these 

loads.  Researchers in the aerospace industry have used machine learning techniques such as artificial neural 

networks (ANNs) to determine the loads on other parts of the aircraft structures.  Significant work in this area 

is by Azzam et al. [15, 16] and Wallace et al. [17], who used a mathematical network to predict loads at a 

number of structural locations for the Tornado combat aircraft, over a large number of test flights.  Azzam et 

al. [16] also described the development of methods to predict damage in helicopter components and the 

prediction of high-frequency events, such as buffet loading on the fin of a fixed-wing aircraft.  The work 

reported in the current paper was inspired by the work of Reed [18, 19], who developed an ANN-based 

parametric fatigue monitor for the wing and tailplane of a military trainer aircraft and the wing of a combat 

aircraft. 



The machine learning approach in this paper utilises Gaussian Process (GP) regression along with 

greedy algorithms for optimisation in order to predict loads on components of the landing gear structure. The 

use of GPs is a growing area of interest in many disciplines where they are employed as a sophisticated 

nonparametric Bayesian approach to regression and classification problems. Most recently in the field of SHM, 

GP regression has been used for prediction of crack growth in aluminium specimens [20] and as a predictor for 

key features on a suspension bridge [20]. An example of the use of GPs for acoustic source location [22] is 

applied in the context of landing gear SHM in [23]. 

One of the key benefits of using machine learning techniques is the potential for minimising the 

additional aircraft instrumentation required.  Ideally, all of the required information will be available from the 

aircraft systems.  An additional benefit of this approach is that it could easily be expanded to the aircraft 

maintenance monitoring system.  This leads to a method of in-service loads monitoring that is advantageous in 

terms of weight, system complexity, reliability and cost.  

Preliminary case studies have shown the feasibility of predicting landing gear loads using drop test 

data and flight test data.  In [24], Multi-Layer Perceptron (MLP) and Bayesian MLP neural networks were 

developed using drop test data to predict landing gear side-stay loads.  In [25], GPs were developed using flight 

test data to predict vertical ground-to-tyre loads.  

This paper extends the previous work of the authors to use machine learning technique to predict 

landing gear ground-to-tyre loads and internal loads from drop test data and flight test data.  In Section II , the 

main landing gear structure and typical landing loads are first described.  The mathematical modelling approach 

that is used in the development of the GP regression models to predict the landing gear loads is then discussed 

in Section III .  This study also includes the optimisation of the input parameter selection using a greedy 

algorithm. The results of applying such models to the drop test and flight test data are then presented in Section 

IV  and finally, future plans for model development and testing are discussed in Section V. 

II. LANDING GEAR LOADS 

Figure 1 shows a typical telescopic port main landing gear (MLG) structure as well as a drop test rig.  Drop 

tests are performed as part of the aircraft certification to verify the dynamic compression damping and energy 



absorption characteristics of the landing gear shock absorber on landing [26].  In a drop test, the landing gear 

is mounted in a fixture that geometrically represents the aircraft landing gear attachment structure.  The landing 

gear is dropped from various heights onto a ground reaction platform.  The drop height is set to achieve the 

required vertical descent velocity.  The correct proportion of landing weight is supported by the moving carriage 

and wing lift is simulated by upward acting jacks.  Prior to the drop, the wheels are spun-up in the reverse 

rotation to simulate the aircraft forward landing speed.  Landing attitude is varied by angling the landing gear 

in the fixture or angling the ground reaction platform.  The surface of the ground reaction platform simulates 

the tyre-runway friction.  The ground-to-tyre loads are measured using loads cells in the ground reaction 

platform.  The landing gear side-stay and torque links are fitted with strain gauges and calibrated in order to 

directly measure loads. 

Figure 2 illustrates the landing dynamics of the MLG in a landing.  On contact with the ground reaction 

platform, the drag force deforms the landing gear aft and stores energy in the structure.  When the tyre 

 

Figure 1. Main Landing Gear Structure and Drop Test Rig [27] 



velocity reaches zero, the strain energy stored in the rearward deformation produces a spring-back.  The 

landing gear oscillates until the structural damping reduces the stored energy to zero [28].  Also during this 

time, there is an increasing vertical ground-to-tyre load, which is a function of the gas spring, oil damping 

(related to the square of the vertical descent velocity) and bearing friction.  The shock absorber continues to 

close until all the vertical energy has been absorbed and then it partially recoils [29].  The landing gear side 

stay acts in the drag and side plane to prevent sideways movement of the landing gear and also forms an 

attachment to the aircraft structure.  The torque links maintain the alignment of the axle. 

In this paper, the drop test data were collected from 21 individual drop tests and cover four different test set-

ups in which the vertical descent velocity, wheel speed and ground friction were varied.  Flight test data from 

a commercial aircraft undergoing typical landings were also obtained for this study.  Examples of the types of 

measurements available as model inputs for the drop test and flight test data are listed in Table 1 along with the 

loads from the strain measurements used as model targets (i.e. the loads to be predicted) listed in Table 2. 

 

 
Figure 2. Example of Main Landing Gear Landing Dynamics 

 



 

TABLE I. DROP TEST AND FLIGHT TEST MODEL INPUTS 

Drop Test Flight Test  
Carriage vertical descent velocity Aircraft velocity (longitudinal, lateral, vertical) 
Carriage acceleration Aircraft accelerations at cabin centre of gravity  
Carriage travel Aircraft altitude 
Carriage orientation is fixed Aircraft pitch, roll, yaw 
MLG main fitting acceleration MLG main fitting accelerations 
MLG sliding tube acceleration - 
MLG axle acceleration MLG axle accelerations 
Shock absorber gas pressure Shock absorber gas pressures  
Shock absorber travel Shock absorber travel 
Wheel speeds Wheel speeds  
Tyre closure - 

- Brake Pressures 
 

TABLE II. DROP TEST AND FLIGHT TEST MEASURED OUTPUTS  
WHICH ARE CANDIDATES FOR MODELLING 

Drop Test Flight Test  
Side-Stay Load - 
Torque Link Load - 
Drag Ground-to-Tyre Load - 
Vertical Ground-to-Tyre Load MLG Vertical Load 
Side Ground-to-Tyre Load - 

 

TABLE III. DETAILS OF DROP TEST DATA CONDITIONS 

Condition No. of tests Vertical impact speed (m/s) Ground friction 
1 6 1.22 Normal 
2 6 1.83 Normal 
3 6 2.44 Normal 
4 3 1.9 Increased 

 

III. THEORY 

A. Gaussian Process Regression 

GP regression, unlike classical maximum likelihood approaches based on a parameterised model form, 

considers a family of functions that fit to a training data set and provides a predictive distribution as opposed 



to a single crisp prediction for a given input. From this predictive distribution, a mean prediction and associated 

confidence intervals can be obtained. This nonparametric approach for regression has the benefit that model 

complexity is not limited by a set functional form. An additional benefit of using GPs lies in their compactness; 

the computations necessary for GP regression are simplified by the fact that a distribution directly over 

candidate functions can be defined, rather than over the parameters of a predefined function (as would be 

necessary for a Bayesian neural network for example). The full details of the computations involved in GP 

regression can be found in [30].  Very brief details will be given here in order to describe the user choices made.  

To define and train a GP, a mean function, ݉ሺݔሻ, and covariance function, ݇൫ݔǡ  Ԣ൯, must first beݔ

specified.  The mean function defines the expected prediction at any input location in the absence of any training 

data.  Commonly, because little is known about the data at this stage, and for simplification purposes, the mean 

function is set to zero. This practise was followed in this study. The covariance function determines the 

covariance of the two predictions at any two specified points.   A common choice of covariance function is the 

squared exponential, which has a general form [30]; 

݇൫ݔ௣ǡ ௤൯ݔ ൌ ݌ݔ௙ଶ݁ߪ ൬െͳʹ݈ଶ หݔ௣ െ ௤หଶ൰ݔ ൅  ௣௤ (1)ߜ௡ଶߪ

Where, ݔ௣ǡ ௙ଶǡߪ ,௤ are input valuesݔ  ௡ଶ are signal and noise variances respectively and ݈ is aߪ

characteristic length scale.  Equation (1) specifies that the covariance function will vary smoothly from point 

to point and that function values at similar inputs will be highly correlated.  The rate at which this correlation 

decays with distance is controlled by the choice of the length scale, ݈.  The key step in training a GP is the 

specification of the hyper-parameters ߪ௙ ǡ ௡ǡߪ ݈.  Within the machine learning community the most commonly 

used approach for optimising these hyper-parameters is to use a maximum likelihood approach to maximise 

the marginal likelihood of the training data [30].  That approach was followed here. 

B. Model Performance 

In this work, in order to quantify model performance, the mean squared error (MSE) is utilised as a 

measure of model fitness. Specifically, a normalised mean squared error will be used, which is defined here 

as: 



ܧܵܯ ൌ ͳͲͲ σሺ݉ݏݎ݋ݎݎ݁ ݈݁݀݋ሻଶ݊ ሺߪሾ݀ܽܽݐሿሻଶ  
(2) 

 

Where ࢔ is the number of data points at which prediction were made and ࣌ denotes standard deviation. This 

MSE is frequently used in structural system identification and has the property that, if the mean of the data is 

used as the model prediction, the MSE will be 100%. With this normalisation, values of MSE below 100% are 

indicative of captured correlation. 

C. Optimisation of Input Parameter Selection 

In the results section following, results are presented which made use of all available measurements as 

input variables for the GP. However, subset selection for model inputs was also investigated for the possibility 

that model fidelity would improve. There are a number of reasons why a smaller set of variables may yield 

better results than the full set. Firstly, there may be some variables that are uncorrelated with the output of 

interest; such variables simply increase the dimension of the problem and such ‘uninformative’ input variables 

should clearly be removed.  Secondly, a similar issue also arises if input variables are correlated with the output, 

but also highly correlated with each other; in this case one does not wish to remove all the set, only enough to 

eliminate linear dependence between variables. This is a particularly important issue when a large number of 

possible input variables are available for inclusion in the model, as is the case for the flight test data in this 

study. Finally, adding input variables can decrease model fidelity if the basic variables are correlated with the 

output, but carrying so much noise that it dominates the predictions when passed through the model. The latter 

issue is partially addressed here by the filtering operations discussed below.  

In order to select a useful subset of inputs for the GP training a greedy algorithm was used.  Greedy 

algorithms are known to be sub-optimal but in many situations they provide a good first attempt at optimisation. 

They are particularly useful when model estimation is computationally intensive, as is the case for GP models 

using large amounts of training data, because only a limited number of models are tested.  An example of the 

use of a greedy algorithm for subset selection in an SHM context can be found in [31].  In the present study an 

additive version of greedy algorithm was used:  One begins with an empty set of input variables. One then fits ܰ models with a single input. If the ݅th model has lowest MSE, input ݅ is selected for inclusion in the variable 



subset. At the next iteration, one fits ܰ െ ͳ models with two input variables, the one already selected and one 

of the remaining unchosen inputs, and adds to the subset the combination which gives lowest MSE, and so on.  

The algorithm is terminated when the error begins to rise when new input variables are added. 

IV. RESULTS 

The following section describes the results from predicting the landing gear loads using drop test data 

and flight test data.  Following established best practice in machine learning, the trained GPs are tested on data 

not included in the training set, and the results shown here are predictions on the test set. 

A. Drop Test Data 

For this study, drop test data were available from four different testing conditions (with differing drop 

heights,  wheel spin up conditions and ground friction). For each test condition, data were collected from 

multiple drops. As discussed previously, the landing gear used was instrumented with strain gauges and 

accelerometers at key locations, and measurements of other variables such as shock absorber pressure were 

also available. 

Initial studies focused on the prediction of the load measured on the side-stay, with all other measured 

parameters (excluding other strain measurements) considered as possible model inputs. In order to create a 

model that is able to predict load across different test conditions, data from two drops in every test condition 

were collated to create a training data set. One limitation of the GP implementation used here is the fact that it 

is necessary to invert an ܰ ൈ ܰ matrix, where ܰ  is the number of points in of the training data set, although 

ways to circumnavigate this are now emerging [33]. In order to avoid very large matrix inversions, the size of 

the training data used to condition the GP was generally limited to be under 5000 samples, and to do this, 

subsampling a quarter of the available training data set was necessary. This was done by selecting the every 4th 

data point from the data in the time-series order in which it was collected.  Each data point is a vector containing 

the input measurements at that point in time and the selected data points were passed to Equation (1) to form 

the elements of the covariance matrix [30].   



The models were trained on data from two drops in every test condition using all available input 

parameters (see Table I, left column) and were able to predict the general trend of side-stay load in unseen data 

to a reasonable degree of accuracy as reported below. However, as will be shown later in this paper, the 

prediction accuracy can be much improved by considering filtering and subset selection of the input parameters. 

A typical prediction of side-stay load on an unseen data set is shown in Figure 3. From this figure one can see 

that the general trend of the load can be predicted successfully. It should be noted, however, that the prediction 

has a higher noise content than the target and that at times the measured load is outside the confidence interval 

for the prediction.  

The MSE for the drop load prediction shown in Figure 3 is 13.1%.  In this and the following figures, 

the data point number corresponds to the relative position of the datum in the time series in which the data 

was collected.  The range of MSE values across the four conditions was 13.2%-19.9% with a mean of 16.2%. 

Looking at the figure, it is likely that the noise content of the prediction contributes significantly to the MSE. 

Figure 3. Prediction of side-stay load on an unseen drop test 

 



In order to improve model prediction fidelity, filtering of the input data set was considered. This can 

be justified by the observation that, in the dataset the noise content of any acceleration measurements is much 

higher than that of the load from the strain measurements. Figure 4 compares the power spectral density of a 

measured acceleration on the main fitting of the landing gear and load time history for the test data set shown 

in Figure 3. In this figure one can see that while the spectra match up to approximately 50 Hz, the accelerations 

have considerably more high frequency content than the load from the strain measurements.  

In order to reduce the discrepancy between acceleration and load, a low-pass filter with a cut-off of 

225 Hz was applied to all acceleration measurements. This value was chosen in anticipation of fitting dynamic 

models, to allow up to third order interactions between frequencies. Rather than filter data from individual 

drops, concatenated drop data were filtered. This is because, in order to achieve a zero-phase filter, it was 

necessary to run the data through the filters both backwards and forwards. This operation engenders a filter 

transient at both the start and end of the filtered record. It was observed that the transients at the boundary points 

 
Figure 4.  Comparison of power spectral density for a typical acceleration measurement on 

landing gear and side-stay load (normalised signals). 



in the concatenated data were less severe than when individual drops were filtered; this is presumably because 

each drop returns close to equilibrium by the end of each test record. 

When applying a low-pass filter to the model inputs before training and testing, it was found that the 

GP predictions had lower MSE values. Figure 5 shows the GP predictions of the side-stay load when using 

filtered inputs for the same test data as shown in Figure 3. The MSE is a much improved 7.1%. The average 

MSE across all test data when using filtered inputs is 7.2% (this compares to an MSE of 16.2% when using 

unfiltered inputs as reported above). 

The greedy algorithm with the insert strategy was run on the drop test data example considered in the last 

section. The stopping criterion for the algorithm was to stop if no decrease in MSE could be gained by adding 

an additional variable. The target variable was again chosen as the side-stay load and the candidate pool of 

input variables was made up of all inputs used in the models discussed in the last section (i.e. the filtered 

versions of those listed for the Drop Test data in Table I).  

 
Figure 5. GP prediction of side-stay load using filtered inputs

 



Table IV compares the average test MSE across different drop test conditions when using a GP with a 

full input set against one using inputs selected by the greedy algorithm. Studying Table IV one can see that in 

two out of four test conditions, the GP with inputs selected by the greedy algorithm is more successful than the 

GP with a full input set. The predictions in drop conditions 1 and 2 are better, however, if a full input set is 

used. This illustrates the fallibility of a greedy algorithm – the stopping criterion has in this case prevented 

potentially useful combinations of input parameters from being used.  

 
Figure 6. Comparison of model predictions using full input parameter set and greedy 

selection. Confidence intervals have been omitted here for clarity. 

 

Table IV. Comparison between model errors of GPs trained on complete input parameter set and 
the input parameter sets selected by the greedy algorithm (filtered inputs). For each load predicted 

the lowest MSE is highlighted 

Side-Stay Load Prediction – Test MSE (%) 
Drop Test Condition All Inputs 

 
Greedy Selection 

1 6.6 10.1 
2 6.8 7.1 
3 7.8 5.2 
4 7.7 6.0 

Mean 7.2 7.1 

 



 
Figure 6 shows a comparison of model predictions in drop condition 3 for a GP with a full input set 

and one with inputs selected by the greedy algorithm. One can see that the reduced model error when using the 

greedy input selection could again be attributed to having a lower noise content than the prediction using all 

inputs.  

Although only small gains have been seen here when using a greedy algorithm, such optimisation 

routines become much more valuable where the number of possible input variables is much larger – this will 

be illustrated in later sections where flight test data are discussed. 

 In the previous sections, accurate predictions of side-stay load on unseen data sets have been achieved 

with GP regression, filtering of input variables and a set of input variables selected by a greedy algorithm. 

Taking the same approach, trained GPs are also able to predict load at the torque link and ground-to-tyre loads 

to a high degree of accuracy. Table V shows the average MSE error across all test data (including different 

conditions) for a number of different measured loads. Typical predictions of each load are shown in Figures 7 

to 10.  

From Table V and Figures 7 to 10 one can see that the GPs are able to predict landing gear torque link 

and ground-to-tyre loads to a good degree of accuracy.  The best predictions are achieved when considering 

vertical ground-to-tyre load, here the predictions are very accurate with a low MSE. Torque-link load and side 

ground to tyre load are more difficult to predict and show higher MSE values, although Figures 7 and 9 show 

that reasonable predictions are made on unseen (test) data. 

 

Table V. MSE of GP predictions across all drop test data conditions 

model inputs selected by greedy algorithm 

Load Predicted 
Test MSE (%) 

Mean Range 
Side-stay load 7.1 5.2-10.1 
Torque-link load 15.2 10.3-20.7 
Drag ground-to-tyre load (ground reaction platform) 4.7 2.8-7.0 
Side ground-to-tyre load (ground reaction platform) 14.3 6.8-22.3 
Vertical ground-to-tyre load (ground reaction platform) 0.61 0.22-1.33 

 



 

 
Figure 7 Prediction of torque-link load (unseen data) Ȃ inputs selected by greedy algorithm. 

Confidence intervals have been omitted for clarity. 

 
Figure 8. Prediction of drag ground-to-tyre load (unseen data) Ȃ inputs selected by greedy 

algorithm. Confidence intervals have been omitted for clarity 



 

 
Figure 9. Prediction of side ground-to-tyre load (unseen data) – inputs selected by greedy 

algorithm. Confidence intervals have been omitted for clarity. 

 
Figure 10. Prediction of vertical ground-to-tyre load (unseen data) Ȃ inputs selected by 

greedy algorithm. Confidence intervals have been omitted for clarity. 



B. Flight Test Data 

The previous section confirmed, in principle, the feasibility of making predictions for loads on landing 

gear from other measurements.  In this section, the predictive capability of GP regression is explored in the 

more challenging context of measured flight test data. GPs are trained to predict vertical landing gear load given 

a number of input parameters recorded on the aircraft.  

Prediction of Load Using Available Aircraft Measurements 

A pertinent question here is that of whether landing gear loads experienced in operation can be 

predicted from measurements readily available on the aircraft today, such as data from the aircraft Flight Data 

Recorder. As an initial study, the choice of model inputs was hence limited to only those measurements more 

commonly available on aircraft, such as pitch, roll, yaw, and their rates, wheel speeds, brake pressures, altitude 

and acceleration at the cabin centre of gravity. At this stage a greedy algorithm was not employed for input 

variable selection.  

For this trial, data from a fifth of the available landing events were used for model training and as for 

the drop test data this was subsampled using every fourth data point.  The twenty-two measured variables were 

employed as model inputs. In this trial the results were not filtered.  When the trained GP was tested on data 

from landing events not in the training set, the results were mixed. Across the testing set an average MSE of 

47.5% was achieved, with the highest and lowest MSEs for single landings being 72.7% and 26.4% 

respectively. It was found that the predictions were generally able to follow the overall trend of the measured 

load. Figure 11 provides a typical comparison of a (normalised) measured load and the GP prediction, over a 

period of data in the testing set. The figure illustrates how the general trend is followed, along with where the 

model fails to predict the load accurately. An important aspect of employing Bayesian techniques such as GPs 

is also illustrated in this figure; towards the end of the time history, one can see that the confidence intervals 

expand away from the prediction. This indicates that the confidence in the prediction is lower, which is most 

likely due to the experiencing conditions in the input parameter set not present in the training set. 

 



 

 

 

When employing a greedy algorithm in an attempt to improve the model fidelity, interestingly, the 

only variables selected by the algorithm as suitable model inputs were the longitudinal, lateral and vertical 

accelerations measured at the cabin centre of gravity. Once these had been included as model inputs, no other 

variable would provide a decrease in MSE.  

When employing only these acceleration measurements at the cabin centre of gravity as model inputs 

an average MSE of 38.4% was achieved across the testing set, with the highest and lowest MSEs for single 

landings being 73.7% and 17.5% respectively. With a reduced input set, the predictions generally provided a 

lower MSE. Figure 12 shows the GP prediction for the same test data as shown in Figure 11, when only 

measurement of the acceleration at the cabin centre of gravity is used as a model input. From this figure one 

can see that again the general trend of the load is followed by the prediction, but one can immediately see that 

 
Figure 11. GP prediction capability for a sample test flight  when using  

commonly available flight measurements. 

 



the predictions appear noisy. In some of the poorest predictions, this noise is a prohibitive issue, as can be seen 

in Figure 13, which shows the poorest prediction across the testing set. This is currently thought to be 

attributable to disparity between the sampling rates of the sensors measuring the load on the gear and the 

acceleration in the cabin.  

A conclusion of this initial study is that useful information for prediction of loads on the landing gear 

is available from commonly measured flight parameters. However, the predictions in this study are variable 

with some being much more accurate than others. Further work is needed to ascertain whether prediction 

capability can be improved and by how much when only commonly measured input variables are used. In the 

next section of this work, model improvement is studied when input variables less commonly measured are 

included. 

 
Figure 12. GP prediction capability when only using acceleration measurements  

at the cabin centre of gravity. 

 



Prediction Load Using Additional Measurements 

Following on from results gained when working with drop test data, it was expected that additional 

predictive capability could be gained by using input variables that are not so commonly measured. Therefore, 

a number of additional measurements were included, such as acceleration measurements on the landing gear 

itself, shock absorber closures and gas pressures.  

Initially, a GP was trained using this full set of inputs and with the same choice and subsampling of 

training data as in the last section.  The mean MSE for the testing set was 6.3% with a range between 0.3% and 

37.3%.  This already shows a marked improvement on the results obtained using only the commonly measured 

quantities as inputs.  Next, with the augmented set of candidate input parameters, a greedy algorithm was 

employed to select the model inputs and also the most informative landings for the training set. This latter 

addition was made in order to identify a training set that would provide a model that could generalise to the 

largest number of different landing conditions.  

 
Figure 13. GP prediction capability when only using acceleration measurements at the cabin centre 

of gravity (poorest prediction across recorded landings). 

 



The termination criteria for the greedy algorithm applied was based on the reduction in MSE between 

each iteration. It was found here that after five iterations the overall test MSE was decreasing by a very small 

amount. The five input parameters selected by the greedy algorithm included the previously mentioned 

accelerations at the cabin centre of gravity, along with an acceleration measurement on the gear itself and 

measurements of shock absorber closure and gas pressure.  

With these five inputs, the prediction capabilities on the test set were significantly improved. An 

average MSE of 3.5% was achieved across the testing set, with the highest and lowest MSEs for single landings 

being 6.3% and 1.4% respectively. An example of a typical GP prediction is shown in Figure 14, where one 

can easily see the increased predictive fidelity compared to Figures 11-13.  

These results are encouraging, however, it must be noted that prediction capability is reduced around 

the initial touchdown period during landing. It is currently thought that this originates from the wider variability 

in conditions that affect this period in the landing, for example, the pilot control at this instant may vary 

 
Figure 14. Improved GP prediction capability when employing additional input 

parameters not currently commonly measured. 

 



significantly between different pilots and depending on weather conditions. Interestingly, these very accurate 

predictions were obtained without the need for filtering, as was necessary with the drop test data.  

 
V. CONCLUSION 

GP regression has been used to create models for load prediction across the aircraft landing gear. Some 

of these models have been very successful at predicting the measured loads. GP regression has proved to 

be a very useful tool providing accurate predictions, and importantly confidence intervals on those 

predictions. Such confidence intervals have an inbuilt capability to signal if novel data unlike data 

previously seen is present, which will prove invaluable when predicting loads from any new data collected.  

Concerning flight test data, it has been found that when measurements from instrumentation on the gear 

itself have been included as model inputs, predictions of much higher accuracy are achievable on data from 

landings not in the training set. Where the input parameters employed were limited to only those 

measurements more commonly available (such as those dictated by Flight Data Recorder requirements), 

the prediction capability is reduced, however, in general model predictions are able to track the trend of 

recorded load in the gear.   

The ideal possibility of prediction from commonly available measurements cannot yet be ruled out:  a 

wider training data set and enhancements to the models and optimisation routines may yet yield sufficient 

modelling fidelity.  However, it is possible that some extra instrumentation may be required in which case 

the subset selection methods trialled here give a way of searching for a minimal set of extra measurements.  

The industry requirements in terms of precision will also need to be taken into account and a possibility 

for future work is an optimisation routine which includes a trade-off between model precision and the cost 

of providing extra sensors. 

The flight test data was all gathered from a single aircraft with a given landing gear configuration and 

differing runway surfaces.  Further work will investigate further the variability arising from different 

conditions.  It is likely, however, that any aircraft will require the training of a model that is particular to 

that aircraft.   On the other hand, landing surface conditions, especially roughness, will have a direct effect 



upon the inputs to the models and so a single model should be able to cope across different situations.  

Ongoing work is investigating how the noise parameter for the GP models can contain information about 

runway surface roughness. 

Throughout this work, the question arose as to whether it was expedient to filter data. The question 

first arose during analysis of the drop test data, and in that case, filtering did indeed improve model 

predictions. The reason for the improvement was that the target outputs considered were much smoother 

than many of the input variables. This fact raised questions about the instrumentation; it appeared that the 

strain gauges used to measure loads may have had different frequency responses to the accelerometers used 

to measure accelerations. This is an important consideration; however, detailed information about the test 

instrumentation proved unobtainable. Interestingly, when working with flight test data, filtering was 

considered unnecessary, with prediction fidelity very good without it. In general, information about sensors 

and test signal conditioning (anti-aliasing filters etc.) will be important. 

Selecting model inputs using a greedy algorithm proved to be a useful approach. Although greedy 

algorithms are well known to be suboptimal, they have been used here to avoid excessive computational 

cost incurred when using approaches that are known to be optimal, such as evolutionary algorithms. In the 

drop test data, where the number of inputs were limited, results when the using the greedy algorithm were 

not always better than when employing the whole range of available input parameters.  However, neither 

were they significantly worse and were improved for some of the test conditions. This confirmed the 

feasibility of the approach.  For the flight test data, model input selection is much more important because 

a wide range of measurements are possible.  It is very encouraging, therefore, that the greedy algorithm 

results were a significant improvement on the models using the full candidate input set.  True optimisation 

routines, such as a genetic algorithm, would potentially give further improvements if future computational 

resources allow. 

By employing such models for predicting loads on the gear, the usage and ultimately the remaining 

life of the landing gear component can be predicted.  However, in order to develop a landing gear 

parametric model, adequate ‘training data’ (i.e. historical data which can be used as a basis for ‘learning’ 



the relationship between the flight parameters and the landing gear loads data) is required in all operating 

conditions.  Therefore an effective operational loads monitoring capability is first required. 
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