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ABSTRACT

This paper investigates the feasibility of usingchiiae learning algorithms to predict the loads
experienced by a landing gear during landing. Riergurpose, results on drop test data and flegttdata will
be examined. This paper will focus on the use afgSian Process regression for the prediction afslam
components of a landing gear. For the learning, te@kprehensive measurement data from drop tests ar
available. These include measurements of strakeydbcations, such as the on the side-stay agdedink,
as well as acceleration measurements of the drdpgaand the gear itself, measurements of shloskrber
travel, tyre closure, shock absorber pressure and \speetl. Grountb-tyre loads are also available through
measurements made with a drop test ground regaatiorm. The aim is to train the GP to predict l@ac
particular location from other available measuresiesuch as accelerations, or measurements ohduk s
absorber. If models can be successfully trainest) fhture load patterns may be predicted using thage
measurements. The ultimate aim is to produce arratecmodel that can predict the load at a humber of

locations across the landing gear by using measutsitie are readily available, or may be measureé mor



easily than directly measuring strain on the gesalfi (for example, these may be measurementsdgirea
available on the aircraft, or from a small numblesensors attached to the gear). The drop testaladels
provide a positive feasibility test which is thesissfor moving on to the critical task of prediction flight test
data. For this, a wide range of available flighdttmeasurements is considered for potential mogdets
(excluding strain measurements themselves), baeftempting to refine the model or use a smallertramof
measurements for the prediction.

I. INTRODUCTION

The landing gear of an aircraft is a unique compbbecause it is both a structure and a systeis. It
a complex system with controlled articulation, nimlét axes of energy absorption, and it is the swlecture
supporting the aircraft when on the ground. It triusar extreme and varying loads when an aircraft
manoeuvres on the ground during taxi, take-offlanding, yet it must be lightweight and compaciduse it
is stowed and unused during the majority of anrairs flight [[1]].

The significant difference between the aircraficire and landing gear is reflected in the difieee
between their design and approval methodologies. Many airframe designs use a “damage tolerant" design
philosophy, which assumes that cracks exist istifueture; the structure is designed to retain@atecstrength
until the crack is detected andreetive action is taken. However, landing gear use a “safe life" design
philosophy in which the component is designed spexific service life and is removed from serviefobe
this elapsed time so that the probability of falis remotq [R]. This approach is followed becdnsmost
applications, landing gear have no structural rddooy. Furthermore, landing gear are predominantly
manufactured from very high strength (but relatively tomghness) steel and titanium alloys as they must be
able to withstand high loads but have minimum weigtjtsize]. In high strength materials, crack growth
is very rapid and critical crack sizes may not &edable. Therefore, landing gear are designaa &ssumed
loads usage spectrum. However, how closely theab&inding gear usage matches the assumed loads
spectrum is unknown.

Taking this into account, there are several aréasterest in aircraft landing gear structural tieal

monitoring: understanding of the current operamyironment of landing gear in order to allow for a



improvement in the assumed loads usage spectruhiruiges evaluation of fatigue design criteriaysillance
of the landing gear fleet in order to detect owatloccurrences (and equally to indicate which aeocges
were not overloads), and ultimately to allow the dedifon of the landing gear to be based on the aliteial
experienced in servi[

Different approaches have be taken to determirseiivice landing gear loads, such as the use of
kinematics (accelerations, velocities and displaa@n) or the use of other measurements such ssupeeor
strain. Generally work has focused on developnegtial measurement systems to provide kinemaghtfl
parameter data that can be used to calculate landardands using physics-based J"E [ Other work
focused on directly measuring the forces on the landiag gjructure has involved directly instrumenting the
landing gear with strain gaugﬁ ¢r by placing a transducer, such as a load pia landing gear load pat [

EI. The development of aircraft weight and balance systavhich employ strain gauge based or fibre Bragg

grating transducers in the landing gear axle, @seided a means for force measurements on thetagdar

10112]. Additionally, landing gear shock absorber gad hydraulic fluid measurements have been used for

determining the loads in a single axis of the Iagot'year. In all of these methods, however, the
additional weight and reliability issues of thegstems have limited their use.

If landing gear loads can be inferred from fligarameters through machine learning technigties,
will avoid the undesirable scenario of having tagel additional systems on the aircraft to deterrttinee
loads. Researchers in the aerospace industryusagemachine learning techniques such as artifieiatal
networks (ANNSs) to determine the loads on other partiseo&ircraft structures. Significant work in thisa
is by Azzam et aI and Wallace et a, who used a mathematical network to predict lczds
number of structural locations for the Tornado cat@ircraft, over a large number of test flightszzam et
al. also described the development of methods toigireldmage in helicopter components and the
prediction of high-frequency events, such as buffating on the fin of a fixed-wing aircraft. Theofk
reported in the current paper was inspired by tbekvof Reed, who developed an ANN-based
parametric fatigue monitor for the wing and tait@eof a military trainer aircraft and the wing ot@mbat

aircraft.



The machine learning approach in this paper Wilisaussian Process (GP) regression along with
greedy algorithms for optimisation in order to pretbeids on components of the landing gear structure. The
use of GPs is a growing area of interest in masgiglines where they are employed as a sophidgticate
nonparametric Bayesian approach to regressionlasslification problems. Most recently in the fiefdSHM,

GP regression has been used for prediction of gramith in aluminium specime ﬁ and as a predictor for
key features on a suspension brigizg@. [An example of the use of GPs for acoustic solﬂcation is
applied in the context of landing gear SH [

One of the key benefits of using machine learnaahniques is the potential for minimising the
additional aircraft instrumentation required. Ideadly of the required information will be availablerin the
aircraft systems. An additional benefit of thigpagach is that it could easily be expanded to trezadt
maintenance monitoring system. This leads to asdathin-service loads monitoring that is advantargan
terms of weight, system complexity, reliability acmbt.

Preliminary case studies have shown the feasildfifgredicting landing gear loads using drop test
data and flight test data. , Multi-Layer Perceptron (MLP) and Bayesian MLPure networks were
developed using drop test data to predict landéay gide-stay loads. , GPs were developed using flight
test data to predict vertical groutwityre loads.

This paper extends the previous work of the auttmrgse machine learning technique to predict
landing gear grounti-tyre loads and internal loads from drop test data dgtat fest data. In Sectiph the
main landing gear structure and typical landing$oare first described. The mathematical modedipgoach
that is used in the development of the GP regnessaels to predict the landing gear loads is therussed
in Sectio This study also includes the optimisation of ithygut parameter selection using a greedy
algorithm. The results of applying such models ¢éodiop test and flight test data are then presémtgelction
and finally, future plans for model developmerd &sting are discussed in Seﬁn

[I. LANDING GEAR LOADS
Figure 1 shows a typical telescopic port main lagdjear (MLG) structure as well as a drop test Bgop

tests are performed as part of the aircraft certificatiorerify the dynamic compression damping and energy



Retraction Actuatot — Forward Pintle Pin

Drag Ground-to-Tyre Load

Figure 1. Main Landing Gear Structureand Drop Test Rig [27]

absorption characteristics of the landing gearlsltsorbepn landin . In a drop test, the landing gear
is mounted in a fixture that geometrically représdme aircraft landing gear attachment structiifes landing
gear is dropped from various heights onto a graeadtion platform. The drop height is set to aghithe
required vertical descent velocity. The correcpprtion of landing weight is supported by the mowviarriage
and wing lift is simulated by upward acting jackrior to the drop, the wheels are spun-up in dvense
rotation to simulate the aircraft forward landing spekdnding attitude is varied by angling the landiegrg
in the fixture or angling the ground reaction matf. The surface of the ground reaction platfoimutates
the tyre-runway friction. The grourid-tyre loads are measured using loads cells in theng reaction
platform. The landing gear side-stay and torqueslare fitted with strain gauges and calibratedrder to
directly measure loads.

Figure 2 illustrates the landing dynamics of the®/iih a landing. On contact with the ground reactio

platform, the drag force deforms the landing géizarad stores energy in the structure. When tiee ty



velocity reaches zero, the strain energy stor¢ioeimearward deformation produces a spring-batie T
landing gear oscillates until the structural dargpduces the stored energy to [Also during this
time, there is an increasing vertical grodadyre load, which is a function of the gas sprioiydamping
(related to the square of the vertical descentcitgdoand bearing friction. The shock absorbetticnes to
close until all the vertical energy has been atebemd then it partially recoi. The landing gear side
stay acts in the drag and side plane to preveaivsigs movement of the landing gear and also forms an

attachment to the aircraft structure. The torquesimaintain the alignment of the axle.

Drop Test Port Main Landing Gear Landing Dynamics
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Figure 2. Example of Main Landing Gear Landing Dynamics

In this paper, the drop test data were collectech 21 individual drop tests and cover four different test-

ups in which the vertical descent velocity, wheel speedysound friction were varied. Flight test data from
a commercial aircraft undergoing typical landings vedse obtained for this study. Examples of the types of
measurements available as model inputs for thetdeband flight test data are listed in Tableoh@iwith the

loads from the strain measurements used as mogetddi.e. the loads to be predicted) listed inld 2.



TABLE . DROP TEST AND FLIGHT TEST MODEL INPUTS

Drop Test Flight Test
Carriage vertical descent velocity Aircraft velocity (longitudinal, lateral, vertical)
Carriage acceleration Aircraft accelerations at cabin centre of gravity
Carriage travel Aircraft altitude
Carriage orientation is fixed Aircraft pitch, roll, yaw

MLG main fitting acceleration MLG main fitting accelerations
MLG sliding tube acceleration -

MLG axle acceleration MLG axle accelerations
Shock absorber gas pressure Shock absorber gas pressures
Shock absorber travel Shock absorber travel

Wheel speeds Wheel speeds

Tyre closure -
- Brake Pressures

TABLE II.DROP TEST AND FLIGHT TEST MEASURED OUTPUTS
WHICH ARE CANDIDATESFOR MODELLING

Drop Test Flight Test
Side-Stay Load -
Torque Link Load -
Drag Groundo-Tyre Load -
Vertical Groundto-Tyre Load | MLG Vertical Load
Side Grounde-Tyre Load -

TABLEIII. DETAILSOF DROP TEST DATA CONDITIONS

Condition | No. of tests | Vertical impact speed (m/s) | Ground friction
1 6 1.22 Normal
2 6 1.83 Normal
3 6 2.44 Normal
4 3 1.9 Increased
1. THEORY

A. Gaussian Process Regression
GPregression, unlike classical maximum likelihoograaches based on a parameterised model form,

considers a family of functions that fit to a tiagpdata set and provides a predictive distribuisropposed



to a single crisp prediction for a given input. farthis predictive distribution, a mean prediction associated
confidence intervals can be obtained. This nonparanapproach for regression has the benefit thadeah
complexity is not limited by a set functional forAn additional benefit of using GPs lies in th&inpactness;
the computations necessary for GP regression amglifséd by the fact that a distribution directlyey
candidate functions can be defined, rather tham tweparameters of a predefined function (as woeld
necessary for a Bayesian neural network for exgmphee full details of the computations involvedGi®
regression can be found. Very brief details will be given here in orderdescribe the user choices made.

To define and train a GP, a mean functiaiix), and covariance functio(x,x ), must first be
specified. The mean function defines the expectedigiion at any input location in the absencengfteaining
data. Commonly, because little is known aboutitita at this stage, and for simplification purppesmean
function is set to zero. This practise was folloviledhis study. The covariance function determines the
covariance of the two predictions at any two sjEtifoints. A common choice of covariance funcifthe
squared exponential, which has a general @1 [

k(xp, xq) = ofexp <2_—; |, — xq|2) + 058, (1)

Where, x,,, x, are input values;rfz,a,% are signal and noise variances respectively lamgl a
characteristic length scale. Equation (1) spexifiat the covariance function will vary smoothiyrfi point
to point and that function values at similar inputd la& highly correlatedThe rate at which this correlation
decays with distance is controlled by the choicéheflength scald, The key step in training a GP is the
specification of the hyper-parametefsay,, [. Within the machine learning community the mashmonly
used approach for optimising these hyper-paramistéesuse a maximum likelihood approach to maxémis
the marginal likelihood of the training dﬁ. That approach was followed here.

B. Modd Performance
In this work, in order to quantify model performanthe mean squared error (MSE) is utilised as a

measure of model fithess. Specificaliyyormalised mean squared error will be used, wisiciefined here

as:



100 Y.(model errors)? 2

MSE = n (o[data])?

Wheren is the number of data points at which predicti@revmade and denotes standard deviation. This
MSE is frequently used in structural system iderttian and has the property that, if the mean of the slata i
used as the model prediction, the MSE will be 100#th this normalisation, values of MSE below 108fé
indicative of captured correlation.
C. Optimisation of Input Parameter Selection

In the results section following, results are pnéssa which made use of all available measurements a
input variables for the GP. However, subset seledtir model inputs was also investigated for thesgoility
that model fidelity would improve. There are a numbiereasons why a smaller set of variables malg yie
better results than the full set. Firstly, thereyrha some variables that are uncorrelated witrothiput of
interest; such variables simply increase the dimension of the problem and such ‘uninformative’ input variables
should clearly be removed. Secondly, a similarasdso arises if input variables are correlatéd thie output,
but also highly correlated with each other; in thisaase does not wish to remove all the set, only enough to
eliminate linear dependence between variables.i§ @garticularly important issue when a large benof
possible input variables are available for inclosio the model, as is the case for the flight tiegf in this
study. Finally, adding input variables can decreasgehfadelity if the basic variables are correlatethvihe
output, but carrying so much noise that it domisigthe predictions when passed through the modelattre
issue is partially addressed here by the filtedpegrations discussed below

In order to select a useful subset of inputs fer@® training a greedy algorithm was used. Greedy
algorithms are known to be sopimal but in many situations they provide a goaost fittempt at optimisation.
They are particularly useful when model estimaigocomputationally intensive, as is the case fom@@ieels
using large amounts of training data, because omtyietl number of models are tested. An example of the
use of a greedy algorithm for subset selectiomiSldM context can be found . In the present study an
additive version of greedy algorithm was used: @sgins with an empty set of input variables. Owmea ffits

N models with a single input. If thith model has lowest MSE, inpuis selected for inclusion in the variable



subset. At the next iteration, one fils— 1 models with two input variables, the one already seleuiddne
of the remaining unchosen inputs, and adds toubses the combination which gives lowest MSE, andrs
The algorithm is terminated when the error begirmise when new input variables are added.

V. RESULTS

The following section describes the results froedpting the landing gear loads using drop test dat
and flight test data. Following established beattice in machine learning, the trained GPs atedeon data
not included in the training set, and the restiitsrs) here are predictions on the test set.

A. Drop Test Data

For this study, drop test data were available ffoundifferent testing conditions (with differing drop
heights wheel spin up conditions and ground friction). Bach test condition, data were collected from
multiple drops. As discussed previously, the lagdiear used was instrumented with strain gauges and
accelerometers at key locations, and measurementhear variables such as shock absorber pressene w
also available.

Initial studies focused on the prediction of th@daneasured on the side-stay, with all other meesur
parameters (excluding other strain measurementsjdered as possible model inputs. In order toteraa
model that is able to predict load across diffetesit conditions, data from two drops in every testdition
were collated to create a training data set. Gniggliion of the GP implementation used here iddhethat it
iS necessary to inverhav X N matrix, wherelV is the number of points in of the training datg akhough
ways to circumnavigate this are now emer [In order to avoid very large matrix inversions, the size
the training data used to condition the GP was rgéipdimited to be under 5000 samples, and tolds, t
subsampling a quarter of the available training dat was necessary. This was done by selectimgydg 4"
data point from the data in the time-series omdertiich it was collectedEach data point is a vector containing
the input measurements at that point in time aadéhected data points were passed to Equatida fa)m

the elements of the covariance ma ﬁ [



The models were trained on data from two dropsveryetest condition using all available input
parameters (see Table I, left column) and weretalpezdict the general trend of side-stay loaghiseen data
to a reasonable degree of accuracy as reported.belowever, as will be shown later in this papbe t
prediction accuracy can be much improved by corisigéltering and subset selection of the inputgpaeters.
A typical prediction of side-stay load on an unseea dat is shown in Figure 3. From this figure one can see
that the general trend of the load can be predsedessfully. It should be noted, however, thapitiediction
has a higher noise content than the target anathiates the measured load is outside the cordelegnerval

for the prediction.
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Figure 3. Prediction of sde-stay load on an unseen drop test

The MSE for the drop load prediction shown in FegBris 13.1%. In this and the following figures,
the data point number corresponds to the relatigéipn of the datum in the time series in whioh data
was collected. The range of MSE values acrosfotireconditions was 13.2%-19.9% with a mean of 46.2

Looking at the figure, it is likely that the noisentent of the prediction contributes significaritiythe MSE.



In order to improve model prediction fidelity, &ting of the input data set was considered. This ca
be justified by the observationathin the dataset the noise content of any acceleratiasurements is much
higher than that of the load from the strain meamnts. Figure 4 compares the power spectral gerisit
measured acceleration on the main fitting of the lapdear and load time history for the test data set shown
in Figure 3. In this figure one can see that witiiespectra match up to approximately 50 Hz, thelarations

have considerably more high frequency content th@ifoad from the strain measurements.
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Figure 4. Comparison of power spectral density for a typical acceleration measurement on
landing gear and side-stay load (normalised signals).

In order to reduce the discrepancy between actielerand load, a low-pass filter with a cut-off of
225 Hz was applied to all acceleration measuremeéhis value was chosen in anticipation of fittdygamic
models, to allow up to third order interactionswen frequencies. Rather than filter data fromviddal
drops, concatenated drop data were filtered. Bhizecause, in order to achieve a zero-phase ftltegs
necessary to run the data through the filters battkwards and forwards. This operation engendéitera

transient at both the start and end of the filteeedrd. It was observed that the transients didbadary points



in the concatenated data were less severe thanimdieiclual drops were filtered; this is presumabécause
each drop returns close to equilibrium by the drehoh test record.

When applying a low-pass filter to the model inpw@fole training and testing, it was found that the
GP predictions had lower MSE values. Figure 5 shinsGP predictions of the side-stay load whengusin
filtered inputs for the same test data as showkigare 3. The MSE is a much improved%. The average
MSE across all test data when using filtered inmu&2% (this compares to an MSE of 16.2% whengusi

unfiltered inputs as reported abyve

m——— measurement
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Figure 5. GP prediction of side-stay load using filtered inputs

The greedy algorithm with the insert strategy wasan the drop test data example considered ilashe
section. The stopping criterion for the algorithmswi@stop if no decrease in MSE could be gaineaiolyng
an additional variable. The target variable wasragaosen as the side-stay load and the candidateop
input variables was made up of all inputs usetiémbodels discussed in the last section (i.eiltbestd

versions of those listed for the Drop Test dafgahle I)



TablelV compares the average test MSE across differepttesb conditions when using a GP with a
full input set against one using inputs selected by thedgralgorithm. Studying Tablé¢ one can see that in
two out of four test conditions, the GP with inpsedected by the greedy algorithm is more sucdebsin the

TablelV. Comparison between model errorsof GPstrained on complete input parameter set and

theinput parameter setsselected by the greedy algorithm (filtered inputs). For each load predicted
the lowest M SE ishighlighted

Side-Stay L oad Prediction — Test M SE (%)
Drop Test Condition All Inputs Greedy Sdlection
1 6.6 10.1
2 6.8 7.1
3 7.8 5.2
4 7.7 6.0
Mean 7.2 7.1

GP with a full input set. The predictions in dramditions 1 and 2 are better, however, if a fytiunset is
used. This illustrates the fallibility of a greedgaithm — the stopping criterion has in this case prevented

potentially useful combinations of input paramefesm being used.
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Figure 6. Comparison of model predictions using full input parameter set and greedy
selection. Confidence intervals have been omitted here for clarity.



Figure 6 shows a comparison of model predictiordrap condition 3 for a GP with a full input set
and one with inputs selected by the greedy alguaritbne can see that the reduced model error wiireg the
greedy input selection could again be attributedadgng a lower noise content than the predictisingiall
inputs.

Although only small gains have been seen here wikerg a greedy algorithm, such optimisation
routines become much more valuable where the nuailssible input variables is much largehis will

be illustrated in later sections where flight @eta are discussed.

Table V. MSE of GP predictions across all drop test data conditions
model inputs selected by greedy algorithm

L oad Predicted Test MSE (%)

Mean Range
Side-stay load 7.1 5.210.1
Torque-link load 15.2 10.320.7
Drag groundo-tyre load (ground reaction platform) 4.7 2.87.0
Side grounde-tyre load (ground reaction platform) 14.3 6.822.3
Vertical groundto-tyre load (ground reaction platform) 0.61 0.221.33

In the previous sections, accurate predictiorsidaf-stay load on unseen data sets have beenedhiev
with GP regression, filtering of input variablesdaa set of input variables selected by a greedyrithgn.
Taking the same approach, trained GPs are als¢capitedict load at the torque link and grouadyre loads
to a high degree of accuracy. Table V shows theageeMSE error across all test data (including diffe
conditions) for a number of different measured lodgpical predictions of each load are shown in Figures 7
to 10.

From Table V and Figures 7 to 10 one can seetidbPs are able to predict landing gear torque link
and grounde-tyre loads to a good degree of accuracy. Thepvesictions are achieved when considering
vertical groundo-tyre load, here the predictions are very accwitea low MSE. Torque-link load and side
ground to tyre load are more difficult to predict ahdvg higher MSE values, although Figures 7 and 9 show

that reasonable predictions are made on unseénddts.
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Figure 7 Prediction of torque-link load (unseen data) - inputs selected by greedy algorithm.
Confidence intervals have been omitted for clarity.
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Figure 8. Prediction of drag ground-to-tyre load (unseen data) - inputs selected by greedy
algorithm. Confidence intervals have been omitted for clarity
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Figure9. Prediction of sdeground-to-tyreload (unseen data) — inputs selected by greedy
algorithm. Confidence intervals have been omitted for clarity.
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Figure 10. Prediction of vertical ground-to-tyre load (unseen data) - inputs selected by
greedy algorithm. Confidence intervals have been omitted for clarity.



B. Flight Test Data

The previous section confirmed, in principle, thadibility of making predictions for loads on lamgli
gear from other measurements. In this sectionpttidictive capability of GP regression is exploiredhe
more challenging context of measured flight tet.daPs are trained to predict vertical landing gl given
a number of input parameters recorded on the #ircra
Prediction of Load Using Available Aircraft M easurements

A pertinent question here is that of whether lagdijear loads experienced in operation can be
predicted from measurements readily available eratttraft today, such as data from the aircraghFData
Recorder. As an initial study, the choice of model inputs lence limited to only those measurements more
commonly available on aircraft, such as pitch, s@lv, and their rates, wheel speeds, brake pessaltitude
and acceleration at the cabin centre of gravitythis stage a greedy algorithm was not employedhfmut
variable selection.

For this trial, data from a fifth of the available lamglievents were used for model training and as for
the drop test data this was subsampled using émamyr data point. The twenty-two measured vaeisiere
employed as model inputs. In this trial the reswitse not filtered. When the trained GP was testedata
from landing events not in the training set, treults were mixed. Across the testing set an avevigje of
47.5% was achieved, with the highest and lowest M&F single landings being 72.7% and 26.4%
respectively. It was found that the predictions wengegally able to follow the overall trend of the measured
load. Figure 11 provides a typical comparison @f@malised) measured load and the GP predictiasr, @
period of data in the testing set. The figure illussdtow the general trend is followed, along with wheee t
model fails to predict the load accurately. An imiaot aspect of employing Bayesian techniques as¢BPs
is also illustrated in this figure; towards the efidhe time history, one can see that the conéidentervals
expand away from the prediction. This indicates thatconfidence in the prediction is lower, whishmost

likely due to the experiencing conditions in thptihparameter set not present in the training set.
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Figure 11. GP prediction capability for a sample test flight when using
commonly available flight measurements.

When employing a greedy algorithm in an attemptriprove the model fidelity, interestingly, the
only variables selected by the algorithm as suétabhbdel inputs were the longitudinal, lateral aedigal
accelerations measured at the cabin centre of gravite ese had been included as model inputs, no other
variable would provide a decrease in MSE.

When employing only these acceleration measurenagtite cabin centre of gravity as model inputs
an average MSE of 38.4% was achieved across tliregtest, with the highest and lowest MSEs for lging
landings being 73.7% and 17.5% respectively. Witbdaiced input set, the predictions generally piedia
lower MSE. Figure 12 shows the GP prediction f& $ame test data as shown in Figure 11, when only
measurement of the acceleration at the cabin cehpavity is used as a model input. From thisifigone

can see that again the general trend of the loatlas/éml by the prediction, but one can immediatelytbae



the predictions appear noisy. In some of the pogreslictions, this noise is a prohibitive issugecan be seen
in Figure 13, which shows the poorest predictiorogg the testing set. This is currently thoughbdo
attributable to disparity between the samplinggaiethe sensors measuring the load on the geathand
acceleration in the cabin.

A conclusion of this initial study is that useful inforiioa for prediction of loads on the landing gear
is available from commonly measured flight paramsetelowever, the predictions in this study arealaa
with some being much more accurate than othershéfuwork is needed to ascertain whether prediction
capability can be improved and by how much when only camymmoeasured input variables are used. In the
next section of this work, model improvement idsd when input variables less commonly measured ar

included.

3

T T T I T T T T T

Normalised vertical load

GP prediction
measurement
i3 [ 30 confidence interval | -

| 1 | | 1 | | 1 |

1600 1800 2000 2200 2400 2600 2800 3000 3200
data point

Figure 12. GP prediction capability when only using acceleration measurements
at the cabin centre of gravity.



Normalised vertical load

s

0 M

-1

-2

3F — o
GP prediction
measurement

4k [N 30 confidence interval | |

| 1 | | | 1
1000 1200 1400 1600 1800 2000 2200

data point

Figure 13. GP prediction capability when only using acceleration measurements at the cabin centre

of gravity (poorest prediction across recorded landings).

Prediction L oad Using Additional M easurements

Following on from results gained when working wittop test data, it was expected that additional
predictive capability could be gained by using input ‘e that are not so commonly measured. Therefore,
a number of additional measurements were inclusiedh as acceleration measurements on the landang ge
itself, shock absorber closures and gas pressures.

Initially, a GP was trained using this full setigputs and with the same choice and subsampling of
training data as in the last section. The mean fd&the testing set was 6.3% with a range betvdeg¥b and
37.3%. This already shows a marked improvemetti®results obtained using only the commonly measur
guantities as inputs. Next, with the augmentedosetandidate input parameters, a greedy algoritias
employed to select the model inputs and also thet méormative landings for the training set. Thagtdr
addition was made in order to identify a trainieg that would provide a model that could generdbstne

largest number of different landing conditions.



The termination criteria for the greedy algorithppléed was based on the reduction in MSE between
each iteration. It was found here that after five itenatthe overall test MSE was decreasing by a verjf sma
amount. The five input parameters selected by teedy algorithm included the previously mentioned
accelerations at the cabin centre of gravity, aleith an acceleration measurement on the geaf égel
measurements of shock absorber closure and gasigges

With these five inputs, the prediction capabilit@s the test set were significantly improvéah
average MSE of 3.5% was achieved across the testingith the highest and lowest MSEs for singhelings
being 6.3% and 1.4% respectively. An example gpaal GP prediction is shown in Figure 14, whene o
can easily see the increased predictive fidelitpmared to Figures 113.

These results are encouraging, however, it must bd tiweprediction capability is reduced around
the initial touchdown period during landing. Itisrrently thought that this originates from the evidariability

in conditions that affect this period in the largifior example, the pilot control at this instaraymvary
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Figure 14. Improved GP prediction capability when employing additional input
parameters not currently commonly measured.



significantly between different pilots and depeigdim weather conditions. Interestingly, these e&gurate

predictions were obtained without the need foerfiitg, as was necessary with the drop test data.

V. CONCLUSION

GP regression has been used to create modelsébpitediction across the aircraft landing gear.€&som
of these models have been very successful at preglitie measured loads. GP regression has proved to
be a very useful tool providing accurate predicjoand importantly confidence intervals on those
predictions. Such confidence intervals have anilinbapability to signal if novel data unlike data
previously seen is present, which will prove inadlie when predicting loads from any new data cialtec
Concerning flight test data, it has been found Wisn measurements from instrumentation on the gear
itself have been included as model inputs, premistof much higher accuracy are achievable orfidata
landings not in the training set. Where the inpatameters employed were limited to only those
measurements more commonly available (such as thictséed by Flight Data Recorder requirements),
the prediction capability is reduced, however, @megral model predictions are able to track thedtgn
recorded load in the gear.

The ideal possibility of prediction from commonlyadlable measurements cannot yet be ruled out: a
wider training data set and enhancements to thelmadd optimisation routines may yet yield sudfitti
modelling fidelity. However, it is possible thatrse extra instrumentation may be required in whate
the subset selection methods trialled here givayaofisearching for a minimal set of extra measerds
The industry requirements in terms of precision algo need to be taken into account and a pasgibil
for future work is an optimisation routine whiclthndes a trade-off between model precision anddise
of providing extra sensors.

The flight test data was all gathered from a siagieraft with a given landing gear configuratiorda
differing runway surfaces. Further work will intiggte further the variability arising from differe
conditions. It is likely, however, that any airtraill require the training of a model that is pewlar to

that aircraft. On the other hand, landing surfamaditions, especially roughness, will have aatiieffect



upon the inputs to the models and so a single neldrild be able to cope across different situations
Ongoing work is investigating how the noise parametetife GP models can contain information about
runway surface roughness.

Throughout this work, the question arose as to lngndt was expedient to filter data. The question
first arose during analysis of the drop test data] in that case, filtering did indeed improve nhode
predictions. The reason for the improvement walstki@atarget outputs considered were much smoother
than many of the input variables. This fact raised guesabout the instrumentation; it appeared that the
strain gauges used to measure loads may haveffadmtifrequency responses to the accelerometeds u
to measure accelerations. This is an important coasioier however, detailed information about the test
instrumentation proved unobtainable. Interestingiien working with flight test data, filtering was
considered unnecessary, with prediction fidelity\good without it. In general, information aboehsors
and test signal conditioning (anti-aliasing filtets.) will be important.

Selecting model inputs using a greedy algorithnveuloto be a useful approach. Although greedy
algorithms are well known to be suboptimal, theyehbeen used here to avoid excessive computational
cost incurred when using approaches that are kbo¥ea optimal, such as evolutionary algorithmghin
drop test data, where the number of inputs weriédimresults when the using the greedy algoritherew
not always better than when employing the whole rahgeailable input parameters. However, neither
were they significantly worse and were improved dome of the test condition$his confirmed the
feasibility of the approach. For the flight teatal model input selection is much more importacglose
a wide range of measurements are possible. #risencouraging, therefore, that the greedy algorit
results were a significant improvement on the n®dsing the full candidate input set. True optatis
routines, such as a genetic algorithm, would piatiyngive further improvements if future computatal
resources allow.

By employing such models for predicting loads o glear, the usage and ultimately the remaining
life of the landing gear component can be predictétbwever, in order to develop a landing gear

parametric model, adequate ‘training data’ (i.e. historical data which can be used as a basis for ‘learning’



the relationship between the flight parameters and tiinigugear loads data) is required in all operating

conditions. Therefore an effective operational $oambnitoring capability is first required.
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