UNIVERSITYW

This is a repository copy of Kleene Algebra in Unifying Theories of Programming.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/129359/

Monograph:
Foster, Simon David orcid.org/0000-0002-9889-9514 Kleene Algebra in Unifying Theories
of Programming. Working Paper. (Unpublished)

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose .
university consortium eprints@whiterose.ac.uk
/,:-‘ Uriversities of Leecs: Shetfiekd & York https://eprints.whiterose.ac.uk/

Kleene Algebra in Unifying Theories of Programming

Simon Foster

April 5, 2018

Abstract

This development links Isabelle/UTP to the mechanised Kleene Algebra (KA) hiearchy
for Isabelle/HOL. We substantiate the required KA laws, and provides a large body of
additional theorems for alphabetised relations which are provided by the KA library. Addi-
tionally, we show how such theorems can be lifted to a subclass of UTP theories, provided
certain conditions hold.

Contents

1 Kleene Algebra and UTP 1
1.1 Syntax setup oL e e 1
1.2 Kleene Algebra Instantiations 2
1.3 Derived Laws e e e e 3
1.4 UTP Theories with Kleene Algebra 3

1 Kleene Algebra and UTP

theory utp-kleene
imports
KAT-and-DRA.KAT
UTP.utp
begin

This theory instantiates the Kleene Algebra [6] (KXA) hierarchy, mechanised in Isabelle/HOL
by Armstrong, Gomes, Struth et al [1, 4, 2]., for Isabelle/UTP alphabetised relations [3, 5].
Specifically, we substantiate the required dioid and KA laws in the type class hierarchy, which
allows us to make use of all theorems proved in the former work. Moreover, we also prove an
important result that a subclass of UTP theories, which we call “Kleene UTP theories”, always
form Kleene algebras. The proof of the latter is obtained by lifting laws from the KA hierarchy.

1.1 Syntax setup

It is necessary to replace parts of the KA syntax to ensure compatibility with UTP. We therefore
delete various bits of notation, and hide some constants.

purge-notation star (-* [101] 100)
recall-syntax

purge-notation n-op (n - [90] 91)
purge-notation ts-ord (infix C 50)

notation n-op (n[-])
notation ¢ (n?[])
notation ts-ord (infix C; 50)

hide-const ¢

1.2 Kleene Algebra Instantiations

Next, import the laws of Kleene Algebra into the UTP relational calculus. We show that
relations form a dioid and a Kleene algebra via two locales, the interpretation of which exports
a large library of algebraic laws.

interpretation urel-dioid: dioid
where plus = op M and times = op ;;, and less-eq = less-eq and less = less
proof
fix P QR :: 'a hrel
show (PN Q);; R=P; RNQ ;R
by (simp add: upred-semiring.distrib-right)
show (Q C P) = (PN Q = Q)
by (simp add: semilattice-sup-class.le-iff-sup)
show (P < Q)=(QCPA-P=Q)
by (simp add: less-le)
show PM P =P
by simp
qed

interpretation urel-ka: kleene-algebra
where plus = op M and times = op ;;, and one = skip-r and zero = falsep, and less-eq = less-eq
and less = less and star = ustar
proof
fix P QR :: 'a hrel
show II ;; P = P by simp
show P ;; II = P by simp
show false M P = P by simp
show false ;; P = false by simp
show P ;; false = false by simp
show P*C II M P ;; P*
using ustar-sub-unfoldl by blast
show QC RMNP;; Q= QLC P*; R
by (simp add: ustar-inductl)
show QC RN Q@ ;; P=— QLC R P*
by (simp add: ustar-inductr)
qed

We also show that UTP relations form a Kleene Algebra with Tests [7, 4] (KAT).

interpretation urel-kat: kat

where plus = op M and times = op ;;, and one = skip-r and zero = false, and less-eq = less-eq
and less = less and star = ustar and n-op = Az. II A (= z)

by (unfold-locales, rel-auto+)

We can now access the laws of KA and KAT for UTP relations as below.

thm urel-ka.star-inductr-var
thm urel-ka.star-trans

thm urel-ka.star-square
thm urel-ka.independencel

1.3 Derived Laws

We prove that UTP assumptions are tests.

lemma test-rassume [simp]: urel-kat.test [b] "
by (simp add: urel-kat.test-def, rel-auto)

The KAT laws can be used to prove results like the one below.

lemma while-kat-form:
while b do P od = ([b]" ;; P)* ;; [~ b]" (is ?lhs = ?rhs)
proof —
have 1:(II::'a hrel) N (II::'a hrel) ;; [- b]T = II
by (metis assume-true test-rassume urel-kat.test-absorb1)
have ?lhs = ([b]T ;; P 11 [~ b]7 5 I1)* 55 [-] T

by (simp add: while-star-form rcond-rassume-expand)

also have ... = (([b]T 3 P)* 5; [b]"*)* ;s [~ b] T
by (metis seqr-right-unit urel-ka.star-denest)
also have ... = (([b]T 3 P)* ;; (II 1 [= 6] 1)) 55 [= 4] T

by (metis urel-ka.star2)
also have ... = (([b]" 3 P)* ;; (I)*)* 5 [b)T
by (metis 1 seqr-left-unit)
also have ... = (([b]T 3; P)*)* 5; [0]
by (metis urel-ka.mult-oner urel-ka.star-one)
also have ... = %rhs
by (metis urel-ka.star-invol)
finally show ?thesis .
qed

lemma uplus-invol [simp|: (PT)* = P+
by (metis RA1 uplus-def urel-ka.conway.dagger-trans-eq urel-ka.star-denest-var-2 urel-ka.star-invol)

lemma uplus-alt-def: Pt = P* ;: P
by (simp add: uplus-def urel-ka.star-slide-var)

1.4 UTP Theories with Kleene Algebra

A Kleene UTP theory is continuous UTP theory with left and right units, and the top element
as a left zero. The star in such a context has already been defined by lifting the relational
Kleene star. Here, we use the KA theorems obtained above to provide corresponding theorems
for a Kleene UTP theory.

locale utp-theory-kleene = utp-theory-cont-unital-zerol
begin

lemma Star-def: Px = P* ;; I
by (simp add: utp-star-def)

lemma Star-alt-def:
assumes P is ‘H
shows Px = IZ M P*
proof —
from assms have P* = P* ;; P ;; IT
by (simp add: Unit-Right uplus-alt-def)
then show ?thesis
by (simp add: RA1 utp-star-def)
qed

lemma Star-Healthy [closure]:
assumes P is ‘H
shows Px is H
by (simp add: assms closure Star-alt-def)

lemma Star-unfoldl:
PxCIZINP; Px
by (simp add: RA1 utp-star-def)

lemma Star-inductl:
assumes Ris H QC P ;; QMR
shows Q) C Px;;R
proof —
from assms(2) have Q T R QC P ;; Q
by auto
thus ?thesis
by (simp add: Unit-Left assms(1) upred-semiring.mult-assoc urel-ka.star-inductl utp-star-def)
qed

lemma Star-invol:
assumes P is ‘H
shows Pxx = Px
by (metis (no-types) RA1 Unit-Left Unit-self assms urel-ka.star-invol urel-ka.star-sim3 utp-star-def)

lemma Star-test:

assumes P is ‘H utest T P

shows Px =77

by (metis utp-star-def Star-alt-def Unit-Right Unit-self assms semilattice-sup-class.sup.absorbl semilattice-sup-class.sup-
urel-ka.star-inductr-var-eq2 urel-ka.star-sim1 utest-def)

lemma Star-lemma-1:
PisH=—=7TIT;; P* 1T =P IT
by (metis utp-star-def Star-Healthy Unit-Left)

lemma Star-lemma-2:
assumes Pis H Q is H
shows (P* ;; Q* ;; I1)* ; IZ = (P* ;; Q*)* ;3 IZ
by (metis (no-types) assms RA1 Star-lemma-1 Unit-self urel-ka.star-sim3)

lemma Star-denest:
assumes Pis H Q is H
shows (P M Q)*x = (Px ;; Q)%
by (metis (no-types, lifting) RA1 utp-star-def Star-lemma-1 Star-lemma-2 assms urel-ka.star-denest)

lemma Star-denest-disj:
assumes Pis H Q is H
shows (P V Q)*x = (Px ;; Q)%
by (simp add: disj-upred-def Star-denest assms)

lemma Star-unfoldl-eq:
assumes P is H
shows ZZ M P ;; Px = Px
by (simp add: RA1 utp-star-def)

lemma uplus-Star-def:
assumes P is ‘H
shows P = (P ;; Px)
by (metis (full-types) RA1 utp-star-def Unit-Left Unit-Right assms uplus-def urel-ka.conway.dagger-slide)

lemma Star-trade-skip:
Pis H — IT :;; P* = P* 1T
by (simp add: Unit-Left Unit-Right urel-ka.star-sim3)

lemma Star-slide:
assumes P is ‘H
shows (P ;; Px) = (Px ;; P) (is ?lhs = ?rhs)
proof —
have ?lhs = P ;; P* ;; 1T
by (simp add: utp-star-def)
also have ... = P ;; I7 ;; P~*
by (simp add: Star-trade-skip assms)
also have ... = P ;; P*
by (simp add: RA1 Unit-Right assms)
also have ... = P* ;; P
by (simp add: urel-ka.star-slide-var)
also have ... = ?rhs
by (metis RA1 utp-star-def Unit-Left assms)
finally show ?thesis .
qed

lemma Star-unfoldr-eq:
assumes P is ‘H
shows ZZ M Px ;; P = Px
using Star-slide Star-unfoldl-eq assms by auto

lemma Star-inductr:
assumes Pis HRis H QLT PN Q;; R
shows) C P;;Rx
by (metis (full-types) RA1 Star-def Star-trade-skip Unit-Right assms urel-ka.star-inductr’)

lemma Star-Top: Tx = 1T
by (simp add: Star-test top-healthy utest-Top)

end

end

References

[1] A. Armstrong, V. Gomes, and G. Struth. Building program construction and verification
tools from algebraic principles. Formal Aspects of Computing, 28(2):265-293, 2015.

[2] S. Foster, G. Struth, and T. Weber. Automated engineering of relational and algebraic
methods in Isabelle/HOL. In RAMICS, LNCS 6663, pages 52—67. Springer, 2011.

[3] S. Foster, F. Zeyda, and J. Woodcock. Unifying heterogeneous state-spaces with lenses. In
Proc. 13th Intl. Conf. on Theoretical Aspects of Computing (ICTAC), volume 9965 of LNCS.

Springer, 2016.

[4] V. B. F. Gomes and G. Struth. Modal Kleene algebra applied to program correctness. In
Formal Methods, volume 9995 of LNCS, pages 310-325. Springer, 2016.

[5] T. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

[6] D. Kozen. On Kleene algebras and closed semirings. In Proc. 15th Symp. on Mathematical
Foundations of Computer Science (MFCS), volume 452 of LNCS, pages 26-47. Springer,
1990.

[7] D. Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and
Systems (TOPLAS), 19(3):427-443, 1997.

	Kleene Algebra and UTP
	Syntax setup
	Kleene Algebra Instantiations
	Derived Laws
	UTP Theories with Kleene Algebra

