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Abstract 

 

The Piçarrão and Liberdade deposits contain high-grade iron orebodies (> 65% Fe) hosted in the 

Guanhães Group itabirite, that are associated with pegmatite veins and bodies. Fluid inclusion 

studies in quartz veins associated with the high-grade orebodies show that medium to high 

salinities (25-28 wt. % NaCl eq.) and temperatures (275-375 oC) fluids are associated with the 

silica leaching that led to the iron enrichment. Mineral chemistry studies by LA-ICP-MS in the iron 

oxides demonstrate that metasomatic processes were responsible for the mineralogical 

transformations of magnetite to hematite and for subsequent hematite recrystallization. These 

processes are related to the iron upgrade in the itabirite and the formation of high-grade orebodies. 

The oxidation of the magnetite to martite is associated with an enrichment in P and As, and 

depletion in Mg, Ti and Co; as observed in martite crystals compared to their matching 

kenomagnetite rims. On the other hand Ti and Mo are enriched in hematite crystals that 

recrystallized from martite. In this case Ti behaved as an immobile element, and its enrichment is 

accompanied by the depletion of most of the trace elements. A second stage of magnetite 

formation precipitated with quartz in discordant veins and is oxidized to martite-II. These quartz-

martite-II veins contain low salinity and temperature fluid inclusions that record an episode of 

meteoric fluid influx. The results of the LA-ICP-MS analyses on the fluid inclusions from pegmatite 

and quartz veins associated with the high-grade iron bodies indicate the contribution of anatectic 

fluids in the evolution of the metasomatic events. 
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1. Introduction 

 

High-grade (> 65 wt. % Fe) iron ore deposits are the most important Fe metal source (production 

and reserve) worldwide. These deposits are commonly hosted in banded iron formations (BIF), 

which are defined as chemical sedimentary rocks composed of chert layers (bands) and containing 

at least 15 wt. % of iron (Beukes and Gutzmer, 2008; Klein, 2005). 

The iron formation-hosted iron ore system is defined as ore located and derived from BIF. The 

transformation of iron formation to high-grade iron ore is controlled by: (1) structural permeability; 

(2) hypogene alteration caused by ascending deep hydrothermal fluids (largely magmatic or 

basinal brines), and descending ancient meteoric water; and (3) supergene enrichment via 

weathering processes (Hagemann et al., 2016). The hypogene iron enrichment is characterized by 

silica and carbonate leaching, and changes in the iron oxides mineralogy and textures. 

The name itabirite is used to describe metamorphosed and deformed banded iron formations 

(Dorr, 1969                               -                                                  

                                                                                   (SER). Both 

provinces are located at the southern                                     (Almeida, 1977; Almeida 

et al., 2000) in Minas Gerais state (Fig. 1). 

The geology of QF is composed of three main units: granite–gneiss terranes; the Rio das Velhas 

greenstone belt, and Proterozoic metasedimentary sequences (Dorr, 1969                   

                                                                           . 

The Minas Supergroup is a metasedimentary unit containing a thick Lake Superior-type (Klein, 

2005) sequence of iron formation which was metamorphosed during the Paleoproterozoic 

Transamazonian tectono-thermal orogenic event (Machado et al., 1992; Alkmim and Marshak, 

1998). During this event, hydrothermal hypogene alteration, second order flexural and flexural-slip 

folds and reverse shear zones controlled the distribution of economically important itabirite-hosted 

high-grade iron ore deposits, typically >64 wt. % Fe (             ., 2008). 

In the SER there are itabirite-bearing metasedimentary sequences that were deposited in a rift and 

rift-sag epicontinental environment; and that can be correlated with the Espinhaço Supergroup, 

Guanhães Group and with the Costa Sena Group (Grossi-Sad et al., 1997, Braga et al., 2015, 

Rolim et al., 2016). These sequences occur as thrust slices, associated with granitic-gneiss rocks 

of the Guanhães Complex, developed during the tectono-thermal Neoproterozoic-Early Paleozoic 

Brasiliano/Pan-African orogenic event (e.g., Alkmim et al., 2006). This area is located at the 

western portion of the Eastern Brazilian Pegmatite Province (Fig. 1), constituting the most 

important Brazilian gemological province (Correia Neves et al., 1986; Morteani et al., 2000). 

Pegmatites within SER have an anatectic origin and intruded during the Brasiliano orogen (Bilal et 

al., 1995; Marciano et al.,1993). The Ponte da Raiz beryl deposit is located 5 km NE of the town of 

Santa Maria de Itabira (Fig. 2) and is hosted in tabular shaped pegmatite intrusive in the gneiss of 



  

 

the Guanhães Complex. 

Due to the increasing global demand for iron in the last 15 years, an intensive exploration program 

has been developed in the SER providing a large amount of new data through diamond drilling, 

detailed geological mapping and geophysical surveys. In 2014, Anglo American started production 

at the first iron mine in the Serra da Serpentina range (Anglo American, 2014). 

The Piçarrão-Liberdade iron deposit (PLD) is located approximately 20 km NE of the town of 

Itabira and represents a resource of 5.31 Mt of iron ore at an average grade of 43.3 wt. % Fe 

(Centaurus, 2008). The PLD was mined by VALE from 1976 to the late 1980's, and contains high-

grade, tabular-shaped iron orebodies, with 20 m thick layers, striking to the NE for 5 km. 

Pegmatites and quartz veins are commonly associated with the high-grade orebodies in this 

deposit. The Morro Escuro ridge is located at the northern limit of the town of Santa Maria de 

Itabira, and comprises a metasedimentary itabirite-bearing sequence forming a NE-striking thrust 

slice in the Guanhães Complex rocks (Carvalho et al., 2014; Braga et al., 2015                       

                                                                                          

                                                                                              

Range (Fig. 1). 

Geological processes responsible for the hypogene upgrade of itabirite to high-grade iron deposits 

in the Espinhaço Range (Oliveira et al., 2017; Rolim, 2016) is controversial and the nature of the 

hydrothermal fluids involved is unknown. This study addresses this controversy by using detailed 

mineralogy and paragenetic studies, together with whole rock geochemistry, mineral chemistry and 

fluid inclusions techniques to investigate the composition of iron oxides and fluid inclusions from 

quartz veins and pegmatites located at the Piçarrão-Liberdade iron deposit and Morro Escuro 

ridge. Results from these analyses are used to propose a hydrothermal model that constrains 

mineralizing processes and fluid sources, which led to the enrichment of itabirite to high-grade iron 

ore. In addition, itabirite from the more northern Guanhães and Dores de Guanhães areas (Fig. 1) 

were studied in terms of their whole rock geochemistry and mineral chemistry in order to evaluate 

the similarities of the depositional and metamorphic/hydrothermal process over a wide 

geographical range within the Guanhães Group. 

 

2. Geological setting of the southern Espinhaço Range 
 

The southern Espinhaço Range is located at the external, western zone of the Neoproterozoic 

Araçuaí fold belt (Almeida 1977; Alkimim et al., 2006; Pedrosa Soares et al., 2001, 2007). This is a 

NS-trending and west-verging system of faults and folds on the southeastern edge of the São 

Francisco Craton that incorporates Archean-Paleoproterozoic basement and supracrustal rocks of 

the Espinhaço Supergroup (Fig. 1). In the external zone, the Archean-Paleoproterozoic basement 

is composed of the Guanhães Complex and the Borrachudos Suite (Alkmim et al., 2006; Noce et 



  

 

al., 2007). 

                                                              uth American platform. As a single 

continental block following the Paleoproterozoic it was not involved in the Brasiliano/Pan-African 

orogen during the Neoproterozoic, between 600 and 480 Ma (Cordani et al., 2010). The Craton 

has a long history of intracratonic and passive margin basin filling, magmatism and orogenic build-

up (Almeida, 1977; Chemale et al., 1998; Silveira et al., 2013), and its basement records an 

important tectono-magmatic evolution during the Paleoproterozoic - Transamazonian/Eburnean 

orogen (2.2 to 2.0 Ga;                   , 2004; Noce et al., 2007). 

                                                                                              -

                                                          -                                 aton 

during the Paleo – Mesoproterozoic (Martins-Neto, 2000; Chemale et al., 2012; Guadagnin et al., 

2015). This extensional event was accompanied by the emplacement of anorogenic granites of the 

Borrachudos Suite within granite-gneiss-migmatitic rocks of the Archean basement rocks grouped 

in the Guanhães Complex (Dussin and Dussin, 1995), and by the deposition of the Espinhaço 

Supergroup. The Espinhaço Supergroup comprises a more than 5000 m thick sequence of 

metasandstone, metaconglomerate, metapelite, bimodal volcanic and subordinate carbonate rocks 

(Pflug, 1965; Grossi-Sad et al., 1997; Uhlein et al., 1998; Martins-Neto, 2000). The U-Pb detrital 

zircon dating established two rift stages for the Espinhaço Supergroup deposition (Chemale Jr. et 

al., 2012): a rift-sag sequence accumulated between 1192 and 906 Ma (Stenian-Upper Espinhaço); 

and a rift sequence accumulated between 1.68 and 1.80 Ga (Statherian-Lower Espinhaço). 

During the Neoproterozoic, between 1000 and 850 Ma, a second episode of rifting occurred in the 

region with the development of a narrow ocean basin (Pedrosa Soares et al., 2001). The 

sedimentary fill of this Neoproterozoic basin comprises the Macaúbas Group (Uhlein et al., 1998; 

Martins-Neto and Hercos, 2002; Pedrosa-Soares et al., 2000). 

D                                                                                               

                                                                                               

                                                               elt the basin rocks are deformed 

and portions of the reworked Archean and Paleoproterozoic basement are exposed (Dussin and 

Dussin, 1995; Uhlein et al., 1998; Pedrosa-Soares et al., 2001; Alkmim et al., 2006; Noce et al., 

2007). The tectonic evolution of the Araçuaí belt is well documented with granitic magmatism in the 

630 to 480 Ma time range: pre-collisional (G1 suite – 630 to 580 Ma); syn-collisional (G2 and G3 

suites – 585 to 530 Ma); and post-collisional (539 to 480 Ma G4 and G5 suites). The post-

collisional granites have been interpreted to be related to the gravitational collapse of the orogeny 

(Campos et al., 2016; Melo et al., 2017). 

The Guanhães Complex is composed of tonalite-trondhjemite-granodiorite (TTG) gneisses, 

migmatites and granites. Geochronological studies (SHRIMP U/Pb; Silva et al., 2002) on the TTG 

gneissic complex yield 2.7-2.8 Ga magmatic crystallization age, and 519-527 Ma metamorphic 



  

 

age. From 18O data on quartz/garnet/biotite, Muller et al. (1986a) deduced a temperature 

between 462 and 612 °C for the Brasiliano regional metamorphism at the Guanhães Complex. 

From the 18O data on the quartz/magnetite mineral pair from the itabirite of the Piçarrão mine, it 

was deduced a higher metamorphic temperature from 606 to 814 oC Muller et al. (1986b). 

The Guanhães Complex is associated with discontinuous units of metasedimentary rocks of the 

Guanhães Group (Grossi-Sad et al., 1990b; 1997; Noce et al., 2007). This group of rocks were 

metamorphosed to amphibolite facies. Itabirite layers with a thickness from 15 to 60 m have 

variable contents of amphibole (5-20%), carbonate and chlorite (1-10%). According to Barrote 

(2016) the basal quartzite is 50 m thick, containing intercalations of sericitic, arkosic and iron-rich 

quartzites associated with layers of gneiss and schist. The upper unit has coarse-grained quartzite 

interlayered with centimetric to metric bands of garnet-rich amphibolite. Detrital zircon 

geochronological analyses from quartzite of the Guanhães Group established deposition no older 

than Rhyacian (maximum age of 2080 Ma; Barrote, 2016). 

Several granitic plutons of the Borrachudos Suite occur in the Guanhães Complex (Grossi-Sad et 

al., 1990a; Dussin and Dussin, 1995). This denomination was first used by Dorr and Barbosa 

(1963) to describe a granitic pluton NW of Itabira. Geochronological and geochemical data of the 

Borrachudos Suite indicate magma genesis at 1.7 Ga in the anorogenic context of crustal 

extension and melting of lower crustal rocks related to the rift event that led to the deposition of the 

Espinhaço Supergroup (Dossin et al., 1993; Fernandes et al., 1994; Dussin, 1994; Dussin et al., 

2000; Fernandes, 2001; Silva et al., 2002). 

The Guanhães Complex and the Borrachudos Suite host a wide number of pegmatite bodies that 

are 1-10 m thick, generally tabular-discordant in shape, and that host beryl deposits and other 

types of gems (eg. alexandrite, emerald); these deposits are grouped in the Santa Maria de Itabira 

(or Nova Era – Itabira – Ferros) pegmatite district (Pedrosa Soares et al., 2011). This district is part 

of the Brazilian eastern pegmatite province (Marciano, 1995; Morteani et al., 2000; Preinfalk et al., 

2002) and have an anatectic origin during the Brasiliano tectono-thermal event according to the 

dating of igneous monazite (531 Ma; Bilal et al., 1995); muscovite (519 Ma; Marciano et al., 1993) 

and titanite (576 Ma; Jordt-Evangelista et al., 2016). In this portion of the pegmatite province, 

pegmatites were produced by partial melting of the basement. In the case of the Ponte da Raiz 

deposit the beryl crystals occur in the intermediate zone associated mainly with quartz and K-

feldspar. This pegmatite-forming event is more or less coeval with the intrusion of the post-tectonic 

S-type granites, emplaced mainly in the eastern portion of the Araçuaí belt during the late stages of 

the Brasiliano orogen (Pedrosa-Soares et al., 2011). 

The most important itabirite bearing metasedimentary sequences in the SER crops out at the Serra 

da Serpentina Range (Almeida-Abreu and Renger 2002). Based on detrital zircon dating and 

structural mapping, Rolim et al. (2016) established two itabirite-bearing metasedimentary 

sequences at this range: São José and Serra da Serpentina Groups. The São Jose Group was 



  

 

deposited on a tectonically active                                                                  

                                                                                                 

                                  . The Serra da Serpentina Group was deposited on a sag basin 

with little tectonic activity with a maximum depositional age of 1990 ± 16 Ma (Orosirian) and is 

correlated with the pre-Espinhaço Costa Sena Group. This Orosirian sequence is separated from 

the overlying São José Group by an erosional unconformity. The itabirite layer thickness varies 

from 20 to 40 m in the São José Group, and from 15 to 350 m in the Serra da Serpentina Group. 

Barrote (2016) established the correlation between the Guanhães and Serra da Serpentina Groups 

based on the similar age distributions of detritic zircons. 

 

3. Sampling and analytical methods 

 

3.1. Whole rock geochemistry 

 

Thirty representative samples (itabirite and ores) from all localities were analyzed for major oxide, 

trace element (TE) and rare earth elements (REE) whole rock geochemistry at the Activation 

Laboratories in Ontario, Canada. Martite-II crystals were extract from quatrz-martite veins (Vp2) 

from the PLD deposit and analyzed separately. 

Carbon and sulfur were analyzed by IR absorption spectroscopy and FeO through titration using a 

cold acid digestion of ammonium metavanadate and hydrofluoric acid. Trace elements and REE 

were analyzed by both four acid digestion followed by ICP-MS and lithium borate fusion and aqua 

regia digestion followed by ICP-MS. Loss on ignition (LOI) at 1000° C was measured 

gravimetrically and gives an indication of the total weight of volatiles in each sample. Analytical 

accuracy was tested with an externally submitted powder of the FeR-3 BIF international standard 

(Bau and Alexander, 2009), with an achieved accuracy of ±1.25 %SD. Precision was measured by 

the analysis of identical duplicate samples with an error of ±3 %RSD. 

 

3.2. Iron oxide LA-ICP-MS studies 

 

Eighteen samples were selected for in-situ iron oxide chemistry using laser-ablation inductively-

coupled mass-spectrometry (LA-ICP-MS) in order to provide a comprehensive data set of the 

complete paragenetic iron oxide sequence. Analyses were conducted using the Resonetics M-50- 

LR 193 nm excimer laser ablation system coupled to an Agilent 7700x quadrupole ICPMS at the 

John de Laeter Centre for Isotope Research at Curtin University. Samples were ablated in a He 

atmosphere (flow rate 0.68 L/min) and the aerosol mixed with Ar (flow rate 1 L/min) and N (flow 

rate 0.0028 L/min) carrier gas for transport to the ICP-                          J        7  μ  

spot size, pulse frequency of 7 hz with 46% attenuation and fluence of 7 J/cm2. The ablation time 



  

 

                                                                                            μ   

The GSD-1G, GSE-1G and NIST-610 standards from USGS were ablated in duplicate at the 

beginning of each sample analysis, every 20 spots, and at the end of each analysis, for calibration 

and drift correction. The following isotopes were measured: 24Mg, 27Al, 28Si, 31P, 44Ca, 45Sc, 49Ti, 51V, 

52Cr, 55Mn, 59Co, 60Ni, 65Cu, 66Zn, 71Ga, 74Ge, 75As, 88Sr, 89Y, 90Zr, 92Zr, 93Nb, 95Mo, 118Sn, 121Sb, 

137Ba, 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 157Gd, 163Dy, 165Ho, 166Er, 172Yb, 175Lu, 182W, 208Pb, 

209Bi, 232Th, 238U. The counts per second data generated were reduced with the SILLS program 

(Guillong et al., 2008). Iron was used as the internal standard element using the stoichiometric Fe 

contents of magnetite and hematite (723691 and 699530 ppm respectively). The results and the 

summary statistics are provided in the Appendix B. 

 

3.3. Fluid inclusion studies 

 

The samples chosen for microthermometry are from the Piçarrão-Liberdade iron deposit (samples 

Vp1, Vp2, Vpe), the Morro Escuro ridge (samples Vmi, Vms) and the Ponte da Raiz pegmatite 

(sample Vb) (Table 1). Six doubly polished 100- to 200-μ -thick sections of quartz and two of beryl 

were examined petrographically and selected for microthermometric analysis. Detailed 

petrographic description and mapping were undertaken using a Leica petrographic microscope to 

discriminate fluid inclusions (FIs) types (Table 2), sizes, morphologies and definition of fluid 

inclusion assemblages (FIAs). 

Heating and freezing experiments on fluid inclusions were conducted using a fully automated 

Linkam THMSG600 heating and freezing stage with a TMS 93 temperature controller at the 

Laboratory of Metallogeny, Institute of Geosciences, at the Federal University of Minas Gerais, 

                                         −     °       74   °    th synthetic fluid inclusion 

standards supplied by Linkam (pure H2O and mixed H2O–CO2). The cyclic technique (Goldstein 

and Reynolds, 1994) was used to acquire better precision in measurements of transition of 

temperature between carbonic phases.  

The accuracy of the freezing measurement runs is about ± 0.1 °C, and for heating runs ± 1 °C 

between 200 and 500 °C. Final ice melting (Tmice), clathrate melting (Tclath), total homogenization 

(Thtot), CO2 homogenization (ThCO2) and halite melting (Tmhal) temperatures were measured 

during the freezing and heating cycles, and are provided for each FI assemblage (Table 3). It was 

not possible to definitely determine the temperature of the eutectic melting temperature (Te), and 

the observations have been omitted from the table; however, the estimation of the Te of H2O-NaCl 

(–21.2°C) was used to discriminate the presence of other cations besides NaCl. The CO2 melting 

temperature (TmCO2) is used to identify the presence of other volatiles besides CO2 and H2O. The 

microthermometric results are compiled in Table 3. 

Due to the lack of independent geothermometric data for the studied veins, it was not possible to 



  

 

calculated isochores and apply pressure corrections to homogenization temperatures. Since no 

boiling evidence was described, the homogenization temperatures measured are considered as 

the minimum trapping temperature. 

Apparent salinity has been reported in equivalent percentage weight of NaCl (% wt. NaCleq). 

Calculations of salinity and bulk CO2 fractions (XCO2) were made using the MacFlinCor program 

(Brown and Hagemann, 1995). Equations of state by Bodnar and Vityk (1994) were applied for the 

H2O-NaCl system, and by Bowers and Helgeson (1983) for the H2O-NaCl-CO2 system. 

Individual inclusions trapped in quartz from the Vp1, Vp2, Vpe, Vmi and Vms veins (Tables 1, 2) 

were analyzed by (LA-ICP-MS). These analyses were completed at the Laser Ablation ICP-MS 

laboratory at the University of Leeds, England. The samples were introduced into the sample 

chamber of the ArF 193-nm excimer laser Geolas Q Plus and were analyzed in steps of 300 s, 

                                                                              μ                  

entire content of inclusions extracted was transported as an aerosol together with He gas. The 

samples were then analyzed by ICP-MS Agilent 7500c quadrupole, equipped with an octopole 

reaction cell. The analyses were calibrated using the NIST SRM 610 standard. The data collected 

from the ICP-MS were processed by the software SILLS (Guillong et al., 2008), for calibration, 

background correction and floating of the integration signal. During this procedure, to ensure that 

the fluid inclusion signals were being processed without the interference of the host crystal, only 

spectra containing signals coincident with Na and other cations were processed. The results are 

presented as the weight ratios relative to Na (internal standard element) for each inclusion 

analyzed. The element/Na ratios were converted into absolute concentrations in ppm using a 

charge-balance relationship against Cl- concentrations (Allan et al., 2005), which was estimated 

from microthermometric measurements as described above. The average salinity of fluid inclusions 

in the FIA was used for the determination of Cl- concentration instead of the individual salinities. 

 

4. Geological setting of itabirite hosted Fe deposits 

 

In this section, we provide descriptions of three itabirite sequences in terms of geological setting, 

mineralogy and veins type. These are (1) Liberdade-Piçarrão; (2) Morro Escuro; and (3) Dores de 

Guanhães and Guanhães (Figs. 1 and 2). 

 

4.1. Piçarrão-Liberdade deposit 

 

The Piçarrão-Liberdade deposit is hosted by an itabirite-bearing metasedimentary sequence 

comprising quartz schist and sillimanite-bearing banded paragneiss. Pegmatite veins composed of 

quartz, K-feldspar and plagioclase (Vpe, see Table 1) cut the sequence. The deposit is located 

close (< 1 km) to the contact between the metasedimentary sequence with the Borrachudos 



  

 

granite (Fig. 2). 

The itabirite forms strongly folded and deformed lenticular bodies intercalated within biotite-quartz 

schist, and quartz-rich, sillimanite-garnet-biotite gneiss that strike 5 km in the NE direction. The 

banding of the itabirite (Fig. 3a) is flat lying to gently dipping (10o-15o NW), presents tight folds and 

is partially transposed. Two types of quartz veins are hosted in the itabirite: (1) concordant quartz 

veins, and (2) discordant quartz-martite veins (see section 4.1.2.). 

High-grade iron (HGI) orebodies (~65 wt. % Fe) in itabirite are 5-30 m-thick, banded to compact, 

locally display foliated texture (Fig. 3c), and are locally positioned at the contact with pegmatite. 

Banded orebodies are rich in granoblastic hematite (Fig. 3b) and have subordinate tabular 

hematite, and the foliated orebodies are rich in tabular hematite (Fig. 3d) with subordinate 

granoblastic hematite. Compact orebodies have massive structure, and are composed of martite 

grains in granoblastic hematite. The shape of the high-grade orebodies is totally or partially 

controlled by the banding of the itabirite protore. The genesis of the high-grade orebodies is 

probably related to syntectonic quartz leaching by pressure solution along thrust zones  during the 

hydrothermal overprint that affected the entire Serra do               -and-thrust belt during the 

Brasiliano orogen (                 , 2011; Rolim et al., 2016). In this context, the foliated high-

grade rocks represent the most-altered and recrystallized portions of the orebodies, and the 

compact and banded high-grade rocks represent the least-deformed areas. 

Pegmatite occurs as lenticular bodies and boudins, with variable thickness, in the entire 

sedimentary sequence. The pegmatites are composed of quartz, K-feldspar and plagioclase. 

Specular hematite is hosted in shear zones and quartz veins as elongated grains oriented parallel 

to each other, defining a strong foliation. 

 

4.1.1. Itabirite: ore mineralogy and paragenesis 

 

The dominant iron oxide in the itabirite is lamelar hematite, forming mesobands with quartz and 

idiomorphic martite (martite-             ~    μ                                    ~    μ         

4a). Relicts of kenomagnetite (kenomagnetite-I) represent the earliest iron oxide, enclosed in 

martite-I and rarely in hematite in the itabirite (Figs. 4c, 5). Kenomagnetite is formed during the 

oxidation of the magnetite. This process involves mobilization of Fe2+ ions and their removal from 

the system, resulting in a relative Fe+2 -poor kenomagnetite. The result of this process produce 

martite crystals, which are pseudomorphs of magnetite with hematite composition. 

The high-grade iron ore is composed of granoblastic and tabular hematite, and 10 to 30% of 

martite-I (Figs. 4b, 4d) with a strong intragranular porosity. Kenomagnetite-I appears as relicts 

within martite-I grains. Banded high-grade orebodies are enriched in granoblastic hematite, 

whereas foliated, high-grade orebodies are enriched in tabular hematite. Granoblastic hematite 

overprints martite-I, itself overprinted by tabular hematite (Figs. 4c, 4d). Compact high-grade ore is 



  

 

composed of martite-I that is not overprinted by new crystals of hematite. 

A second generation of magnetite crystallized/precipitated during the formation of the discordant 

quartz-martite-II veins (Vp2). The oxidation of this magnetite generated the subhedral martite-II 

crystals with a well-developed octahedral cleavage. The martite-II crystals are preserved from the 

metamorphic recrystallization that formed granoblastic hematite from martite-I within high-grade 

orebodies and itabirite. Kenomagnetite-II appears as relicts within martite-II grains (Figs. 4e, 5, 6a). 

 

4.1.2. Vein types 

 

Three quartz-bearing vein types are identified at the PLD (Fig. 6a and Table 1): Vp1 - quartz-only 

vein hosted in high-grade orebodies; Vp2 - quartz-martite-II veins; and Vpe quartz-K-feldspar-

plagioclase pegmatitic veins. 

The Vp1 shows a sharp contact with the host rock and is folded with banding. Quartz (Qtz1) is fine 

to medium-grained, strongly fractured, with undulose extinction. This vein type varies from 2 to 5 

cm in thickness. The Vp2 is hosted in itabirite, mostly discordant, crosscutting the itabirite foliation. 

It seems to develop a hematite enrichment halo in the contact with itabirite (Fig. 6a). The Vp2 is 

composed of medium to coarse-grained, subhedral quartz (Qtz2) with undulose extinction and 

martite-II. This vein type varies from 2 to 30 cm in thickness. The relationship of Vp1 and Vp2 with 

their host rock structures indicates that Vp1 vein is older than Vp2. The Vpe crosscuts the granite 

in the deposit area. It is composed of quartz-Qtz3 (40%), K-feldspar (30%) and plagioclase (30%) 

with hypidiomorphic texture. The Vpe thickness varies from 1 to 5 cm; its relation to Vp1 and Vp2 is 

not clear. 

 

4.2. Morro Escuro ridge 

 

The Morro Escuro (ME) ridge is an allochthonous shear zone-bound block that strikes 7 km in the 

NE-SW direction, located between slices of the Archean Basal Complex and the Paleoproterozoic 

Borrachudos Suite (Carvalho et al., 2014) (Fig. 2). 

The Morro Escuro ridge supracrustal rocks were subdivided by Braga et al. (2015) in four 

lithostratigraphic units: (1) biotite schist, (2) lower and (3) upper quartzite and (4) itabirite. The 

itabirite unit occurs as NE-SW-striking layers with 15-60 m thickness, in gradational contact with 4 

m thick ferruginous quartzite (Fig. 6b). Morro Escuro ridge lacks significant high-grade iron 

mineralization, and the itabirite Fe grade varies from 30 to 35 wt. %. 

 

4.2.1. Itabirite mineralogy and paragenesis 

 

Itabirite has a schistose fabric containing lamelar hematite crystals with irregular intergrowths and 



  

 

martite-I. Kenomagnetite-I appears as relicts in martite-I, or as subhedral crystals grown in a fine-

banded lamelar hematite matrix in the itabirite (Fig. 5). 

Small (<1 m thick), high-grade iron lenses consists of tabular-granoblastic hematite with strong 

intragranular porosity to compact granular kenomagnetite-I. Banded, high-grade lenses are 

enriched in granoblastic hematite, whereas foliated, high-grade lenses are enriched in tabular 

hematite. Granoblastic hematite overprints kenomagnetite-I, and is overprinted by tabular hematite. 

Compact high-grade lenses are composed of kenomagnetite-I that displays only minor martitization 

along fractures and cleavage planes and is not overprinted by hematite. Specular hematite is 

hosted in shear zones and quartz veins as elongated grains oriented parallel to each other, 

defining a strong foliation. 

 

4.2.2. Vein types 

 

Two types of quartz veins occur at the Morro Escuro ridge: Vmi hosted in itabirite and Vms hosted 

in quartz schist (Fig. 6b and Table 1). The Vmi vein is concordant to the foliation of the itabirite and 

is composed of medium-grained quartz with undulose extinction. The vein border is enriched in 

tabular hematite. The Vmi thickness varies from 1 to 3 cm (Fig. 6b). The Vms veins are 

boudinaged, parallel to the foliation of the quartz schist and comprise medium-grained quartz. The 

Vms thickness varies from 5 to 50 cm. In both Vmi and Vms, quartz crystals are highly deformed, 

with undulose extinction and recrystallized borders. 

 

4.3. Dores de Guanhães (DGN) and Guanhães (GNH) prospects  

 

The DGN prospect is located 35 km north of the Morro Escuro ridge within rocks of the Guanhães 

Complex (Fig. 1), and less than 1 km from the Borrachudos Suite granite. A lens of high-grade iron 

strikes N-S for approximately 1 km and dips sub-vertically with an average thickness of 3 m. 

(Centaurus, 2014). 

                                                                    . The geological units 

consist of TTG gr                                                                            . 

Itabirite appears as elongated and isolated segments within the Guanhães Complex (Fig. 1); it is 

folded, with the fold axes of the tight to isoclinal folds plunging between NW to NE (Centaurus, 

2014). 

 

4.3.1. Itabirite mineralogy and paragenesis 

 

The dominant iron oxides in the banded high-grade iron lens at the DGN are granoblastic hematite 

and martite-I crystals in fine-grained goethite. Hematite overprints martite-I. Small (<10 cm) lenses 



  

 

of compact high-grade iron bodies occur at GNH where the dominant iron oxide is kenomagnetite-I 

locally overprinted by granoblastic hematite. Small (<10 cm) lenses of foliated high-grade iron 

bodies are composed of tabular hematite with subordinate granoblastic hematite. 

 

5. Whole rock geochemistry 

 

5.1. Piçarrão-Liberdade deposit 

 

Itabirite at the PLD consists mainly of Fe2O3 (52.9 wt. %) and SiO2 (45.7 wt. %), with minor Al2O3 

(0.2 wt. %). The Fe2O3 content of high-grade iron orebodies varies from 95 to 99 wt. %, with higher 

concentrations of Al2O3 (0.4 – 0.8 wt. %). The compact sample is the most enriched in martite and 

kenomagnetite, and it shows the highest FeO content (12.8 wt. %). The foliated, hematite-enriched 

samples present the lowest FeO content (1.2 and 4.2 wt. %) (Appendix A). 

Normalized to the PAAS-(sn) (Post-Archaean Average Australian Sedimentary Rocks; McLennan, 

1989), the itabirite REE + Y spidergram (Fig. 7) shows the typical HREE enrichment in relation to 

LREE, Pr/Yb(sn) = 0.31. The itabirite has a slight negative Eu(sn) anomaly (Eu/Eu* = 0.89), presents 

seawater-like Y/Ho ratios (> 40) (Fig. 8), and a positive Ce(sn) anomaly (Fig. 9). The chondrite-

normalized (Taylor and McLennan, 1985) Eu(cn) anomaly is negative (Eu/Eu*(cn) = Eu(cn)/0.5Sm(cn) + 

0.5Gd(cn)= 0.62). 

The banded sample shows anomalous enrichment in LREE, which is probably the result of 

supergene alteration (goethite enrichment), and subsequently not further discussed. Although 

foliated and compact samples present REE pattern similar to the itabirite, the foliated samples 

show depletion in LREE content, whereas the compact sample presents slight enrichment in REE 

content (Fig. 7). The foliated samples are also slightly enriched in V, Pb, Ni, Co, As and Hg; when 

compared to the itabirite. 

 

5.2. Morro Escuro ridge 

 

Two samples of itabirite from Morro Escuro ridge were analyzed; one from the SW extension and 

the other from the NE extension (Fig. 2). The major elements abundances for these two samples 

are very similar. Itabirite at the Morro Escuro ridge consists mainly of Fe2O3 (55 - 56 wt. %) and 

SiO2 (42 – 45.5 wt. %), with minor Al2O3 (0.13 – 0.26 wt. %). High-grade banded lenses contain 

Fe2O3 (77.8 wt. %) and SiO2 (19.7 wt. %), with higher concentrations of Al2O3 (0.5 wt. %). Foliated 

lenses have higher concentrations of Fe2O3 (99.1 wt. %) and is enriched in Al2O3 (1.29 wt. %). 

Compact samples are the most enriched in martite and kenomagnetite, they show the highest FeO 

content (6.5 and 9.5 wt. %) (Appendix A). 

Normalized to the PAAS (McLennan, 1989), the two itabirite REE + Y spidergrams (Fig. 7) present 



  

 

different LREE/HREE ratios (Pr/Yb(SN)  = 1.25 and 0.31). Both itabirites have positive a Y(sn) and 

Eu(sn) anomaly (Eu/Eu* = 1.44 and 1.34), present signatures of terrigenous input (shale field), as 

indicated by the low values of Y/Ho (under 35) (Fig. 8), and are HREE depleted. One itabirite 

presents a positive Ce(sn) anomaly (Fig. 9), similar to the Ce-allanite itabirite of Braga et al. (2015). 

The chondrite-normalized (Taylor and McLennan, 1985) Eu(cn) anomaly is close to 1.00 (Eu/Eu*(cn) = 

0.96 and 0.89). The foliated sample shows very pronounced HREE enrichment and slight enriched 

in Cr, Sr and V. In relation to the itabirite, the foliated and compact samples show slight depletion in 

REE content (Fig. 7). 

 

5.3.  Dores de Guanhães (DGN) and Guanhães (GNH) prospects 

 

Dolomitic itabirite at GNH consists mainly of Fe2O3 (53.5 wt. %) and SiO2 (44.8 wt. %), with minor 

MgO (0.07 wt. %). High-grade samples at DGN and GNH consist of Fe2O3 (95.6 to 97.9 wt. %) with 

variable concentrations of Al2O3 (0.1 to 1.24 wt. %). The compact sample is the most enriched in 

martite and kenomagnetite, and shows the highest FeO content (20.7 wt. %) (Appendix A). 

Normalized to the PAAS (McLennan, 1989), the itabirite REE + Y spidergram (Fig. 7) shows the 

typical HREE enrichment in relation to LREE, Pr/Yb(sn) = 0.42. The itabirite sample from GNH have 

a positive Eu(sn) anomaly (Eu/Eu* = 1.77), and presents a signature for a terrigenous input (shale 

field), indicated by the low values of Y/Ho (under 35) (Fig. 8). The chondrite-normalized (Taylor and 

McLennan, 1985) Eu(cn) anomaly is also positive (Eu/Eu*(cn) = 1.22). In relation to the itabirite, the 

foliated and compact samples show depletion in REE content, and the banded sample presents 

enrichment in REE content (Fig. 7). Compact and foliated samples are enriched in As and Pb, 

whereas banded sample is enriched in As, Cr, Pb and Sr. 

 

6. Iron oxide LA-ICP-MS studies 

 

6.1. Piçarrão-Liberdade deposit 

 

Itabirite-bearing kenomagnetite-I and lamelar hematite show similar chemical patterns with  

considerable amounts of Al (1100-1200 ppm), Ti (80-120 ppm), V (30-35 ppm) and Cr (5-10 ppm). 

Second-stage martite-II in quartz-martite-II veins contains mainly Mg (625 ppm), Al (861 ppm), P 

(156 ppm), V (40 ppm), Cr (10 ppm) and Mn (1004 ppm). Other trace elements such as Ti, Co, Ni, 

Zn, Ga, As and Mo have concentrations of <5 ppm. The REE concentrations of martite-II (Vp2) are 

the highest of all other iron oxides (Fig. 10), and its PAAS-normalized diagram exhibits slight HREE 

enrichment and positive Ce anomaly (Fig. 11a, Appendix B). 

Kenomagnetite-I in high-grade orebodies contains high amounts of Mg (697 ppm), Al (743 ppm), V 

(55 ppm), Cr (15 ppm) and Mn (815 ppm). In relation to itabirite iron oxides, kenomagnetite-I is 



  

 

enriched in all elements except Al, Ti and Mo, REE are below the detection limits. Martite-I 

alteration of kenomagnetite-I is accompanied by significant depletions in Mg, Ti, V, Cr, Mn, Co and 

Ni with enrichment in Al, P and As. The PAAS-normalized diagram for martite-I exhibits HREE 

enrichment and positive Ce anomaly (Figs. 10 and 11a). 

Granoblastic hematite contains mainly Al (819 ppm), P (18 ppm), Ti (81 ppm), V (39 ppm), and Cr 

(29 ppm). Other trace elements such as Mg, Co, Ni, Zn, Ga, As and Mo have concentrations <5 

ppm, and together with Mn are depleted in relation to paragenetically older martite-I, whereas Mo, 

Ti and Cr are enriched. No REE >1 ppm were detected. Paragenetically younger tabular hematite 

is less abundant than granoblastic hematite in P, Ti, Cr, and Mn, whereas Al, V, Ga and Mo are 

relatively enriched. Shear zone- and vein-hosted specular hematite is significantly depleted in most 

trace elements and REE, containing only Al (399 ppm) and V (6 ppm) in significant amounts. 

 

6.2. Morro Escuro ridge 

 

Martite-I of the least altered itabirite represents the paragenetically earliest oxide at Morro Escuro 

ridge, and has considerable amounts of Mg (56 ppm), Al (845 ppm), P (564 ppm), V (33 ppm), Cr 

(6 ppm), Mn (17831 ppm), Co (31 ppm), Ni (164 ppm), Zn (129 ppm), Ga (5 ppm), and As (15 

ppm). Other trace elements such as Ti and Mo, as well as REE, are not present in concentrations 

>2 ppm other than Ce (3 ppm) and Y (3 ppm). The REE concentrations are the highest in all other 

iron species, and the PAAS-normalized diagram for martite-I exhibits HREE enrichment and 

positive Ce anomaly (Figs. 12 and 11b). Paragenetically younger lamelar hematite is depleted in 

most trace elements and REE other than Al, V and Cr, and enriched in Ti (142 ppm). 

Kenomagnetite-I in high-grade orebodies contains mostly Mg (26 ppm), Al (66 ppm), P (37 ppm), V 

(94 ppm), Mn (1106 ppm), Ni (11 ppm), and Zn (129 ppm) with other trace elements and REE 

present in concentrations <5 ppm. Relative to paragenetically younger kenomagnetite-I, tabular 

hematite is depleted in Mn, Co, Ni, Zn; and enriched in Al (3694 ppm), Ti (1967 ppm), Cr and Mo. 

Compact kenomagnetite-I in high-grade orebodies has high concentrations of Mg (24679 ppm), 

significant amounts of Al (1359 ppm), Ti (117 ppm), V (75 ppm), Cr (9 ppm), Mn (3627 ppm), Ni (7 

ppm) and Zn (7 ppm); concentrations of other trace elements and REE do not exceed 2 ppm. 

Relative to kenomagnetite-I overprinted by tabular hematite, compact kenomagnetite-I is enriched 

in Mg, Al, Ti, and depleted in P and Zn. Shear zone- and vein-hosted specular hematite is 

characterized by Al (696 ppm), P (9 ppm), Ti (42 ppm), V (37 ppm) and Mn (15 ppm). Other 

elements such as Mg, Cr, Co, Ni, Zn and REE were not detected in concentrations >2 ppm. 

 

6.3. Dores de Guanhães (DGN) and Guanhães (GNH) prospects 

 

Kenomagnetite-I from banded, high-grade lens represents the earliest paragenetically iron oxide 



  

 

species at GNH. It is characterized by high concentrations of Mg (38545 ppm), and considerable Al 

(1838 ppm), Ti (19 ppm), V (56 ppm), Cr (32 ppm), Mn (4215 ppm), Co (29 ppm), Ni (68 ppm), Zn 

(8 ppm) and Ga (7 ppm) (Fig. 13). Arsenic and Mo as well as REE were not present in 

concentrations >1 ppm. Paragenetically younger granoblastic hematite is relatively depleted in Mg, 

Mn, Co, Ni, Zn and Ga when compared to kenomagnetite-I, and enriched in Ti (2635 ppm) and Mo. 

compact kenomagnetite-I is depleted in P, Cr, Co and Ni in relation to kenomagnetite-I from 

banded, high-grade lens. 

Granoblastic hematite from banded, high-grade lens at DGN is relatively depleted in Mg and Ti 

when compared to granoblastic hematite from GNH, and enriched in P, Cr and Ga. Martite-I from 

banded, high-grade lens at DGN is relatively enriched with respect to most trace elements when 

compared to granoblastic hematite at DGN, other than Al (3750 ppm) (Fig. 12). The REE are 

slightly enriched, and the PAAS-normalized diagram for martite-I exhibits HREE enrichment and 

positive Eu anomaly (Fig. 11c). 

 

7. Fluid inclusion studies at the Piçarrão-Liberdade (PLD) iron deposit, the Morro Escuro 

ridge itabirite sequence and the Ponte da Raiz beryl-bearing pegmatite 

 

The samples used in the fluid inclusion studies at PLD and ME areas were selected according to 

the vein classification in sections 4.1.2. and 4.2.2. In the following sections the areas selected for 

microthermometry are described in terms of its fluid inclusions content (Figs. 14, 15, 16, 17). 

 

7.1. Fluid inclusions trapped in quartz from the Piçarrão-Liberdade (PLD) iron deposit 

 

Vein samples from itabirite (40% Fe), high-grade iron ore (>55%Fe) and gneiss were chosen from 

the PLD for microthermometry and LA-ICP-MS analyses (Table 2). 

 

7.1.1. Fluid inclusions types and assemblages 

 

7.1.1.1. Vp1 veins 

 

The Qtz1 crystals from the quartz vein in the high grade iron ore (Vp1; Figs. 5 and 6) host fluid 

inclusion assemblages that form three-dimensional clusters and trails They are interpreted as 

pseudosecondary in nature because of the confinement of the cluster and trails to individual crystal 

(Roedder, 1984) (Fig. 14a). Secondary trails of inclusions are also observed, but not considered 

here for data interpretation due to their unclear relationship with the mineralization process. 

According to the number, nature, and volume proportions of phases present at room temperature, 

two types of fluid inclusion are classified in these Qtz1 crystals: Type 1, two-phase (L-V) aqueous; 



  

 

and type 2, four-phase (L-L-V-S) aqueous-carbonic (Fig. 14f) with aqueous-saline phase, liquid 

CO2, vapor and solid phases (daughter crystals). 

Type 1 FIs have a high liquid/vapor ratio (average 85% liquid, 15% vapor), and form irregularly 

shaped to rounded inclusions in secondary trails. Type 2 FIs have highly variable H2O/CO2 ratio 

(volume fraction of CO2 varies from 30 to 80 vol. %), average size between 25-35 m and form  

irregularly shaped to rounded inclusions. Locally, negative crystal shape was observed in type 2 

inclusions. 

 

7.1.1.2. Vp2 veins 

 

Coarse-grained Qtz2 crystals from the itabirite-hosted quartz-martite-II veins (Vp2; Figs. 5 and 6) 

contain only type 1 two-phase (L-V) aqueous FIs, with constant L/V ratios (5-15% vapor) and 

smaller average size (10-20 m) than Qtz1 FIs. These type 1 FIs are irregularly shaped to rounded 

inclusions, form three-dimensional clusters and internal trails, and are interpreted as 

pseudosecondary inclusions (Fig. 15). Secondary trails of inclusions are also observed, but not 

considered here for data interpretation due to their unclear relationship with the mineralization 

process. 

 

7.1.1.3. Vpe veins 

 

The Qtz3 crystals from the granite-hosted pegmatite vein (Vpe; Fig. 6) share some similarities with 

Qtz2 in terms of their FIs content and contain only type 1, two-phase (L-V) aqueous FIs, with more 

constant L/V ratios (5-15% vapor), and average size between 10-20 m. These type 1 FIs form 

three-dimensional clusters and/or internal trails and are interpreted as pseudosecondary (Fig. 16). 

 

7.1.2. Microthermometry  

 
7.1.2.1. Vp1 veins 

 

Freezing experiments on the CO2-rich assemblages (type 2 FIs) demonstrate that the nine fluid 

inclusion assemblages have internally consistent eutectic temperatures (Te) that range from - 30 to 

- 39 oC, suggesting other cations besides Na. Melting temperatures of clathrate (Tclath) define a 

maximum ranging from 7.5 to 9.0 oC (Table 3). Within fluid assemblages Tclath determinations  

vary by 0.8 oC. The formation of hydrohalite crystals was observed during the freezing 

experiments, between -8 and -1 oC. Melting temperatures of CO2(s) - TmCO2 -             − 7   

   −     °               O2 to have been the most abundant gas species. The bulk CO2 fraction 

(XCO2) varies from 0.1 to 0.54 (H2O – 0.9 to 0.46), and the CO2-rich phase homogenized (ThCO2) 



  

 

over a wide range of temperatures, from 25 to 31.5 oC. 

Type 2 inclusion assemblages homogenize by the disappearance of liquid-(CO2) over a wide range 

of temperatures, from 270 to 373 oC although ThTot values for individual fluid inclusion 

assemblages vary only by 15 oC (Table 3). Inclusions with the highest content of CO2 (XCO2) 

present the highest ThTot. These ThTot data represent a minimum trapping temperature since no 

boiling evidence was observed. Two types of solid phases (daughter crystals) were observed, 

sylvite and halite. Sylvite crystals are slight pleochroic (Fig. 14f) and dissolve between 15 and 35 

oC. Halite appears as non pleochroic square shaped crystals with higher dissolution temperatures 

between 70 and 87 oC. The salinity values display small variations between 26.5 to 27.6 wt. % 

NaCl equiv. (Fig. 18), and was calculated based on the halite dissolution temperature (Tmhal).  

 

7.1.2.2. Vp2 veins 

 

Freezing experiments on type 1 two-phase (L-V) aqueous FIs demonstrate that the seven fluid 

inclusion assemblages have internally consistent eutectic temperatures (Te) that range from -30 to 

-40 oC, suggesting other cations besides Na. Melting temperatures of ice (Tmice) are variable and 

define a maximum Tmice ranging from -0.7 to -8.5 oC (Fig. 18). Within fluid assemblages Tmice 

determinations vary by 3 oC. Type 1 inclusion assemblages homogenize by the disappearance of 

vapor bubbles over a wide range of temperatures, from 144 to 260 oC, although ThTot (L) values 

for individual fluid inclusion assemblages vary only by 20 oC (Table 3). 

 

7.1.2.3. Vpe veins 

 

Freezing experiments on type 1 two-phase (L-V) aqueous FIs demonstrate that the three fluid 

inclusion assemblages have internally consistent eutectic temperatures (Te) that range from -30 to 

-40 oC, suggesting other cations besides Na. Melting temperatures of ice (Tmice) are variable and 

define a maximum Tmice ranging from –2.1 to –6.1oC (Fig. 18). Within fluid assemblages Tmice 

determinations vary by 1.6 oC. Type 1 inclusion assemblages homogenize by the disappearance of 

vapor bubbles over a wide range of temperatures, from 156 to 348 oC, although ThTot (L) values 

for individual fluid inclusion assemblages vary only by 55 oC (Table 3). 

 

7.1.3. Quantitative estimation of fluid inclusion composition based on LA-ICP-MS data 

 

Analytical results for inclusions from Vp1, Vp2 and Vpe veins show that Na, K, Ca and Fe are the 

dominant components (Table 4). Type 1 two-phase (L-V), aqueous FIs were analyzed in Qtz2 from 

Vp2 veins, and in Qtz3 from Vpe vein; and type 2 four-phase (L-L-V-S) aqueous-carbonic FIs were 

analyzed in Qtz1 from Vp1 vein. 



  

 

Fluid inclusions trapped in Qtz1 (Vp1 veins) are enriched in Ca (av. Ca/Na = 0.514), Mn, Cu, Zn, 

Pb, Sr and Ag when compared to Qtz2 and Qtz3 (Table 4, Fig. 19). Only 1/3 of the analyzed FIs 

show Fe above the limit of detection, but for these FIs the Fe concentration is high. Bivariate and 

ternary diagrams (Fig. 20) show good correlation between Cu versus Zn and Sr versus Ca, but no 

correlation of Fe with other major components, such as K or Ca. 

Fluid inclusions trapped in Qtz2 (Vp2 veins) are rich in K and Fe relative to Na (K/Na = 1.44; Fe/Na 

= 0.418). The Fe concentration is high, similar to type 2 FIs trapped in Qtz1 (Table 4, Fig. 19). The 

other analyzed cations show very low values that are close to the limit of detection. Bivariate 

diagrams of Zn versus Cu and Sr versus Ca show good correlation, but in the Fe versus K diagram 

there is a wide dispersion in data. 

Fluid inclusions trapped in Qtz3 (Vpe veins) are rich in K relative to Na (K/Na = 0.676). As well as 

Qtz1, the Cu, Zn and Li element ratios are high in FIs trapped in Qtz3 (Table 4, Fig. 19). Other 

analyzed cations show very low values, close to the limit of detection. 

 

7.2. Fluid inclusions trapped in quartz from the Morro Escuro ridge 

 

From the Morro Escuro ridge, vein samples from itabirite (40% Fe) and quartz schist were chosen 

for microthermometry and LA-ICP-MS analyses (Table 2). 

 

7.2.1. Fluid inclusions types and assemblages 

 

7.2.1.1. Vmi veins 

 

The Qtz1a crystals from the quartz vein in the itabirite (Vmi) host fluid inclusion assemblages that 

form three-dimensional clusters and internal trails. They are interpreted as pseudosecondary  

because of the confinement of the cluster/trails to individual crystals according to criteria proposed 

by Roedder (1984) (Fig. 17b). No FIs are observed in recrystallized quartz crystals. Secondary 

trails of inclusions are also observed, but are not considered here for data interpretation due to 

their unclear relationship with the mineralization process. 

According to the number, nature, and volume proportions of phases present at room temperature, 

two types of fluid inclusion are classified in these Qtz1a crystals: Type 1 two-phase (L-V) aqueous; 

and type 2 four-phase (L-L-V-S) aqueous-carbonic with aqueous-saline phase, liquid CO2, vapor 

and solid phases (daughter crystals). Type 1 FIs have a high liquid/vapor ratio (average 85% liquid, 

15% vapor) and form irregularly shaped to rounded inclusions in separate assemblages (FIA 24 – 

Table 3). Type 2 FIs have highly variable H2O/CO2 ratio (volume fraction of CO2 varies from 30 to 

80 vol. %), average size between 35-45 m, and are irregularly shaped to rounded inclusions. Type 

2 inclusions locally display a negative crystal shape. 



  

 

 

7.2.1.2. Vms veins 

 

The Qtz1a crystals from the quartz vein in the quartz schist (Vms) host fluid inclusions 

assemblages that form three-dimensional clusters and internal trails. They are interpreted as 

pseudosecondary  because of the confinement of the cluster/trails to individual crystal according to 

criteria by Roedder (1984) (Fig. 17d). Secondary trails of inclusions are also observed, but are not 

considered here for data interpretation due to their unclear relationship with the mineralization 

process. Three types of FIs are defined in Vms veins (Table 2): Type 1 two-phase (L-V) aqueous; 

type 2 four-phase (L-L-V-S) aqueous-carbonic with aqueous-saline phase, liquid CO2, vapor and 

solid phases (daughter crystals), and type 3 three-phase, (L-L-V) aqueous-carbonic with aqueous-

saline phase, liquid CO2, and vapor. 

 

7.2.2. Microthermometry  

 

7.2.2.1. Vmi veins 

 

Freezing experiments on aqueous (type 1 FIs) and CO2-rich (type 2 FIs) assemblages demonstrate 

that the fluid inclusion assemblages have internally consistent eutectic temperatures (Te) that 

range from − 8    −4  oC, suggesting the presence of other cations besides Na. Melting 

temperatures of ice (Tmice) of one type 1 two-phase (L-V) aqueous fluid assemblage have a 

maximum Tmice of -1.8 oC that vary by 0.6 oC. This type 1 inclusion assemblage homogenizes by 

the disappearance of vapor bubbles at 145 oC (Table 3). This data represents a minimum trapping 

temperature since no boiling evidence was observed. 

Melting temperatures of clathrate (Tclath) of four CO2-rich fluid inclusion assemblages define a 

maximum ranging from 7.6 to 8.2 oC (Table 3). Within fluid assemblages Tclath determinations vary 

by 3 oC. All the measured melting temperatures of CO2(s) (TmCO2) are coincident at −56.6 and °C, 

suggesting that CO2 is the most abundant gas species. The bulk CO2 fraction (XCO2) varies from 

0.03 to 0.3, and the CO2-rich phase homogenize (ThCO2) from 22.4 to 32 oC. These type 2 

inclusion assemblages homogenize by the disappearance of liquid-(CO2) over a wide range of 

temperatures, from 290 to 340 oC, and ThTot values for individual fluid inclusion assemblages vary 

by 20 oC (Table 3). Inclusions with the higher content of CO2 (XCO2) present the highest ThTot. 

These ThTot data represent a minimum trapping temperature since no boiling evidence was 

observed. The dissolution temperatures of the solid phases are between 20 and 30 oC for sylvite 

crystals and between 35 and 58 oC for halite crystals. The salinity values display small variations 

between 26.6 to 26.9 wt. % NaCl equiv. (Fig. 18), and were calculated based on halite dissolution 

temperature (Tmhal). 



  

 

 

7.2.2.2. Vms veins 

 

Freezing experiments demonstrate that the 26 fluid inclusion assemblages have internally 

consistent eutectic temperatures (Te) that range from −38o    −4  oC, suggesting the presence of 

other cations besides Na. Melting temperatures of ice (Tmice) are variable and define a maximum 

Tmice ranging from –2.5 to –11 oC. Individual fluid assemblages have Tmice determinations that 

vary by 1 oC. These type 1 inclusion assemblages homogenize by the disappearance of vapor 

bubbles over a low range of temperatures, from 130 to 140 oC. These ThTot data represent a 

minimum trapping temperature since no boiling evidence is observed. 

Melting temperatures of clathrate (Tclath) of five CO2-rich fluid inclusion assemblages define a 

maximum ranging from 5.0 to 9.3 oC (Table 3). Within fluid assemblages Tclath determinations vary 

by 2 oC. All the measured melting temperatures of CO2(s) (TmCO2) are coincident at −56.6 and °C, 

suggesting that CO2 is the most abundant gas species. The CO2-rich phase homogenizes (ThCO2) 

over a wide range of temperatures from 15 to 31 oC. These types 2 and 3 inclusion assemblages 

homogenize by the disappearance of liquid-(CO2) over a low range of temperatures, from 220 to 

250 oC, and ThTot values for individual fluid inclusion assemblages vary by 10 oC (Table 3). The 

solid phases in type 2 FIs (sylvite and halite) have similar dissolution temperatures as type 2 FIs of 

the Vmi veins. The salinity of type 2 FIs was calculated based on halite dissolution temperature 

(Tmhal), and the salinity of type 3 FIs based on clathrate melting (Tclath). 

 

7.2.3. Quantitative estimation of fluid inclusion composition - LA-ICP-MS 

 

Analytical results for inclusions from Vmi and Vms veins show that K, Na, Ca, Fe and Mg are the 

dominant components (Table 4). Only type 2 four-phase (L-L-V-S), aqueous-carbonic inclusion 

assemblages were analyzed in Qtz1a from Vmi and Vms veins. Both Vmi and Vms veins show K 

as the main cation component, and similar values of Na and Ca concentrations. Relative to Vms, 

FIs trapped in Qtz1a from Vmi has higher concentration of Fe, and lower concentration of Mg and 

Zn. 

The bivariate diagrams (Fig. 21), show good correlation between Ca versus Sr, Cu versus Zn and 

Ca versus K. Compared to the PLD, FIs data from ME veins shows small variations in the ternary 

diagrams Fe-K-Ca and Fe-K-Mg, and the relation between the main components K and Na is 

inverted; K>Na at ME and Na>K at PLD (Figs. 19 and 21). The same trend in the Fe-Cu-Zn 

diagram is observed in both PLD and ME. 

 

7.3. Fluid inclusions trapped in beryl from the Ponte da Raiz pegmatite  

 



  

 

7.3.1. Fluid inclusions types and assemblages 

 

Fluid inclusions were studied in two beryl samples, Be1 and Be2, both from the Ponte da Raiz 

pegmatite (Table 2). Beryl-(Be1) is green and contains abundant fluid inclusion. Three types of 

inclusions are described, all with the same composition at room temperature – aqueous-carbonic, 

four-phase (L-L-V-S) with aqueous-saline phase, liquid CO2, vapor and halite daughter crystals. 

Halite daughter crystals were identified by dissolution temperature and square shape. However, 

these three types present distinct shapes and orientation with respect to the beryl crystallographic 

axes (Fig. 17f): Type 2a FIs show tubular shape and is interpreted to be primary because they are 

always oriented parallel to some of the crystallographic axes. Type 1 is the most abundant in 

number and volume. Type 2b FIs show tabular-                                >   μ            

associated with pseudosecondary trails that do not cross the crystal boundaries. Type 2c FIs show 

square shape, are smaller than Type 2, and form pseudosecondary clusters inside the crystal. 

Beryl-(Be2) is light yellow and has rare FIs. Only Type 2c FIs are observed in Be2, but it was not 

possible to analyze them because they are necked. 

 

7.3.2. Microthermometry 

 

                                                         − 4o    −   oC for all inclusions 

assemblages on Be1, suggesting low concentrations of other cations besides Na. Freezing 

experiments on the CO2-rich assemblages (types 1, 2 and 3) demonstrate that the 14 fluid 

inclusions analyzed have consistent melting temperatures of CO2(s) (TmCO2) that range between 

− 7 7    −     °                    O2 is the most abundant gas species. The CO2-rich phase 

homogenization temperature (ThCO2) also varies slightly from 28.5 to 31.4 oC. Melting 

temperatures of clathrate (Tclath) are variable and define a range from 4.3 to 9.2 oC, although 

individual fluid assemblages have Tclath determinations that vary by 1.2 oC (table 3). 

Inclusion assemblages homogenize by the disappearance of liquid-(CO2) over a low range of 

temperatures, from 315 to 320 oC (Table 3). These ThTot data represent a minimum trapping 

temperature since no boiling evidence is observed. The salinity values display small variations 

between 28.7-29.2 wt. % equiv. NaCl and was calculated based on halite dissolution temperature 

(Tmhal). 

 

8. Discussion 

 

8.1. Least-altered itabirite features at Piçarrão-Liberdade, Morro Escuro and Guanhães areas 

 

The itabirite samples (Appendix A) from each area are considered the least-altered rocks in the 



  

 

sequence of high-grade iron samples. Therefore, their chemistry and mineralogy are used to 

evaluate depositional environment features, and to compare chemical changes during itabirite iron 

upgrade. Metamorphic and hydrothermal alteration affected these rocks to some extent.  

For example, the positive Ce(sn) anomaly observed in PLD itabirite and some HGI samples (Fig. 9) 

is probably the result of hydrothermal alteration and does not reflect the redox conditions of the 

depositional environment. A similar Ce(sn) anomaly, associated with the generation of REE-bearing 

minerals, was described by Braga et al. (2015) in ME itabirite. Itabirite alteration at PLD did not 

produce the strong Eu(sn) anomaly observed in ME and GNH (Fig. 7), suggesting a different 

composition of the hydrothermal fluids between these areas and-or redox condition of the 

depositional environment. Even though only one itabirite was analyzed, the different depositional 

environment at PLD is also supported by the lack of clastic contamination, as show by the Y/Ho 

ratio (Fig. 9). 

The evidence of clastic contamination (low Y/Ho; Fig. 8) and the lack of negative Ce(sn) anomaly 

(Fig. 9) present in itabirite from GNH and ME areas suggest that these sediments precipitated on a 

shallow marine environment, with strong influence of continental input. Similar results were found 

in the previous studies of Morro Escuro and Guanhães itabirites (Braga et al., 2015; Barrote, 

2016).  

 

8.2. Chemical changes during itabirite iron upgrade 

 

The chemical changes between different iron oxide species in the paragenetic sequence can be 

interpreted with respect to different hypogene alteration and mineralization processes. The  

evolution of the trace elements and REE chemistry through the paragenetic sequence can be 

linked to specific ore forming processes. These processes include: (1) oxidation of magnetite to 

martite; (2) transformation of martite to hematite; (3) recrystallization of granoblastic to tabular 

hematite; (4) emplacement of quartz vein-hosted specular hematite; (5) emplacement of quartz 

vein-hosted martite-II. 

 

8.2.1. Oxidation of magnetite (martitization) 

 

Chemical changes during the transformation of magnetite to martite in high-grade orebodies at the 

PLD deposit is accompanied by the enrichment of Al, P and As in martite-I, and depletion in Mg, V, 

Cr, Mn, Co, Ni and Zn when compared to the kenomagnetite-I relicts (Fig. 10 and  4c). According to 

Hensler et al. (2015), the removal of Fe2+ and Mg (and other mobile elements) in magnetite may 

result in the relative enrichment of the less mobile elements in martite, in this case Al, P and As. A 

similar chemical change is observed in magnetite-martite alteration at GNH and DGN prospects 

and their relative enrichment of Ti, P, As and Mo (Fig. 13).  



  

 

Kenomagnetite-I from compact HGI bodies at Me and GNH, which is not associated with martite 

and hematite, presents a higher content of Mg, suggesting that it has the closest composition of 

the original magnetite in the Guanhães Group. 

At the PLD deposit REE are present in very low concentrations in both kenomagnetite-I (other than 

Ce) and martite-I. The positive Ce PAAS-normalized anomaly displayed by martite-I indicates an 

oxidizing fluid, due to the preferential precipitation of Ce when oxidized from Ce3+ to Ce4+. The 

same REE pattern is observed in martite-I from itabirite at the Morro Escuro ridge and martite-I 

from high-grade orebodies at DGN, Ce anomaly and HREE enrichment (Fig. 11b-c). 

Bau (1996) discuss the behaviour of Y/Ho in magmatic and aqueous systems and defines a 

primitive chondrite-     “      ”                                                             

24 < Y/ Ho < 34 and a seawater-like signature by 44 < Y/Ho < 74 (Fig. 22). The low Y/Ho ratios 

(<34) detected in martite-I from Morro Escuro ridge and DGN suggest the role of hydrothermal 

fluids in the oxidation of magnetite to martite, resetting the itabirite – seawater-like - HREE 

signature. A positive PAAS-normalized Eu anomaly is documented for martite-I from Morro Escuro 

ridge and DGN (Fig. 22); corroborating the whole rock geochemical results of Morro Escuro ridge 

and DGN (Fig. 7). 

 

8.2.2. Transformation of martite to hematite in high-grade bodies 

 

Granoblastic hematite recrystallized from martite-I from high-grade bodies at the PLD deposit is 

significantly enriched in Ti and Mo (and to a lesser extent Al, V and Cr); and depleted in Mg, Al, P, 

Mn, Co, Ni, Zn, Ga and As (Fig. 10). The REE are strongly depleted in hematite relative to martite-I 

(Fig. 11a). Tabular hematite recrystallized from kenomagnetite-I at Morro Escuro ridge is also 

enriched in Ti, Al, Cr and Mo, and depleted in Mn, Co, Ni and Zn (Fig. 12). Granoblastic hematite at 

the GNH prospect shows the same chemical changes when compared to kenomagnetite-I (Fig. 

13). 

According to Hensler et al. (2015) the exclusion of Mg and Mn during recrystallization of hematite 

is likely due to the poor compatibility of Mg2+ and Mn2+ in hematite in comparison to martite. Purtov 

and Kotel'nikova (1993) state that titanium is commonly regarded as immobile in aqueous solutions 

during metasomatic processes. In this case, the removal of the mobile elements result in the 

relative enrichment of the titanium; and others immobile elements such as Al, V, Cr and Mo 

(residual enrichment). 

 

8.2.3. Recrystallization of granoblastic hematite to tabular hematite in high-grade iron bodies  

 

The texture transformation of hematite (granoblastic to tabular) is related to the iron enrichment 

during the formation of the high-grade iron bodies. This transformation shows good inheritance of 



  

 

mineral chemistry, suggesting an isochemical process, a continuation of the recrystallization under 

similar physico-chemical conditions and fluid chemistry (martite - granoblastic hematite - tabular 

hematite; Figs. 10, 12, 13). The same pattern is observed in all three areas. 

 

8.2.4. Formation of vein-hosted specular hematite at PLD and ME 

 

Vein-hosted specular hematite and paragenetically older tabular hematite from the high-grade iron 

bodies share a similar depletion of trace elements; indeed all trace elements and REE are even 

more depleted in specular hematite (Figs. 10 and 12). This suggests that specular hematite was 

the last iron oxide to precipitate. The REE are more likely to have been concentrated in the earlier 

crystallizing hematite and the fluid was depleted in these elements during the crystallization of the 

last generation of hematite. 

 

8.2.5. Formation of vein-hosted martite-II at PLD 

 

Comparison of martite-II from quartz-martite-II veins (Vp2) with martite-I from high-grade bodies  

shows that martite-II is enriched in Mg, P, V, Mn, and REE, but strong depleted in As. However, 

compared to kenomagnetite-I from HGI, martite-II presents similar trace elements content but is 

relatively REE enriched (Figs. 10 and 11). The low Y/Ho ratios (<34) detected in martite-II (Fig. 22) 

suggest the role of hydrothermal fluids in the precipitation of the original magnetite, and this Y/Ho 

ratios is similar to the highly evolved granite-pegmatite systems described by Bau (1996). A 

negative PAAS-normalized Eu anomaly (Fig. 22) also suggests significant variation in redox-

sensitive Eu during the formation of the Vp2 veins, when compared to the Eu anomaly of the 

itabirite and HGI (REE whole rock diagram, Fig. 7). Thus, precipitation of magnetite in the Vp2 

veins probably occurred in a different physico-chemical context compared to the high-grade iron 

bodies.  

 

8.3. Model for the paleo fluid system 

 

The occurrence of fluid inclusions with different proportions of CO2 and H2O (variable XCO2 and 

CO2 Vol%), and different homogenization temperatures (Table 3) observed within type 2 fluid 

inclusion assemblages trapped in Qtz1 suggest that the cooling of a homogenous fluid (Roedder, 

1984; Diamond, 1990) was the major processes to explain these heterogeneous fluid chemistry 

and trapping conditions during Vp1 formation. On the other hand, trapping inclusions with different 

homogenization temperatures and salinity in Qtz2 and Qtz3 (Table 3; Fig. 18) suggests that Vp2 

and Vpe veins were formed by trapping of two or more homogeneous fluids as a result of partial 



  

 

mixing (Anderson et al., 1992); probably representing mixing between low-temperature, low-salinity 

meteoric waters and higher-temperature, higher-salinity brines (the latter fluids are possibly related 

to anatexis). Although the Vp1 and Vpe have different total concentrations of NaCl equiv., they 

have comparable element ratios (specially Cu and Zn) determine by LA-ICP-MS (Figs. 18 and 20; 

Table 4). The similar element ratios between FIs trapped in Vp1 and Vpe is evidence of the 

contribution of anatectic fluids to the Vp1 veins. Indeed, fluid inclusions trapped in beryl crystals 

show similar fluid inclusion phases and phase ratios (aqueous-carbonic), and overlapping 

temperatures as FIs trapped in Qtz1 from Vp1 veins at the PLD deposit (Table 4; Fig. 19). 

The results of the FIs studies suggest that the interaction of anatectic fluids with PLD itabirite 

during the metamorphic event of the Brasiliano orogen led to the silica leaching and iron 

enrichment of the itabirite, resulting in high-grade iron orebodies. Loss of silica bands in the itabirite 

coincided with the local crystallization of quartz-rich veins in some parts of these high-grade iron 

orebodies. Silica leaching and the transformation of magnetite to hematite are probably a 

contemporaneous processes, and as hematite is depleted in mobile trace element (Figs. 10, 12, 

13; Appendix B), the fluids that formed Vp1 veins became trace element enriched. The high 

temperature, salinity and trace element enrichment of the FIs trapped in Vp1 veins (Figs. 18 and 

19; table 4) suggest that these veins formed as a result of the removal of quartz-rich bands from 

the itabirite. 

Concentrations of Fe in pseudosecondary fluid inclusions trapped in Qtz1 range from 2,731 to 

19,775 ppm (Table 4). These results are similar to those found by Figueiredo e Silva et al. (2013) 

                             (82–17,507 ppm Fe) and by Thorne et al. (2014) at Paraburdoo 4E 

Deposit, Hamersley Province (2,349-27,796 ppm Fe). 

The formation of the Vp2 veins probably occurred at a lower crustal level during the mixing of the  

Vp1 fluids with meteoric water, and the precipitation of magnetite (transformed to martite-II) which 

is enriched in trace elements (Figs. 10 and 11). The low concentration of trace elements in FIs from 

the Vp2 veins (Fig. 19; Table 4) results from its precipitation during the crystallization of magnetite 

(martite-II). The low salinity and temperature of Vp2 FIs (Fig. 18), and the different redox 

environment for martite-II (Fig. 22) support this evolution. Also, the good correlation between trace 

elements ratios (Fig. 20) supports the cogenetic relation between the fluids trapped in Vp1, Vp2 

and Vpe veins. 

The Vmi and Vms veins at Morro Escuro ridge are related to the same event, since both present 

FIs with similar compositions and temperatures (Figs. 19 and 21). The metal content of FIs trapped 

in both Vmi and Vms veins is depleted when compared to the FIs composition trapped in Qtz1 from 

Vp1 veins with similar salinities and homogenization temperatures (Table 3 and 4; Figs. 19). This 

suggests that due to the lower silica leaching, Vmi was formed with depleted trace element content 

as well as lower fluid/rock ratio at ME when compared to the PLD deposit. The good correlation 

between the major components of the fluids (Fig. 21), also supports the low fluid/rock ratios in the 



  

 

ME veins. The lack of high-grade iron orebodies at ME corroborate these conclusions. 

 

9. Conclusions 

 

According to the mineral chemistry of the iron oxides paragenesis, and the fluid inclusion studies in 

the pegmatite and quartz veins associated with the high-grade iron bodies of the PLD deposit, it is 

possible to conclude that: 

1. In the Piçarrão-Liberdade deposit-PLD, the paragenetic sequence of the iron oxides show three 

major chemical trends: (i) oxidation of kenomagnetite to hematite is followed by depletion of Mg, 

Co and Ni; and enrichment of As and REE; (ii) recrystallization of granoblastic hematite is 

commonly accompanied by enrichment in immobile elements (Ti, Al, V, Cr and Mo) due to 

removing of mobile elements (Mg, Mn, and As); (iii) late-stage specular hematite has very low 

concentrations of most trace elements relative to paragenetically early-stage iron oxides, similar to 

previous analyses on shear vein-hosted specular hematite from another iron deposits (Hensler et 

al., 2015; Oliveira et al., 2015). 

2. The iron enrichment in the high-grade orebodies of the PLD deposit is related to the same 

anatectic event of the Borrachudos-hosted pegmatites; and could be explained by the following 

processes (Fig. 23): (i) Influx of anatectic fluids during the metamorphic event of the Brasiliano 

orogen and formation of the high-grade orebodies through silica leaching; (ii) Hematite 

crystallization in high-grade orebodies during silica and trace elements leaching and the formation 

of Vp1 veins; (iii) A second-stage of magnetite crystallization (martite-II) during the the lowering of 

the pressure and the formation of the Vp2 veins. 

According to the whole rock geochemical analyses, itabirites from Morro Escuro ridge, Guanhães 

and Dores de Guanhães prospects show evidences of a shallow marine depositional environment 

and secondary hydrothermal alteration; while the itabirite and HGI orebodies from PLD show a 

different hydrothermal alteration evolution and depositional environment. 
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Figure 1. Geological setting of the Southern Espinhaço Range with the location of the studied 

areas (red box and two red circles). The western limit of the Eastern Pegmatite Province is also 

shown with a dashed line. PLD (Piçarrão-Liberdade deposit), ME (Morro Escuro ridge), GNH 

(Guanhães prospect), DGN (Dores de Guanhães prospect), SFC (São Francisco Craton), AFB 

(Araçuaí fold belt). Adapted from Grossi-Sad et al., 1997. 

 

Figure 2. Geology of the Piçarrão-Liberdade iron and alexandrite-beryl pegmatite deposits, as well 

as the Morro Escuro ridge area. Adapted from Carvalho et al. (2014). 

 

Figure 3. Photographs of hand specimens of the itabirite and ores from the Piçarrão-Liberdade 

deposit. A. s34a – non-mineralized itabirite with hematite and quartz microbands, schistose fabric 

and quartz-martite vein. B. s36b - high-grade iron ore with granoblastic hematite. C. s34b - high-

grade iron ore with kenomagnetite-I and granoblastic hematite in contact with itabirite. D. ss1 – 

foliated, high-grade iron ore with tabular hematite. Sn: foliation. Vp2 veins classification: see 

section 4.1.2. 

 



  

 

Figure 4. Photomicrographs (reflected, polarized light) showing itabirite mineralogy, in samples. A.  

s34a - non-mineralized itabirite with schistose fabric, showing martite-I with relic kenomagnetite (in 

circular blow up), lamelar hematite and quartz microbands; martite grains are overprinted by 

lamelar hematite. B. s36b - high-grade iron ore with granoblastic hematite. C. s34b - high-grade 

iron ore with kenomagnetite-I relicts in martite-I, martite grains are overprinted by granoblastic 

hematite. D. ss1 - high-grade iron ore with granoblastic hematite overprinted by tabular hematite. 

The tabular hematite shows a preferred orientation E. s35 - quartz-martite-II vein with 

kenomagnetite-II replaced by martite-ll. F. ss2 – kenomagnetite-I overprinted by granoblastic 

hematite. Martitization of kenomagnetite is along grain boundary in contact with the granoblastic 

hematite. GbHem: granoblastic hematite; KMag: kenomagnetite; LmHem: lamelar hematite; Mt: 

martite; Qtz: quartz; TbHem: tabular hematite. 

 

Figure 5. Iron oxide paragenetic sequence of itabirite-hosted iron ore at Piçarrão-Liberdade 

deposit, Morro Escuro ridge, Guanhães and Dores de Guanhães prospects. The classification of 

the quartz crystals used in the fluid inclusions studies is also shown. Qtz: quartz. 

 

Figure 6. Schematic diagram illustrating the different vein types (Vp1, Vp2, Vpe, Vms, Vmi). A. 

Piçarrão-Liberdade deposit B. Morro Escuro ridge. Sn: foliation. 

 

Figure 7. Results of whole-rock geochemical analyses of itabirite-hosted high-grade iron rock. 

Distribution pattern of the REE + Y values of the hematite and itabirites normalized to the values of 

PAAS (McLennan, 1989) in relation to itabirite for each deposit. PLD (Piçarrão-Liberdade deposit); 

ME (Morro Escuro ridge); GNH (Guanhães and Dores de Guanhães prospects). HGI: high-grade 

iron. 

 

Figure 8. Ce/Ce*(SN) vs.Y/Ho diagram showing a comparison of trace element data derived from 

whole-rock geochemical analyses of itabirite-hosted high-grade iron rock (Pecoits, 2010). Symbols: 

Black (Piçarrão-Liberdade); gray (Morro Escuro); white (Guanhães-Dores de Guanhães). HGI: 

high-grade iron. 

 

Figure 9. Discrimination diagram, derived from whole-rock geochemical analyses, of Ce/Ce*(SN) 

vs. Pr/Pr*(SN) for La and Ce anomalies (Bau and Dulsky, 1996). It shows a variation from positive 

Ce anomaly in the itabirites to negative Ce anomaly in the HGIs. PLD (Piçarrão-Liberdade), ME 

(Morro Escuro), GNH (Guanhães-Dores de Guanhães). HGI: high-grade iron. 

 

Figure 10. Box-and-whisker plots of minor and trace elements in ppm from mineral chemistry LA-

ICP-MS data. The results are grouped by iron oxide mineral for the Piçarrão-Liberdade deposit. 



  

 

The upper and lower margins of the box represent the upper and lower 50 percentile of the data. 

The whiskers represent the upper and lower threshold values (95 percentile of the data). Median 

values are shown as solid black lines and mean values as solid black circles. See Fig. 4 for oxide 

paragenetic sequence. HGI: high-grade iron. 

 

Figure 11. Rare earth element PAAS-normalized (McLennan, 1989) spider plot of iron oxide 

mineral chemistry data from A. Piçarrão-Liberdade deposit; B. Morro Escuro ridge, and C. Dores 

de Guanhães and Guanhães prospects. HGI: high-grade iron. 

 

Figure 12. Box-and-whisker plots, derived from mineral chemistry LA-ICP-MS data, of minor and 

trace elements in ppm grouped by iron oxide mineral for Morro Escuro ridge. The upper and lower 

margins of the box represent the upper and lower 50 percentile of the data. The whiskers represent 

the upper and lower threshold values (95 percentile of the data). Median values are shown as solid 

black lines and mean values as solid black circles. See Fig. 4 for oxide paragenetic sequence. 

HGI: high-grade iron. 

 

Figure 13. Box-and-whisker plots of minor and trace elements in ppm from mineral chemistry LA-

ICP-MS data. The results are grouped by iron oxide mineral for Dores de Guanhães and 

Guanhães prospects. The upper and lower margins of the box represent the upper and lower 50 

percentile of the data. The whiskers represent the upper and lower threshold values (95 percentile 

of the data). Median values are shown as solid black lines and mean values as solid black circles. 

See Fig. 4 for oxide paragenetic sequence. HGI: high-grade iron. 

 

Figure 14. Fluid inclusion samples, and fluid inclusion maps showing analyzed fluid inclusion 

assemblages hosted by Vp1 veins from the Piçarrão-Liberdade iron deposit. A. sample s31 - thin 

section surface of Vp1 quartz (Qtz1) vein with border of granoblastic hematite (Hem). B. 

Photomicrograph of Qtz1 showing selected fluid inclusion areas for microthermometric analyses. 

C. Insets displaying fluid inclusion maps with FI assemblage number. D. Photomicrograph of Qtz1 

showing pseudosecondary trail selected for microthermometric analyses. E. Photomicrograph of 

the selected trail displaying fluid inclusion map with assemblage number. F. Type 2 inclusion 

trapped in Qtz1 from Area A. FIA: Fluid Inclusion Assemblage. 

 



  

 

Figure 15. Fluid inclusion samples and fluid inclusion maps showing analyzed fluid inclusion 

assemblages hosted by Vp2 veins from the Piçarrão-Liberdade iron deposit. A. sample s01 - 

quartz-martite-II vein (Vp2) and location of double-polished thin section used for microthermometry. 

B. Photomicrograph of quartz (Qtz2) with pseudosecondary and secondary FI trails. C. Inset A that 

shows a map of fluid inclusions analyzed, displaying fluid inclusion sample map with assemblage 

number. D. sample s03 - photomicrograph of Qtz2 and martite-II with secondary fluid inclusion trail 

and one area where pseudosecondary fluid inclusion are observed (see inset B). E. Inset B 

displaying pseudosecondary fluid inclusions and assemblage number. F. Type 1 fluid inclusion 

trapped in Qtz2 from FIA01. FIA: Fluid Inclusion Assemblage. 

 

Figure 16. Fluid inclusion samples, and fluid inclusion maps showing analyzed fluid inclusion 

assemblages hosted by Vpe veins from the Piçarrão-Liberdade iron deposit. A. sample s47 - 

diamond drill core (31m depth) displaying Vpe vein and sampling location. B. Photomicrograph of 

quartz (Qtz3) showing map of fluid inclusions. C and D.  Insets displaying fluid inclusion sample 

map with assemblage number. FIA – Fluid Inclusion Assemblage. Kf: K-feldspar. 

 

Figure 17. Fluid inclusion samples, and fluid inclusion maps showing analyzed fluid inclusion 

assemblages hosted by Vmi and Vms veins from Morro Escuro ridge as well as beryl samples from 

Ponte da Raiz pegmatite. A. sample s07 displaying Vmi vein and sampling location. B.  

Photomicrograph of quartz (Qtz1a) from Vmi showing mapping of fluid inclusions (hematite - Hem). 

C. Inset displaying fluid inclusion sample map with assemblage number. D. sample s08 - 

photomicrograph of Qtz1a from Vms showing mapping of fluid inclusions. E. Inset displaying fluid 

inclusion sample map with assemblage number. F. Photomicrograph of beryl (sample Be01) 

showing mapping of fluid inclusions types.  FIA – Fluid Inclusion Assemblage. 

 

Figure 18. Salinity (eq. wt. % NaCl) versus homogenization temperature (°C) data for fluid inclusion 

assemblages trapped in quartz (Vp1, Vp2, Vpe, Vmi and Vms veins) and beryl (Vb). Dashed lines 

represent fluid inclusion assemblages. 

 

Figure 19. Diagrams showing metal concentrations (ppm) obtained from LA-ICP-MS analyses on 

individual fluid inclusions. The shaded box is the 25th and 75th percentiles, with the median value 

(horizontal lines) and mean value (black circle). The lower and upper horizontal lines are the 5th 

and 95th percentiles; outliers are individual points. 

 

Figure 20. Bivariate and ternary plots of LA-ICP-MS element ratios (alkali and alkaline earths and 

transition metals) of individual fluid inclusions trapped in quartz from Vp1, Vp2, and Vpe veins at 

Piçarrão-Liberdade deposit. 



  

 

 

Figure 21. Bivariate and ternary plots of LA-ICP-MS element ratios (alkali and alkaline earths and 

transition metals) of individual fluid inclusions trapped in quartz from Vmi and Vms veins at Moro 

Escuro ridge. 

 

Figure 22. Binary plot illustrating Eu anomalies and the Y/Ho ratios derived from mineral LA-ICP-

MS analyses. The Eu anomaly is calculated Eu/EuSN = (EuPAAS/(0.5 x SmPAAS + 0.5 x GdPAAS). The 

shadowed areas define the behavior of Y/Ho ratios of modern seawater and the chondritic-like 

CHARAC field (Bau, 1996). (HGI: high-grade iron; PLD – Piçarrão-Liberdade; ME Morro Escuro; 

DGN Dores de Guanhães). 

 

Figure 23. Schematic illustration showing the interaction of high salinity and temperature fluids 

during the leaching of gangue minerals (silica), and the formation of high-grade iron orebodies and 

Vp1 veins. The Vp2 veins present martite enriched in trace elements, and lower salinity and 

temperature fluids trapped in the Qtz2. Kmag: kenomagnetite; LmHem: lamelar hematite; Mt: 

martite. GbHem:granoblastic hematite; Qtz: quartz. 

 

Table 1. Vein types classified at the studied areas. 

 

Table 2. Analyzed fluid inclusion types. PLD: Piçarrão-Liberdade deposit; ME: Morro Escuro rigde. 

 

Table 3. Microthermometric results of pseudosecondary fluid inclusion assemblages. PLD: 

Piçarrão-Liberdade deposit; ME: Morro Escuro rigde. 

 

Table 4. Summary of LA-ICP-MS analysis on fluid inclusion. Element/Na weight ratios and element 

concentrations in ppm, calculated using the salinity of the fluid inclusions. RSD (relative standard 

deviation). sd (standard deviation). bdl (below detection limit). 

 

Appendix A. Chemical composition of the itabirite and high-grade samples. PLD: Piçarrão-

Liberdade deposit; ME: Morro Escuro ridge; GNH: Guanhães prospect; DGN: Dores de Guanhães 

prospect; HGI: high-grade iron; LOI: loss on ignition; LOD: limit of detection; bdl: below detection 

limit; sd: standard deviation. 

 

Appendix B1. iron oxide compositions determined by LA-ICP-MS at Piçarrão-Liberdade deposit. 

HGI: High-grade iron bodies. sd: standard deviation. 

 

Appendix B2. iron oxide compositions determined by LA-ICP-MS at Morro Escuro ridge. HGI: High-



  

 

grade iron bodies. sd: standard deviation. 

 

Appendix B3. iron oxide compositions determined by LA-ICP-MS. GNH: Guanhães prospect. GDN: 

Dores de Guanhães prospect. HGI: High-grade iron bodies. sd: standard deviation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

Table 1. 

 

Deposit/Area   Vein Type  Mineralogy Host rock Thickness  Geometry 

Picarrão-Liberdade Vp1 Quartz (Qtz1) Quartz vein in high-grade Fe ore centimetric Lenticular 

Picarrão-Liberdade 
Vp2 Quartz (Qtz2)-martite-II 

Coarse-grained vein hosted in 

itabirite 
decimetric Tabular-discordant 

Picarrão-Liberdade 
Vpe 

Quartz (Qtz3)-K-

feldspar-plagioclase  
Pegmatite vein hosted in gneiss  centimetric Tabular-discordant 

Morro Escuro Vmi Quartz (Qtz1a) Quartz vein hosted in itabirite  centimetric Lenticular-concordant 

Morro Escuro Vms Quartz (Qtz1a) Quartz vein hosted in quartz schist decimetric Lenticular-concordant 

Ponte da Raiz 

Pegmatite  
Vb Quartz-K-feldspar-beryl  Pegmatite  metric Tabular-discordant 

 

 

 

 

 

 

 

 

 

 



  

 

 

 



  

 

Table 2. 

 

Deposit/Area Samples  Vein Type  Mineral  Fluid inclusion type Timing Microthermometry LA-ICP-MS 

Picarrão-

Liberdade 
s31 Vp1 Quartz (Qtz1) 

Type 1 – Aqueous 

Type 2 - Aqueous-carbonic 

S 

PS 

 

x 

 

x 

Picarrão-

Liberdade 
s01, s03 Vp2 Quartz (Qtz2) 

Type 1 - Aqueous  

Type 1 - Aqueous 

PS 

S 

x 

 

x 

 

Picarrão-

Liberdade 
s47 Vpe Quartz (Qtz3) 

Type 1 - Aqueous 

Type 1 - Aqueous 

PS 

S 

x 

 

x 

 

Morro Escuro s07 Vmi Quartz (Qtz1a) 
Type 1 – Aqueous 

Type 2 - Aqueous-carbonic 

PS 

PS 

x 

x 

 

x 

Morro Escuro s08 Vms Quartz (Qtz1a) 
Type 1 – Aqueous 

Type 2 - Aqueous-carbonic 

PS 

PS 

x 

x 

 

x 

Ponte da Raiz Be1 Vb Beryl  

Type 2a – Aqueous-carbonic 

Type 2b – Aqueous-carbonic 

Type 2c - Aqueous-carbonic 

P 

PS 

PS 

x 

x 

x 

 

Abbreviations: PS = pseudosecondary, S = secondary 

 

 

 

 

 



  

 

 

 

 



  

 

Table 3. 

 

Vein/ host 
mineral 

Deposit 
/ Area 

Phase(s) 
Assem
-blage 

n 
TmIce 
(oC) 

Tclath 
(oC) 

TmCO2 
(oC) 

ThCO2 (
oC) XCO2 ThTot (oC) 

Tm(hal)
(oC) 

        Salinity       
(wt. % NaCl 
equiv.) 

Vp1 PLD L-L-V-S 8 1  9 -56.7 30.9 0.086 315 86.5 27.6 

Quartz (Qtz1) PLD L-L-V-S 9 3  8.5 -56.7 27.5  3 0.215 310  5 87 27.6 

 PLD L-L-V-S 10 2  7.5  0.5 -56.7 31.2 ±0.1 0.086 305 ± 10 87 27.6 

 PLD L-L-V-S 11 5  9.1  0.5 -57.9 28.5 ± 3.3 0.213 315 ± 15 83 ± 10 27.5 

 PLD L-L-V-S 12 7  9.0  0.8 -56.6 25 ± 1.5 0.305 329 ± 15 70 ± 10 26.5 ± 1 

 PLD L-L-V-S 13 2  8.6 -56.6 31.5 0.086 373 70 ± 10 27.2 ± 1 

 PLD L-L-V-S 14 5  8.5  0.8 -56.6 31 ± 1.5 0.086 315 ± 15 72 ± 10 27.2 

 PLD L-L-V-S 15 5  8.2 ± 0.5 -56.6 27.6 ± 5.4 0.215 323 ± 15 80 ± 10 27.4 

 PLD L-L-V-S 16 5  8.2 ± 0.7 -56.6 27.3 ± 6 0.215 270 83 27.5 

Vp2 PLD L-V 1 3  -0.9 ± 0.1     190 ± 5  1.5 

Quartz (Qtz2) PLD L-V 2 3 -8.5 ± 0.5     244 ± 5  12.7 ± 1.5 

 PLD L-V 3 5 -3 ± 2.5     144 ± 20  4.96 

 PLD L-V 4 6 -8.5 ± 1.5     260 ± 5  12.7 ± 1 

 PLD L-V 5 2 -1.8 ± 1.2     160  3.06 

 PLD L-V 6 10 -1.6 ± 0.4     145 ± 5  2.74 ± 1.5 

 PLD L-V 7 8 -0.7 ± 0.1     152.7 ± 14.7  1.23 

Vpe PLD L-V 17 6 -2.1 ± 1.6     156 ± 10  3.55 

Quartz (Qtz3) PLD L-V 18 5 -2.4 ± 0.9     156 ± 10  4.03 

 PLD L-V 19 9 -6.1 ± 0.6     348 ± 55  9.34 ± 1 

Vmi ME L-L-V-S 20 2  7.6 ± 2 -56.6 27.6 ± 2 0.287 290 51 ± 5 26.8 

Quartz (Qtz1a) ME L-L-V-S 21 5  8.0 ± 3 -56.6 29.7 ± 3 0.027 340 ± 20 58 ± 5 26.9 ± 1 

 ME L-L-V-S 22 1  7.7 -56.6 32 0.128 310 35 26.6 

 ME L-L-V-S 23 1  8.2 -56.6 22.4 0.142 300 37 26.6 

 ME L-V 24 5 -1.8 ± 0.6     157 ± 15  4.55 ± 1 



  

 

Table 3 (cont.). 

 

Vms ME L-L-V-S 25 3  9.8 ± 2 -56.6 30 0.058 250 58 ± 4 26.9 

Quartz (Qtz1a) ME L-V 26 2 -2.5 ± 0.3     140  4.18 

 ME L-L-V-S 27 5  9.3 ± 0.5 -56.6 31 ± 1.5 0.128 230 ± 10 58.8 ± 10 26.9 

 ME L-L-V 28 4  5.0 ± .5 -56.6 15.4 0.126 235  9 

 ME L-L-V 29 6  6.1 + 0.5 -56.6 25 ± 4 0.126 230 ± 10  7 ± 2 

 ME L-V 30 3 -11 ± 1     130  14.97 

 ME L-L-V 31 3  6.0 ± 0.3 -56.6 25 0.021 220  7 

Vb 
Ponte 
da Raiz L-L-V-S 32 7  4.3 ± 0.9 -56.9 28.5 ± 2.6 0.285 320 ± 10  125 ± 20 28.7 

Beryl Ponte 
da Raiz L-L-V-S 33 3  4.6 ± 1.2 -57.7 31.4 ± 0.6 0.128 315 135 ± 40 29.2 

 
Ponte 
da Raiz L-L-V-S 34 4  9.2 ± 0.6 -56.6 31 ± 0.8 0.058 315 126 ± 15 28.7 

 

 

 



  

 

Table 4. 

 Vp1      Vp2      Vpe     

 ratio (mean) RSD ppm (mean) sd n  ratio (mean) RSD ppm (mean) sd n  ratio (mean) RSD ppm (mean) sd n 

Na 1 0 44730 21202 36  1 0 7641 6054 73  1 0 6745 2352 33 

K .483 43 9731 9851 22  1.44 48 6060 6931 50  .676 47 3159 2026 28 

Ca .514 47 12136 9660 27  .438 48 2134 2217 58  .364 53 1479 1099 25 

Mg .108 66 1841 2813 17  .223 86 1066 1695 47  .224 81 1049 1107 26 

Mn .015 76 84 277 6  .025 164 30 83 20  .027 41 28 79 6 

Fe .332 81 2731 5296 11  .418 69 1852 2320 49  .215 72 759 827 22 

Cu .255 57 4770 4881 22  .086 85 226 294 45  .140 51 561 554 22 

Zn .105 64 2060 2191 23  .048 116 151 139 55  .146 71 876 665 33 

Sr .002 51 87 63 33  .002 75 14 19 59  .002 61 14 11 32 

Ag .001 84 11 23 11  .0003 126 .277 1.36 9  .0008 91 .84 2.05 8 

Ba .011 77 298 332 27  .004 79 14 22 46  .006 66 35 28 29 

Pb .02 66 462 508 24  .004 72 13 16 45  .008 72 29 40 19 

Li .049 55 537 1062 10  <LOD      .02 54 24 79 5 

                  
 Vmi      Vms           
 ratio (mean) RSD ppm (mean) sd n  ratio (mean) RSD ppm (mean) sd n       
Na 1 0 27107 12492 27  1 0 26121 7525 36       

K 2.17 47 45437 15231 27  1.91 25 43603 14465 35       

Ca .444 54 8215 4634 25  .440 38 9636 4717 33       

Mg .111 47 1979 1860 22  .293 78 4124 4871 24       

Mn .004 83 21 51 8  .002 86 13 32 10       

Fe .155 53 4039 4020 25  .057 63 1370 1110 33       

Cu .020 43 261 335 17  .021 47 386 338 27       

Zn .009 40 159 212 19  .018 62 458 287 36       

Sr .001 44 34 31 23  .001 51 38 22 34       

Ag .0002 83 1.57 3.8 8  .0002 128 .77 4.24 4       

Ba .003 56 24 51 10  .0008 55 13 15 23       

Pb .001 48 20 20 17  .003 61 98 74 35       

Li <LOD      .025 149 59 328 4       



  

 

Appendix A. 

Sample LOD ME2B PB2A GU1 LI3SUL LI1 LI4SUL L1S4E LI7A PB1A ME2A PB3A PB4A GB DG2 GI3 

Area/d
eposit  ME ME GNH PLD PLD PLD PLD PLD ME ME ME ME GNH DGN GNH 

Rock 
type  

Itabirit
e 

Itabirit
e 

Itabirite Itabirite Compact 
HGI 

Banded 
HGI 

Foliated 
HGI 

Foliated 
HGI 

Compact 
HGI 

Compact 
HGI 

Banded 
HGI 

Foliated 
HGI 

Compact 
HGI 

Banded 
HGI 

Foliat
ed 

HGI 
wt% wt%                

SiO2 0.01 42.02 45.52 44.86 45.71 1.3 0.82 0.22 3.93 0.23 0.8 19.66 0.21 0.29 0.31 0.53 

Al2O3 0.01 0.26 0.14 0.17 0.23 0.79 0.47 0.39 0.31 0.44 0.52 0.51 1.29 0.5 1.24 0.17 

Fe2O3 
(Total) 0.01 56.07 55.1 53.54 52.94 98.78 96.1 99.67 95.31 96.3 96.89 77.84 99.18 95.63 97.98 97.85 

MgO 0.01 0.02 0.02 0.07 0.01 0.1 0.19 0.04 0.03 3.55 0.04 0.03 0.03 3.81 0.03 0.02 

CaO 0.01 bdl bdl bdl bdl bdl bdl bdl bdl 0.03 bdl bdl bdl 0.13 bdl bdl 

Na2O 0.01 bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.01 

K2O 0.01 bdl bdl bdl bdl bdl bdl bdl bdl bdl 0.07 bdl 0.01 bdl 0.01 bdl 

TiO2 0.01 0.008 0.01 0.006 0.008 0.044 0.015 0.023 0.009 0.021 0.032 0.01 0.066 0.022 0.063 bdl 
MnO 0.01 0.035 0.12 0.032 0.015 0.084 0.033 0.019 0.086 0.413 0.112 0.017 0.015 0.436 0.017 0.018 

P2O5 0.01 0.03 0.03 0.01 bdl 0.05 0.17 0.02 bdl 0.06 0.24 0.13 0.11 0.03 0.09 0.01 

Sum 0.01 98.48 100.9 98.67 100.6 100.7 98.49 100.4 99.32 98.62 98.76 100.3 100.9 98.34 100.7 100.7 

LOI  0.06 0 0 1.69 0 0.71 0.05 0 0 0.1 2.11 0.04 0 0.95 2.1 

FeO 0.1 0.9 1 1 1.6 12.8 6.3 1.2 4.2 6.5 9.5 0.9 0.8 20.7 1.8 2.2 

Fe2O3 0.01 55.07 53.99 52.43 51.16 84.54 89.1 98.34 90.64 89.07 86.33 76.84 98.07 72.61 95.98 95.4 

ppm ppm                
La 0.05 2.53 1.21 1.77 2.25 0.81 11.6 2.7 0.53 4.18 1.64 1.57 4.29 1.11 5.33 0.51 

Ce 0.05 8.02 2.94 3.1 15.2 3.01 15.3 46 1.83 3.31 3.21 2.42 8.29 1.28 10.4 0.78 

Pr 0.01 0.59 0.4 0.37 0.34 0.17 3.1 0.5 0.08 0.79 0.32 0.26 1.1 0.16 1.3 0.05 

Nd 0.05 2.25 2.66 1.6 1.24 0.63 10.9 2.2 0.3 2.59 1.41 0.89 4.58 0.55 5.6 0.19 

Sm 0.01 0.45 1.17 0.35 0.2 0.15 1.98 0.53 0.11 0.44 0.27 0.17 1.05 0.12 1.41 0.04 

Eu 0.005 0.138 0.348 0.13 0.052 0.062 0.373 0.179 0.041 0.182 0.114 0.063 0.351 0.044 0.354 0.038 

Gd 0.01 0.49 1.4 0.34 0.36 0.33 1.49 0.71 0.43 0.33 0.31 0.19 1.64 0.1 1.69 0.11 

Tb 0.01 0.08 0.23 0.06 0.07 0.07 0.21 0.13 0.09 0.06 0.05 0.03 0.37 0.01 0.33 0.02 

Dy 0.01 0.47 1.11 0.38 0.45 0.44 1.04 0.81 0.57 0.3 0.32 0.21 2.93 0.08 2.21 0.14 



  

 

Appendix A (cont.).  

 

Ho 0.01 0.09 0.18 0.08 0.1 0.09 0.19 0.16 0.12 0.05 0.08 0.05 0.69 0.02 0.51 0.03 

Er 0.01 0.25 0.48 0.23 0.34 0.32 0.47 0.51 0.35 0.15 0.23 0.18 2.32 0.05 1.64 0.11 

Tm 0.005 0.03 0.067 0.042 0.054 0.064 0.067 0.08 0.055 0.021 0.033 0.035 0.374 0.012 0.273 0.016 

Yb 0.01 0.15 0.4 0.28 0.35 0.47 0.44 0.51 0.36 0.15 0.19 0.26 2.28 0.09 1.79 0.11 

Lu 0.002 0.016 0.06 0.039 0.042 0.066 0.067 0.08 0.052 0.026 0.027 0.043 0.303 0.013 0.241 0.018 

Σ      
15.55

4 12.655 8.771 21.048 6.682 47.227 55.099 4.918 12.579 8.204 6.371 30.568 3.639 33.078 2.162 

As 0.1 3.2 2.3 0.5 bdl 1.9 1.7 0.2 3.4 5.6 3.8 1.5 1 2.1 1.4 21.8 

Co 0.1 0.8 2.9 0.7 0.5 3.4 7.1 1.6 1.1 4.8 4.9 0.7 0.2 5.3 0.3 0.7 

Cr 0.5 58 38.5 40.1 24.9 37.5 48.3 101 40.5 19.3 25 80.4 74.2 19.2 109 19.2 

Cu 0.2 2.2 2.8 3.9 7.1 6.4 23.7 4.8 13.3 3.8 13.8 11 2.4 5.9 2.7 7.4 

Hg 
(ppb) 10 bdl bdl bdl 40 210 270 130 60 bdl bdl 20 bdl bdl bdl 350 

Ni 0.5 4.4 4.1 3.6 2.7 7.9 7.2 4 5.2 7.9 10.7 2.4 2.1 7.6 2.7 4.1 

Pb 0.5 41.3 0.9 0.6 0.6 4.6 8.5 2.5 1.7 4 2.1 9.2 5.2 2.8 4.1 1.3 

Sr 0.2 2.1 7.6 1.3 0.9 0.9 6.8 1.3 0.9 2.4 21.7 1.4 24 1.3 19.8 1.1 

Th 0.05 0.47 0.21 0.08 0.31 0.25 0.22 0.36 bdl 0.48 0.09 0.29 0.33 0.19 0.24 bdl 
U 0.01 0.83 0.86 1.15 0.24 1.92 3.59 2.02 0.75 3.63 2.99 1.77 1.77 2.11 1.56 0.17 

V 5 34 45 88 37 79 56 116 66 68 89 27 94 64 97 12 

W 0.5 23.8 4.2 2 6.8 2.8 4 12.4 5.8 13.7 6.4 4.6 3.6 9.4 4 2.8 

Y 0.5 2.4 6 2.4 4 2.7 4.9 5.5 4.8 1.5 2.8 2.4 22.5 0.6 16 1.2 

Ce/Ce*
(sn)  1.51 0.96 0.88 3.92 1.87 0.59 9.08 2.00 0.42 1.02 0.86 0.88 0.68 0.91 1.03 

Eu/Eu*
(sn)  1.44 1.34 1.77 0.89 1.19 1.05 1.38 0.73 2.14 1.95 1.75 1.14 2.17 1.05 2.63 

Eu/Eu*
(cn)  0.96 0.89 1.22 0.63 0.88 0.69 0.96 0.54 1.51 1.29 1.15 0.87 1.29 0.75 1.76 

Pr/Yb(s
n)  1.26 0.32 0.42 0.31 0.12 2.25 0.31 0.07 1.68 0.54 0.32 0.15 0.57 0.23 0.15 

Ce/Ce*(sn)=Ce(sn)/(0.5Pr(sn) + 0.5La(sn)); Eu/Eu*(sn)=Eu(sn)/(0.67Sm(sn) + 0.33Tb(sn)); Eu/Eu*(cn) = Eu(cn)/(0.5Sm(cn) +0.5Gd(cn)). sn: PAAS 

normalized (McLennan, 1989); cn: chondrite normalized (Taylor and McLennan, 1985).



  

 

Appendix B1. 

 

 kenomagnetite-I (itabirite)  
lamelar hematite 
(itabirite) 

 kenomagnetite-I (HGI)  Martite-I (HGI)  
Hematite granoblastic 
(HGI) 

 ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n 

Mg 2.54 0.681 9  2.47 0.34 2  697 322 21  58 96 31  1.99 1.07 26 

Al 1171 30.02 18  1139 4.23 4  743 148 21  1119 154 31  819 473 26 

P <LOD  0  <LOD  0  9.58 0 1  73 33 31  18 15 4 

Ti 95.49 8.50 18  93 5.03 4  11 18 21  1.45 1.34 17  81 46 26 

V 33.35 0.65 18  33 0.48 4  55 20 21  11 9.94 31  39 3.62 26 

Cr 6.24 2.33 18  3.84 0.33 4  15 3.3 21  5.95 5.26 31  29 36 26 

Mn 3.24 0.57 5  3.34 0.61 3  815 568 21  433 831 31  9 4.40 26 

Co 0.04 0.002 2  0.04 0.001 2  2.4 0.46 21  0.71 0.97 31  0.02 0.004 12 

Ni 0.19 0.31 4  0.20 0 1  5.44 1.56 21  1.77 2.67 31  0.08 0.01 6 

Zn <LOD  0  <LOD  0  9.92 14 17  3.56 6.7 31  0.15 0.05 6 

Ga 0.38 0.084 18  0.35 0.15 4  1.5 1.32 21  1.44 1.34 31  0.57 0.3 26 

As 0.43 0.12 12  0.34 0 1  0.3 0.05 5  35 14 31  0.51 0.16 22 

Mo 1.73 0.155 18  1.66 0.13 4  0.25 0.12 20  0.35 0.07 31  3.69 1.15 26 

Ce 0.016 0 1  <LOD  0  0.01 0.006 3  1.08 1.07 31  0.07 0.09 8 

 

 

 



  

 

Appendix B1 (cont). 

 

 

 Hematite tabular (HGI)  
Hematite Specular (shear 
vein) 

 Martite-II (Vp2 veins) 

 ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n 

Mg 1.81 0.49 18  0.61 0.24 12  625 46 15 

Al 1489 76 18  399 142 13  861 43 15 

P <LOD  0  <LOD  0  156 29 15 

Ti 46 22 18  <LOD  0  5.14 1.29 15 

V 78 7 18  6 3.75 13  40 1.37 15 

Cr 15 6 18  0.75 0.2 6  10 2.83 15 

Mn 3.98 0.83 18  1.17 0.29 2  1004 17 15 

Co 0.02 0 1  <LOD  0  0.83 0.09 15 

Ni <LOD  0  <LOD  0  1.08 0.18 15 

Zn 0.15 0.044 8  0.13 0.01 3  3.33 1.66 15 

Ga 1.82 0.15 18  0.58 0.16 13  0.81 0.11 15 

As 0.72 0.48 18  0.57 0.42 9  0.65 0.19 14 

Mo 15 1.04 18  0.36 0.31 8  0.83 0.19 15 

Ce 0.03 0.022 2  <LOD  0  2.21 0.49 15 



  

 

Appendix B2. 

 

 

 Martite-I (itabirite)  
Lamelar Hematite 
(itabirite) 

 kenomagnetite-I (HGI)  Hematite tabular (HGI)  
kenomagnetite-I  
(compact HGI) 

 ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n 

Mg 56 21 18  1.61 0.68 25  26 2.06 4  21 23 17  24679 735 9 

Al 845 295 18  776 79 25  66 25 4  3694 1294 17  1359 276 9 

P 564 93 18  12 0 1  37 0 1  14 0 1  <LOD  0 

Ti 3.91 0 1  142 78 25  1.21 0.33 4  1967 2979 17  117 3 9 

V 33 9.21 18  29 6.51 25  94 1 4  99 34 17  75 0.68 9 

Cr 6.72 1.99 18  14 8.56 25  3.5 0.53 4  17 15 17  9 2.76 9 

Mn 17831 7588 18  37 13 25  1106 20 4  11 9 17  3627 68 9 

Co 31 18 18  0.07 0.11 17  4.4 0.08 4  0.06 0.03 12  5 0.11 9 

Ni 164 154 18  0.45 0.77 17  11 0.45 4  0.23 0.12 6  7 0.2 9 

Zn 129 75 18  0.28 0.22 18  129 6 4  0.86 0.66 8  7 1.95 9 

Ga 4.83 1.78 18  0.98 0.18 25  3.44 0.1 4  4.26 2.28 17  2.14 0.1 9 

As 15 4.13 18  0.50 0.22 14  0.54 0.1 4  0.44 0.1 2  1.3 0.31 3 

Mo 1.2 0.63 18  0.60 0.71 25  <LOD  0  1.45 0.39 17  0.09 0.03 9 

Ce 3.4 1.2 18  0.04 0.04 2  0.03 0.005 3  <LOD  0  0.13 0.17 2 



  

 

Appendix B2 (cont). 

 

ME 
Hematite Specular 
(shear veins) 

 ppm (mean) sd n 

Mg 0.31 0.14 12 

Al 696 95 12 

P 9 0 1 

Ti 42 3.66 12 

V 37 2.18 12 

Cr 1.4 0.22 12 

Mn 15 3.41 12 

Co 0.01 0.0007 2 

Ni 0.11 0.03 2 

Zn 0.13 0.03 6 

Ga 0.99 0.1 12 

As 0.44 0.15 6 

Mo 0.43 0.1 12 

Ce 0.01 0 1 



  

 

Appendix B3. 

 

 
kenomagnetite-I (HGI) 
(GNH) 

 
Martite-I (HGI)  
(DGN) 

 
Hematite granoblastic 
(HGI) (GNH) 

 
kenomagnetite-I  
(compact HGI) (GNH) 

 
Hematite granoblastic 
(HGI) (DGN) 

 ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n  ppm (mean) sd n 

Mg 38545 771 32  908 122 20  402 136 29  25231 791 31  8.23 2.5 36 

Al 1838 894 32  3750 814 20  4013 610 29  1425 566 31  6513 292 36 

P 16 0 1  1106 693 20  9.08 0 1  <LOD  0  57 64 2 

Ti 19 4.52 32  2987 266 20  2635 893 29  108 12 31  323 19 36 

V 56 0.93 32  344 16 20  112 27 29  73 1.21 31  94 2.5 36 

Cr 32 5 32  226 231 20  21 6.9 29  5.5 1.16 31  99 34 36 

Mn 4215 121 32  3863 219 20  30 6.1 29  3637 91 31  9.43 3.2 36 

Co 29 0.7 32  7.67 0.39 20  0.18 0.06 28  5.14 0.12 31  0.04 0.01 26 

Ni 68 1.73 32  38 1.77 20  0.25 0.08 29  7 0.30 31  0.15 0.04 21 

Zn 8 5.88 32  29 20 20  0.24 0.07 20  8 5 31  0.25 0.25 13 

Ga 7 0.86 32  8 1.21 20  1.84 0.26 29  2.15 0.2 31  7.33 0.32 36 

As 0.35 0.12 16  2.91 0.95 20  0.44 0.08 11  0.51 0.16 22  0.67 0.21 33 

Mo 0.07 0.008 4  9 0.74 20  2.09 1.79 29  0.15 0.07 17  1.83 0.17 36 

Ce 0.12 0.19 3  0.49 0.36 20  0.02 0.005 4  0.06 0.1 5  0.02 0 1 

 



  

 

 Silica leaching from itabirite led to the formation of high-grade iron orebodies. 

 The formation of the high-grade iron orebodies is accompanied by the magnetite oxidation, and the recrystallization of martite to 

granoblastic hematite. 

 Recrystallization of hematite is accompanied by enrichment in immobile elements (Ti, Al, V, Cr and Mo) due to removing of 

mobile elements (Mg, Mn, and As). 

 Iron enrichment in the high-grade orebodies is related to the influx of anatectic fluids. 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 

 



  

 



  

 

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 

 



  

 



  

 

 



  

 



  

 

 



  

 

 


