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Energy analysis for the one-field fictitious domain

method for fluid-structure interactions

Yongxing Wang∗, Peter K. Jimack, Mark A. Walkley

School of Computing, University of Leeds, Leeds, UK, LS2 9JT

Abstract

In this article, the energy stability of a one-field fictitious domain method is
proved and validated by numerical tests in two and three dimensions. The dis-
tinguishing feature of this method is that it only solves for one velocity field
for the whole fluid-structure domain; the interactions remain decoupled until
solving the final linear algebraic equations. To achieve this the finite element
procedures are carried out separately on two different meshes for the fluid and
solid respectively, and the assembly of the final linear system brings the fluid and
solid parts together via an isoparametric interpolation matrix between the two
meshes. The weak formulations are introduced in the continuous case and after
discretization in time. Then the stability is analyzed through an energy esti-
mate. Finally, numerical examples are presented to validate the energy stability
properties.

Keywords: fluid structure, finite element, fictitious domain, energy stable,
immersed finite element, one field, monolithic scheme, Eulerian formulation.

1. Introduction

Fluid-Structure Interaction (FSI) problems are common in many areas. For
most FSI problems, analytical solutions of the controlling equations are im-
possible to obtain, whereas laboratory experiments are complex, expensive and
limited in scope. Therefore, numerical simulations play an important role in or-5

der to understand the fundamental physics involved in the complex interaction
between fluids and structures.

In a previous study [1], we present a one-field Fictitious Domain Method
(FDM) which only solves for one velocity field and one pressure field in the
whole domain, based upon the finite element interpolation. This one-field FDM10

approach is related to the Immersed Finite Element Method (IFEM) but differs
in at least one important respect: the classical IFEM does not solve the solid
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equation [2–6]. Instead, the solid information is arranged on the right-hand
side of the fluid equation as a prescribed force. The one-field FDM solves the
solid equation together with the fluid equation in one discretized linear alge-15

braic system. The similarity is that both methods only solve for velocity and
pressure fields (no solid displacement). Other FDM techniques exist but are
typically based upon the use of a Discrete Lagrange Multiplier (DLM): such
methods [7–12] solve the solid equation, but for a displacement field, and couple
this displacement with the velocity of the fictitious fluid via a Lagrange multi-20

plier. This leads to a large discretized linear algebra system. The one-field FDM
rewrites the solid equation in terms of a velocity variable and couples the ficti-
tious fluid through a finite element interpolation. Monolithic Eulerian methods
[13, 14] also express the solid equation in terms of velocity, and the fluid and
solid are coupled naturally on an interface-fitted mesh. The one-field FDM uses25

two meshes to represent the fluid and solid respectively, and the FEM isopara-
metric interpolation is adopted to transfer information between the two meshes.
Consequently, before discretization in space, these two methods have many sim-
ilarities, the advantage of the one-field FDM being that interface fitting is not
required. We find that the advantages of using the FEM interpolation func-30

tion are: improved accuracy compared with methods such as the discrete delta
function or RKPM (Reproducing Kernel Particle Method); effective interpola-
tion of the velocity field through the use of quadratic elements; and effectively
capturing the density jumps when using a lumped mass matrix.

There are also other Eulerian formulations for FSI problems: [15] uses the35

level set method to capture the fluid-structure interface, and a Lagrangian mul-
tiplier and penalty method to couple the fluid and solid. [16–20] use an Initial
Points Set to capture the fluid-structure interface. After getting the position of
the interface, [16–19] use a characteristic function to smooth stress and velocity
across the interface. Alternatively [20, 21] modify the local finite elements in40

order to capture jumps sharply, and [22, 23] use an XFEM-like method to enrich
the shape functions locally in order to capture the discontinuity.

The main developments in this paper, following from [1], are as follows. The
exact energy-preserving property in the continuous case is proved. The energy-
stability property after time discretization is proved, and the same property45

is also proved after spatial discretization. The implementation in this paper is
based on an F-scheme, i.e., the solid deformation tensor F is updated (see section
4), while the previous paper uses a σ-scheme (see equation (29) in [1]). The
methodology and analysis is demonstrated to extend to the three-dimensional
case.50

The paper is organized as follows. Control equations and weak formulation
are introduced in section 2 and 3 respectively. The time discretized weak form
is then presented in section 4. Stability of the proposed scheme is analyzed in
section 5. Space discretization is discussed in section 6. Numerical examples
are given in section 7, and conclusions are presented in section 8.55
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2. Control equations

In the following context, Ωf
t ⊂ R

d and Ωs
t ⊂ R

d with d = 2, 3 denote the
fluid and solid domain respectively which are time dependent regions as shown
in Figure 1. Ω = Ωf

t ∪ Ωs
t is a fixed domain (with outer boundary Γ) and

Γt = ∂Ωf
t ∩ ∂Ωs

t is the moving interface between fluid and solid. We denote by60

X the reference (material) coordinates of the solid, by x = x(·, t) the current
coordinates of the solid, and by x0 the initial coordinates of the solid.

Figure 1: Schematic diagram of FSI, Ω = Ωf
t ∪ Ωs

t .

Let ρ, µ,u, p,σ denote the density, viscosity, velocity, pressure and stress
tensor respectively. We assume both an incompressible fluid and incompressible
solid, then the conservation of momentum and conservation of mass take the65

same form as follows:
Momentum equation:

ρ
du

dt
= ∇ · σ, (1)

Continuity equation:
∇ · u = 0. (2)

An incompressible Newtonian constitutive equation in Ωf can be expressed
as:

σ = σ
f = µfDuf − pfI, (3)

where Du = ∇u + ∇Tu. We shall consider an incompressible viscous neo-
Hookean solid in Ωs

t [8], in which case the Cauchy stress tensor is composed of
an elastic part and a viscous part:

σ = σ
s = σ

s
e + σ

s
v, (4)

with
σ

s
e = c1J

−1
(

FFT − I
)

− psI, (5)

and
σ

s
v = µsDus. (6)
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In the above, F = ∂x
∂X = ∂x

∂x0

∂x0

∂X =∇0x∇Xx0 is the deformation tensor of the
solid, and J = detF is the determinant of F. Finally the system is complemented
with the following boundary and initial conditions.

uf = us on Γt, (7)

ns
σ

f = ns
σ

s on Γt, (8)

uf = 0 on Γ, (9)

uf
∣

∣

t=0
= u

f
0 , (10)

us|t=0 = us
0. (11)

Other boundary conditions are possible on Γ but (9) are used here for simplicity.

Remark 1. It may be possible to absorb the term −c1J
−1 into ps as well (see

[8]). In this case, the solid is not stress free, and one creates a jump of the pres-
sure across the fluid-solid interface if the fluid is stress free. This does not matter
if the discontinuity of pressure can be exactly captured, such as an interface-fitted
method with discontinuous element for pressure. However, for the interface-
unfitted methods, adopted in this paper, it is wiser to include −c1J

−1 in the
constitutive equation. In this case, the corresponding energy function for the
hyperelastic stress in (4) is defined by [10]:

Ψ(F) =
c1
2
(trFFT − d)− c1ln(J). (12)

Remark 2. In the continuous case J = 1 exactly holds for an incompressible
material, therefore the term ln(J) is zero in (12). However for the numerical
methods using two meshes, J = 1 cannot be guaranteed. Furthermore, the energy
function (12) is also consistent with the constitutive equation (5). Notice that
the following energy function and constitutive equation are consistent with each
other:

Ψ(F) =
c1
2
(trFFT − d) , (13)

and
σ

s
e = c1J

−1FFT − psI. (14)

3. Weak formulation

The finite element weak form discussed in this section is almost the same
as that in [1], the only difference is that we integrate the solid stress in the70

reference domain, because we shall update the deformation tensor (F-scheme)
rather than the solid stress as done in [1] (σ-scheme). In the following context,
let L2(ω) be the square integrable functions in domain ω, endowed with norm
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‖u‖
2
0,ω =

∫

ω
|u|

2
(u ∈ L2(ω)). Let H1(ω) =

{

u : u,∇u ∈ L2(ω)
}

with the norm

denoted by ‖u‖
2
1,ω = ‖u‖

2
0,ω + ‖∇u‖

2
0,ω. We also denote by H1

0 (ω) the subspace75

of H1(ω) whose functions have zero values on the boundary of ω, and denote
by L2

0(ω) the subspace of L2(ω) whose functions have zero mean value.

Let p =

{

pf in Ωf

ps in Ωs
t
. Given v ∈ H1

0 (Ω)
d, we perform the following sym-

bolic operations:
∫

Ωf
t

Eq.(1) · vdx+

∫

Ωs
t

Eq.(1) · vdx.

Integrating the stress terms by parts, the above operations, using constitu-
tive equation (3) and (4) and boundary condition (8), gives:

ρf
∫

Ω

du

dt
· vdx+

µf

2

∫

Ω

Du : Dvdx−

∫

Ω

p∇ · vdx

+
µδ

2

∫

Ωs
t

Du : Dvdx+ ρδ
∫

Ωs
t

du

dt
· vdx

+ c1

∫

Ωs
t

J−1
(

FFT − I
)

: ∇vdx = 0,

(15)

where ρδ = ρs−ρf and µδ = µs−µf . Note that the integrals on the interface Γt

are cancelled out using boundary condition (8). This is not surprising because
they are internal forces for the whole FSI system considered here.80

Transforming the integral of the last two terms of (15) to the reference
coordinate system, combined with the following symbolic operations for q ∈
L2(Ω),

−

∫

Ωf
t

Eq.(2)qdx−

∫

Ωs
t

Eq.(2)qdx,

leads to the weak form of the FSI system as follows.

Problem 1. Given u0 and Ωs
0, find u(t) ∈ H1

0 (Ω)
d, p(t) ∈ L2

0(Ω) and Ωs
t , such

that for ∀v ∈ H1
0 (Ω)

d, ∀q ∈ L2(Ω), the following two equations hold:

ρf
∫

Ω

∂u

∂t
· vdx+ ρf

∫

Ω

(u · ∇)u · vdx

+
µf

2

∫

Ω

Du : Dvdx−

∫

Ω

p∇ · vdx

+ ρδ
∫

Ωs
X

du

dt
· vdX+

µδ

2

∫

Ωs
t

Du : Dvdx

+ c1

∫

Ωs
X

F : ∇XvdX− c1

∫

Ωs
t

J−1∇ · vdx = 0,

(16)

and

−

∫

Ω

q∇ · udx = 0. (17)
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In the above, d(·)
dt is the time derivative with respect to a frame moving with

the solid velocity us = u|Ωs
t
.

4. Discretization in time

We use the backward Euler method to discretize Problem 1, and update
coordinates of the solid by xn+1 = xn +∆tun+1. As a result, F is updated by
Fn+1 = Fn +∆t∇Xun+1, and so,

∫

Ωs
X

Fn+1 : ∇Xv =

∫

Ωs
X

Fn : ∇Xv +∆t

∫

Ωs
X

∇Xun+1 : ∇Xv. (18)

Using equation (18), the discretized weak form corresponding to Problem 185

may be expressed as:

Problem 2. Given un, pn and Ωs
n, find un+1 ∈ H1

0 (Ω)
d, pn+1 ∈ L2

0(Ω) and

Ωs
n+1, such that for ∀v ∈ H1

0 (Ω)
d
, ∀q ∈ L2(Ω), the following four relations

hold:

ρf
∫

Ω

un+1 − un

∆t
· vdx+ ρf

∫

Ω

(un+1 · ∇)un+1 · vdx

+
µf

2

∫

Ω

Dun+1 : Dvdx−

∫

Ω

pn+1∇ · vdx

+ ρδ
∫

Ωs
X

un+1 − un

∆t
· vdX+

µδ

2

∫

Ωs
n+1

Dun+1 : Dvdx

+ c1∆t

∫

Ωs
X

∇Xun+1 : ∇XvdX

− c1

∫

Ωs
n+1

J−1
n+1∇ · vdx = −c1

∫

Ωs
X

Fn∇XvdX,

(19)

−

∫

Ω

q∇ · un+1dx = 0, (20)

Ωs
n+1 = {x : x = xn +∆tun+1,xn ∈ Ωs

n} , (21)

and
Fn+1 = Fn +∆t∇Xun+1. (22)

A fixed-point iteration will be used at each time step to construct Ωs
n+1

implicitly.

5. Stability by energy estimate

5.1. Energy conservation in the continuous case90

In this section we shall prove that the weak forms (16) and (17), associated
with Problem 1, preserve energy.
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Lemma 3. The energy function Ψ(F) for the hyperelastic stress satisfies:

c1

∫ t

0

∫

Ωs
X

F : ∇XudX− c1

∫ t

0

∫

Ωs
t

J−1∇ · udx =

∫

Ωs
X

Ψ(F)dX. (23)

Proof. Since
∂tr

FFT

∂F = 2F and ∂(detF)
∂F = detFF

−T . Using the fact that A : B =
trABT (A and B are arbitrary matrices), we have:

d

dt

∫

Ωs
X

Ψ(F)dX =

∫

Ωs
X

∂Ψ

∂F
:
dF

dt
dX

=c1

∫

Ωs
X

(

F− F−T
)

:
d

dt
(I+∇Xd) dX

=c1

∫

Ωs
X

F : ∇XudX− c1

∫

Ωs
t

J−1∇ · udx,

where d is displacement of the solid at time t.

Lemma 4. If (u, p) is the solution pair of Problem 1, then
∫

Ω

(u · ∇)u · udx = 0. (24)

Proof. First,
∫

Ω

(u · ∇)u · udx =

∫

Ω

∇ (u⊗ u) · udx−

∫

Ω

|u|
2
∇ · udx. (25)

Integrate by parts:
∫

Ω

∇ (u⊗ u) · udx =

∫

Γ

|u|
2
u · n−

∫

Ω

(u · ∇)u · udx. (26)

According to a Sobolev imbedding theorem [24, Theorem 6 in Chapter 5] and
the inclusion between Lp spaces (Lq ⊂ Lp if p < q), we know H1(Ω) ⊂ L4(Ω)95

(for both 2D and 3D). Therefore u ∈ L4(Ω), i.e.,
∫

Ω
|u|4dx < ∞. That is

to say |u|2 ∈ L2(Ω). Then we have
∫

Ω
|u|

2
∇ · u = 0 from (17). We also

have
∫

Γ
|u|

2
u · n = 0 from the boundary condition (9). Substituting these two

equations into (25) and (26) gives equation (24).

Proposition 5 (Energy Conservation). Let (u, p) be the solution pair of Prob-
lem 1, then

ρf

2

∫

Ω

|u|2dx+
µf

2

∫ t

0

∫

Ω

Du : Dudx+
µδ

2

∫ t

0

∫

Ωs
t

Du : Dudx

+
ρδ

2

∫

Ωs
X

|u|2dX+

∫

Ωs
X

Ψ(F)dX = 0.

(27)

Proof. We first let v = u in (16) and integrate from time 0 to t, then let q = p100

in (17) and substitute into (16). Finally we can construct the above equation
of energy balance due to Lemma 3 and 4.
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5.2. Stability analysis after time discretization

We next demonstrate a similar energy stability result for Problem 2.

Lemma 6. The trace function 1
2 tr

(

FFT
)

satisfies:

1

2
tr

(

Fn+1F
T
n+1

)

−
1

2
tr

(

FnF
T
n

)

= ∆tFn+1 : ∇Xun+1 −
∆t2

2
|∇Xun+1|

2
, (28)

where |A|
2
=

∑

ij a
2
ij for an arbitrary matrix A = [aij ].105

Proof.

Fn+1F
T
n+1 − FnF

T
n

=Fn+1F
T
n+1 − (Fn+1 −∆t∇Xun+1) (Fn+1 −∆t∇Xun+1)

T

=∆tFn+1∇
T
Xun+1 +∆t∇Xun+1F

T
n+1 −∆t2∇Xun+1∇

T
Xun+1.

Lemma 6 holds due to

1

2
tr
(

Fn+1F
T
n+1 − FnF

T
n

)

= ∆t · tr
(

Fn+1∇
T
Xun+1

)

−
∆t2

2
|∇Xun+1|

2
.

Lemma 7. The log-determinant function ln (detF) satisfies:

ln(detFn+1)− ln(detFn) ≥ ∆t∇ · un+1 −
∆t2

2

∣

∣F−1
n+1∇Xun+1

∣

∣

2
.

Proof. Use the fact that function ln(detY) is concave over the set of positive
definite matrices [25, Chapter 3]. LetB = FFT , F(B) = 1

2 ln (detB) = ln (detF)
and w(ξ) = F (Bn + ξ (Bn+1 −Bn)), then

w′(ξ) =
dF

dB
: (Bn+1 −Bn) =

1

2
(Bn + ξ (Bn+1 −Bn))

−1
: (Bn+1 −Bn) .

According to the property of concave functions, we have w(1) − w(0) ≥ w′(1),
this is to say:

ln(detFn+1)− ln(detFn) = F (Bn+1)−F (Bn)

≥
1

2
B−1

n+1 : (Bn+1 −Bn) =
1

2
tr

(

I−B−1
n+1Bn

)

=
1

2
tr

(

I−B−1
n+1 (Fn+1 −∆t∇Xun+1)

(

FT
n+1 −∆t∇T

Xun+1

))

=
∆t

2
tr

(

F−T
n+1∇

T
Xun+1 + F−T

n+1F
−1
n+1∇Xun+1F

T
n+1

)

−
∆t2

2
tr

(

F−T
n+1F

−1
n+1∇Xun+1∇

T
Xun+1

)

=∆t∇ · un+1 −
∆t2

2

∣

∣F−1
n+1∇Xun+1

∣

∣

2
.

In the above, we use the trace property of cyclic permutations: tr (A1A2A3) =
tr (A2A3A1) = tr (A3A1A2).
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From the above two lemmas, we have:

Proposition 8. The energy function Ψ(F) for the hyperelastic stress satisfies:

∫

Ωs
X

Ψ(Fn+1) dX−

∫

Ωs
X

Ψ(Fn) dX

≤ ∆tc1

∫

Ωs
X

Fn+1 : ∇Xun+1dX−∆tc1

∫

Ωs
n+1

J−1
n+1∇ · un+1dx+Rn+1,

(29)

where

Rn+1 =
c1∆t2

2

∫

Ωs
X

(

∣

∣F−1
n+1∇Xun+1

∣

∣

2
− |∇Xun+1|

2
)

dX. (30)

Similarly to Lemma 4, we have:110

Lemma 9. If (un+1, pn+1) is the solution pair of Problem 2, then

∫

Ω

(un+1 · ∇)un+1 · un+1dx = 0. (31)

Proposition 10 (Energy Stable). If ρδ ≥ 0, let (un+1, pn+1) be the solution
pair of Problem 2, then

ρf

2

∫

Ω

|un+1|
2
dx+

ρδ

2

∫

Ωs
X

|un+1|
2
dX+

∫

Ωs
X

Ψ(Fn+1) dX

+
∆tµf

2

n+1
∑

k=1

∫

Ω

Duk : Dukdx+
∆tµδ

2

n+1
∑

k=1

∫

Ωs
n+1

Duk : Dukdx

≤
ρf

2

∫

Ω

|un|
2
dx+

ρδ

2

∫

Ωs
X

|un|
2
dX+

∫

Ωs
X

Ψ(Fn) dX

+
∆tµf

2

n
∑

k=1

∫

Ω

Duk : Dukdx+
∆tµδ

2

n
∑

k=1

∫

Ωs
n+1

Duk : Dukdx+Rn+1,

(32)

where Rn+1 is defined in equation (30).

Proof. Let v = un+1 in (19) and multiply ∆t on both side of the equation, and
then let q = pn+1 in (20) and substitute into equation (19), we get:

ρf
∫

Ω

(un+1 − un) · un+1dx+
∆tµf

2

∫

Ω

Dun+1 : Dun+1dx

+ ρδ
∫

Ωs
X

(un+1 − un) · un+1dX+
∆tµδ

2

∫

Ωs
n+1

Dun+1 : Dun+1dx

+ c1∆t

∫

Ωs
X

Fn+1 : ∇Xun+1dX− c1∆t

∫

Ωs
n+1

∇ · un+1dx = 0.

(33)

9



Using the Cauchy-Schwarz inequality and the fact ab ≤ a2+b2

2 , we have:

∫

ω

un · un+1dx ≤ ‖un‖0,ω ‖un+1‖0,ω ≤
‖un‖

2
0,ω + ‖un+1‖

2
0,ω

2
,

where ω = Ω or Ωs
n+1. Substituting the above relation into (33), we get (32)

due to Proposition 8 and Lemma 9.

Remark 3. Relation (32) does not exactly show energy nonincreasing, because
we do not know whether Rn+1 is greater or less than 0. However, Rn+1 is
O
(

∆t2
)

and so in the worst possible case any growth in the energy is bounded
by a term whose magnitude is smaller than the order of the error and which may
be controlled easily and efficiently. Furthermore, it will be demonstrated through
numerical tests in section 7 that this term has no identifiable impact for practical
choices of time step. In order to test the energy property, let us use the following
notation for the different contributions to the total energy in (32): (1) Kinetic

energy of fluid plus fictitious fluid Ek(Ω) =
ρf

2

∫

Ω
|un|

2
dx; (2) Kinetic energy of

solid minus fictitious fluid Ek(Ω
s
X
) = ρδ

2

∫

Ωs
X

|un|
2
dX; (3) Viscous dissipation

Ed(Ω) = ∆tµf

2

∑n
k=0

∫

Ω
Duk : Dukdx + ∆tµδ

2

∑n
k=0

∫

Ωs
n+1

Duk : Dukdx; (4)

Potential energy of the solid Ep(Ω
s
X
) =

∫

Ωs
X

Ψ(Fn) dX. Denote the total energy

at as Etotal = Ek(Ω) + Ek(Ω
s
X
) + Ed(Ω) + Ep(Ω

s
X
), and the energy ratio as:

Eratio =
Etotal(tn)

Etotal(t0)
. (34)

We shall numerically demonstrate that Eratio is nonincreasing in section 7.

6. Discretization in space115

We shall use a fixed Eulerian mesh for Ω and an updated Lagrangian mesh
for Ωs

n+1 to discretize Problem 2. First, we discretize Ω as Ωh with the corre-
sponding finite element spaces as

V h(Ωh) = span {ϕ1, · · · , ϕNu} ⊂ H1
0 (Ω)

and
Lh(Ωh) = span {φ1, · · · , φNp} ⊂ L2

0 (Ω) .

The approximated solution uh and ph can be expressed in terms of these basis
functions as

uh(x) =
Nu

∑

i=1

u(xi)ϕi(x), ph(x) =
Np

∑

i=1

p(xi)φi(x). (35)

We further discretize Ωs
0 as Ωsh

0 with the corresponding finite element spaces
as:

V sh(Ωsh
0 ) = span {ϕs

1, · · · , ϕ
s
Ns} ⊂ H1 (Ωs

0) ,

10



then move the vertices of each element of Ωsh
n by their own velocities to get

Ωsh
n+1, and approximate uh(x)

∣

∣

x∈Ωsh
n+1

as:

ush (x) =
Ns

∑

i=1

uh(xs
i )ϕ

s
i (x) =

Ns

∑

i=1

Nu

∑

j=1

u(xj)ϕj(x
s
i )ϕ

s
i (x), (36)

where xs
i is the nodal coordinate of the solid mesh. Notice that the above

approximation defines an L2 projection Pn+1 from V h
(

Ωh
)d

to V sh
(

Ωsh
n+1

)d
:

Pn+1

(

uh(x)
)

= ush (x),
We then discretize Problem 2 in space as follows.

Problem 11. Given uh
n, p

h
n and Ωsh

n , find uh
n+1 ∈ V h(Ωh)d, phn+1 ∈ Lh(Ωh) and

Ωsh
n+1, such that for ∀v ∈ V h(Ωh)d, ∀q ∈ Lh(Ωh), the following four relations

hold:

ρf
∫

Ωh

uh
n+1 − uh

n

∆t
· vdx+ ρf

∫

Ωh

(

uh
n+1 · ∇

)

uh
n+1 · vdx

+
µf

2

∫

Ωh

Duh
n+1 : Dvdx−

∫

Ωh

phn+1∇ · vdx

+ ρδ
∫

Ωsh
X

ush
n+1 − ush

n

∆t
· vsdX+

µδ

2

∫

Ωsh
n+1

Duh
n+1 : Dvdx

+ c1∆t

∫

Ωsh
X

∇Xush
n+1 : ∇XvsdX

− c1

∫

Ωsh
n+1

J−1
n+1∇ · vsdx = −c1

∫

Ωsh
X

Fsh
n : ∇XvsdX,

(37)

−

∫

Ω

q∇ · uh
n+1dx = 0, (38)

Ωsh
n+1 =

{

x : x = xn +∆tush
n+1,xn ∈ Ωsh

n

}

, (39)

and
Fsh

n+1 = Fsh
n +∆t∇Xush

n+1, (40)

where ush = Pn+1

(

uh
)

and vs = Pn+1 (v).120

Remark 4. The proof of the energy estimate (Proposition 10) for the spatially
continuous case can also be applied to the discrete case (see Appendix A).

Remark 5. There are two sources of nonlinearity in Problem 11: the convection
term and the moving solid domain. We can accommodate these by moving the
convection term to the right-hand side of the equation, and using a fixed-point125

iteration to construct Ωs
n+1 in order to solve the nonlinear system at each time

step. For other methods to treat convection, readers may refer to [26, 27]. We
shall only use this fully implicit implementation to consider low Reynolds number
cases in this paper in order to test the energy stability.
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Remark 6. A two-step explicit splitting scheme (F-scheme) is discussed in130

Appendix B with corresponding energy analysis. This scheme is similar to that
in [1] (σ-scheme), which may be adapted to problems at large Reynolds number
(see [1] for more examples).

7. Numerical experiments

In this section, we focus on validation of the energy stability of the proposed135

numerical method in two and three dimensions. For more two-dimensional nu-
merical examples and validation of the basic algorithm see [1]. We shall use
linear triangles (2D) or linear tetrahedra (3D) to discretize the solid domain
Ωs

0. In domain Ω, the P2/(P1 + P0) elements will be used, i.e., the standard
Taylor-Hood element P2P1 is enriched by a constant P0 for approximation of140

the pressure. This element has the property of local mass conservation and the
constant P0 may better capture the element-based jump of pressure [28, 29]. We
shall demonstrate the improvement of mass conservation and energy conserva-
tion by using the P2/(P1 + P0) elements compared to the P2P1 elements. We
shall also validate that the total energy is nonincreasing as stated in Proposition145

10 and Remark 3.

7.1. Oscillating disc driven by an initial kinetic energy (activated disc)

In this test, we consider an enclosed flow (n ·u = 0) in Ω = [0, 1]× [0, 1] with
a periodic boundary condition. A solid disc is initially located in the middle of
the square Ω and has a radius of 0.2. The initial velocity of the fluid and solid
are prescribed by the following stream function

Ψ = Ψ0sin(ax)sin(by),

where Ψ0 = 5.0 × 10−2 and a = b = 2π. In this test, ρf = 1, µs = µf = 0.01,
ρs = 1.5 and c1 = 1. In order to visualize the flow a snapshot of the velocity
and deformation fields is presented in Figure 2, and the evolution of energy is150

presented in Figure 3 using a 50 × 50 mesh (biquadratic squares for the fluid
velocity and 3052 bilinear triangles for the solid velocity).

We commence by comparing P2/P1 elements and P2/(P1 + P0) elements.
The evolution of mass variation and energy ratio are demonstrated in Figure 4,
from which it can be seen that the enrichment of the pressure field by a constant155

P0 has an effect of stabilizing the mass and energy evolution. In addition, this
enrichment of the pressure field dramatically improves the mass conservation,
although the effect for energy conservation appears to be negative. Then using
element P2/(P1 + P0), time convergence of the total energy can be observed
from Figure 5 (a), from which we can see a nonincreasing energy and a first160

order time convergence for both the implicit and explicit scheme (see Appendix
B for the energy estimate of the explicit scheme). It can be seen from Figure 5
(b) that the residual term defined in (30) is very small and converges rapidly to
zero when reducing ∆t (∼ O(∆t2)).
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(a) Velocity norm on the fluid mesh, (b) Distribution of velocity on the solid mesh.

Figure 2: Snapshot at t = 0.25, ∆t = 5.0 × 10−3.

Figure 3: Evolution of energy, ∆t = 5.0 × 10−3.

(a) Variation of mass against time, (b) Energy ratio (see (34)) against time.

Figure 4: Variation of mass and energy, ∆t = 5.0 × 10−3.

7.2. Oscillating disc driven by an initial potential energy (stretched disc)165

In the previous example, the disc oscillates because a kinetic energy is pre-
scribed for the FSI system at the beginning. In this test, we shall stretch the
disc and create a potential energy in the solid, then release it causing the disc
to oscillate due to this potential energy. The computational domain is a square

13



(a) Energy ratio against time (defined in (34)), (b) Rn/Etotal (t0) against time (defined in (30)).

Figure 5: Evolution of the energy ratio and residual Rn for the test problem of activated disc.

Ω = [0, 1]× [0, 1]. One quarter of a solid disc is located in the left-bottom corner170

of the square, and initially stretched as an ellipse as shown in Figure 6. Notice

the equation of an ellipse x2

a2 + y2

b2 = 1 and its area πab, hence we ensure that
this stretch does not change mass of the solid.

Figure 6: Computational domain and boundary conditions for test problem 7.2 (stretched disc).

We choose ρf = 1, µs = µf = 0.01, ρs = 2 and c1 = 2. The fluid adopts
a mesh of 66 × 66 biquadratic squares, and the solid has similar node density175

(8206 linear triangles) as the fluid. A snapshot of pressure on the fluid mesh and
corresponding solid deformation with its velocity norm are displayed in Figure
7, and the evolution of energy is presented in Figure 8. The nonincreasing total
energy can be observed from Figure 9 (a) for both the implicit and explicit
scheme (see Appendix B for energy estimate of the explicit scheme). It can be180

seen from Figure 9 (b) that the residual term defined in (30) is very small and
converges rapidly to zero when reducing ∆t.
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(a) Distribution of pressures on the fluid mesh, (b) velocity norm on the solid.

Figure 7: A snapshot at t = 1, ∆t = 5.0 × 10−3.

Figure 8: Evolution of energy, ∆t = 5.0 × 10−3.

(a) Energy ratio against time (defined in (34)), (b) Rn/Etotal (t0) against time (defined in (30)).

Figure 9: Evolution of the energy ratio and residual Rn for the test problem of stretched disc.
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7.3. Rotating cross driven by an initial kinetic energy (rotating cross)

In this test, we consider an enclosed flow in Ω = [−0.5, 0.5]× [−0.5, 0.5] with
a slip boundary condition (n · u = 0). A solid cross, made up of two 0.1 × 0.5
rectangles as shown in Figure 10 (a), is initially located in the middle of the
square domain Ω, with the centre pinned at the origin for all time. A rotating
velocity field is initially prescribed to the fluid and solid as follows:

u = Uτ , U = 4r(r0 − r)/r20, r =
√

x2 + y2, τ = (−y, x) /r, (41)

where r0 = 0.5 and (x, y) ∈ Ω.
We use the same fluid properties as used in the activated disc (section 7.1).185

In addition, we also use the same solid properties but extend the parameter c1
to three different cases: c1 = 1, 10 and 100, in order to investigate the response
of the FSI system according to the solid stiffness. We use 50× 50 P2/(P1 +P0)
elements to discretize the background fluid domain, and 3600 structured linear
triangles (see Figure 10) to discretize the solid cross. A small time step of190

∆t = 5.0 × 10−4 is used for all the three cases, and the deformed solids are
presented in Figure 10. It can be seen from these figures that the solid already
behaves like a rigid body when c1 = 100. The evolution of the total energy is
also presented in Figure 12, from which it can be seen that the total energy is
non-increasing for the three different solid cases.195

7.4. Oscillating ball driven by an initial kinetic energy

In this section, we consider a 3D oscillating ball, which is an extension
of the example in section 7.1. The ball is initially located at the center of
Ω = [0, 1]× [0, 1]× [0, 0.6] with a radius of 0.2. Using the property of symmetry
this computation is carried out on 1/8 of domain Ω: [0, 0.5]× [0, 0.5]× [0, 0.3].200

The initial velocities of x and y components are the same as that used in section
7.1 and the z component is set to be 0 at the beginning. We adopt the same
parameter and mesh size defined in section 7.1 (with the same mesh size in
the z direction). A snapshot of the 1/8 solid ball and the corresponding fluid
velocity norm are presented in Figure 13, and the nonincreasing energy property205

is presented in Figure 14.

8. Conclusions

In this article, we first introduce an implicit version of [1] for the one-field
fictitious domain method (one-field FDM) based upon updating the solid defor-
mation tensor F. Then the energy-preserving property for this one-field FDM is210

proved on the continuous level, and the energy-stability property is proved after
discretization in time and space. The energy property for an explicit scheme is
also analyzed in Appendix B. Finally, a selection of numerical tests are pre-
sented to demonstrate this theoretical energy estimate in both two and three
dimensions.215

Whilst the purpose of this paper is to analyse the stability of the computa-
tional scheme introduced in [1], we also briefly comment on the computational
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(a) Initial configuration. (b) c1 = 1 at t = 0.28.

(c) c1 = 10 at t = 0.08. (d) c1 = 100 at t = 0.05.

Figure 10: Solid crosses displayed when they are maximally deformed according to the potential
energy shown in Figure 11.

Figure 11: Potential energy for three different stiffnesses of the solid.

efficiency relative to the immersed finite element method. For those problems
where the IFEM scheme works best (e.g. soft viscoelastic solids with identical
viscosity to the surrounding fluid) we find our implementation of the one-field220

FD method is only marginally slower (no more than 1% in the experiments that
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Figure 12: Evolution of the energy ratio (defined in (34)) for the test problem of rotating cross.

(a) Fluid mesh, (b) solid mesh.

Figure 13: Velocity norm at t = 0.2.

Figure 14: Evolution of the energy ratio (defined in (34)) for the test problem of oscillating ball.
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we have undertaken). However, we find that the one-field FDM is far more
robust that the IFEM, which means that for most problems it is able to solve
in a significantly shorter computational time: including cases where the IFEM
is unable to converge.225

Appendix A. Stability analysis after space discretization

As with the previous stability estimate (Proposition 10) after time discretiza-
tion, we have the following estimate after space discretization.

Proposition 12. If ρδ ≥ 0, let
(

uh
n+1, p

h
n+1

)

be the solution pair of Problem
11, then

ρf

2

∫

Ωh

∣

∣uh
n+1

∣

∣

2
dx+

ρδ

2

∫

Ωsh
X

∣

∣ush
n+1

∣

∣

2
dX+

∫

Ωsh
X

Ψ
(

Fsh
n+1

)

dX

+
∆tµf

2

n+1
∑

k=1

∫

Ωh

Duh
k : Duh

kdx+
∆tµδ

2

n+1
∑

k=1

∫

Ωsh
n+1

Dush
k : Dush

k dx

≤
ρf

2

∫

Ωh

∣

∣uh
n

∣

∣

2
dx+

ρδ

2

∫

Ωsh
X

∣

∣ush
n

∣

∣

2
dX+

∫

Ωsh
X

Ψ
(

Fsh
n

)

dX

+
∆tµf

2

n
∑

k=1

∫

Ωh

Duh
k : Duh

kdx+
∆tµδ

2

n
∑

k=1

∫

Ωsh
n+1

Dush
k : Dush

k dx+Rh
n+1,

(A.1)

where

Rh
n+1 =

c1∆t2

2

∫

Ωsh
X

(

∣

∣

∣

(

Fsh
n+1

)−1
∇Xush

n+1

∣

∣

∣

2

−
∣

∣∇Xush
n+1

∣

∣

2
)

dX. (A.2)

Proof. Let v = uh
n+1 in (37) and multiply ∆t on both side of the equation, and

then let q = phn+1 in (38) and substitute into equation (37), we get:

ρf
∫

Ωh

(

uh
n+1 − uh

n

)

· uh
n+1dx+

∆tµf

2

∫

Ωh

Duh
n+1 : Duh

n+1dx

+ ρδ
∫

Ωsh
X

(

ush
n+1 − ush

n

)

· ush
n+1dX+

∆tµδ

2

∫

Ωsh
n+1

Duh
n+1 : Duh

n+1dx

+ c1∆t

∫

Ωsh
X

Fsh
n+1 : ∇Xush

n+1dX− c1∆t

∫

Ωsh
n+1

∇ · ush
n+1dx = 0.

(A.3)

Using the Cauchy-Schwarz inequality and the fact ab ≤ a2+b2

2 , we have:

∫

ω

un · un+1dx ≤ ‖un‖0,ω ‖un+1‖0,ω ≤
‖un‖

2
0,ω + ‖un+1‖

2
0,ω

2
,

where ω = Ωh or Ωsh
n+1. Notice that Lemma 6 to 9 still hold after space dis-

cretization, then substituting the above relation into (A.3) gives (A.1).230
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Remark 7. In relation (A.1), the velocity ush = Pn+1

(

uh
)

(after interpola-
tion) is used to evaluate (or define) the energy terms for the solid. Therefore
the interpolation error itself does not appear in the estimate relation (A.1). The
energy estimate of Proposition 12 is an indication of solution stability and exis-
tence of Problem 11, which requires iterations in order to construct the current235

domain Ωsh
n+1 and build the interpolation function Pn+1. If the iterations can

be proved to converge (interpolation error appears here), then the solution exis-
tence for Problem 11 is proved. At the moment we have estimated the energy as
demonstrated in Proposition 12, the solution existence may be proved based on
this energy estimate in our future work.240

Appendix B. Energy estimate for a two-step explicit splitting scheme

In this section, we analyze the energy property for the 2-step explicit splitting
scheme introduced in [1], which can be stated as follows (corresponding to the
implicit Problem 11):

Problem 13. Given uh
n, p

h
n and Ωsh

n , find uh
n+1 ∈ V h(Ωh)d, phn+1 ∈ Lh(Ωh)245

and Ωsh
n+1, such that for ∀v ∈ V h(Ωh)d, ∀q ∈ Lh(Ωh), the following 5 relations

hold:
(1) convetion step:

ρf
∫

Ωh

uh
n+1/2 − uh

n

∆t
· vdx+ ρf

∫

Ωh

(

uh
n+1/2 · ∇

)

uh
n+1/2 · vdx = 0, (B.1)

(2) diffusion step:

ρf
∫

Ωh

uh
n+1 − uh

n+1/2

∆t
· vdx+

µf

2

∫

Ωh

Duh
n+1 : Dvdx

−

∫

Ωh

phn+1∇ · vdx+ ρδ
∫

Ωsh
X

ush
n+1 − ush

n

∆t
· vsdX

+ c1∆t

∫

Ωsh
X

∇Xush
n+1 : ∇XvsdX+

µδ

2

∫

Ωsh
n+1

Duh
n+1 : Dvdx

− c1

∫

Ωsh
n

J−1
n ∇n · vsdx = −c1

∫

Ωsh
X

Fsh
n : ∇XvsdX,

(B.2)

−

∫

Ω

q∇ · uh
n+1dx = 0, (B.3)

Ωsh
n+1 =

{

x : x = xn +∆tush
n+1,xn ∈ Ωsh

n

}

, (B.4)

and
Fsh

n+1 = Fsh
n +∆t∇Xush

n+1, (B.5)

where ush = Pn+1

(

uh
)

, vs = Pn+1 (v), and ∇n(·) =
∂(·)
∂xn

.
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As with the previous analysis for the implicit scheme, if we let v = uh
n+1 in

equations (B.1), (B.2) and (B.3), adding up these three equations, using (B.5)250

and ush = Pn+1

(

uh
)

, gives the energy estimate as follows.

Proposition 14. If ρδ ≥ 0, let (un+1, pn+1) be the solution pair of Problem 13,
then

ρf

2

∫

Ωh

∣

∣uh
n+1

∣

∣

2
dx+

ρδ

2

∫

Ωsh
X

∣

∣uh
n+1

∣

∣

2
dX+

∫

Ωsh
X

Ψ
(

Fsh
n+1

)

dX

+
∆tµf

2

n+1
∑

k=1

∫

Ωh

Duh
k : Duh

kdx

≤
ρf

2

∫

Ωh

∣

∣uh
n

∣

∣

2
dx+

ρδ

2

∫

Ωsh
X

∣

∣uh
n

∣

∣

2
dX+

∫

Ωsh
X

Ψ
(

Fsh
n

)

dX

+
∆tµf

2

n
∑

k=1

∫

Ωh

Duh
k : Duh

kdx+Rim
n+1 +Rex

n+1 +Rsplit
n+1 ,

(B.6)

where Rim
n+1 = Rh

n+1 as defined in (A.2).

Rex
n+1 = c1∆t

∫

Ωsh
X

(

∇n · ush
n+1 −∇ · ush

n+1

)

dX, (B.7)

and

Rsplit
n+1 = ∆tρf

∫

Ωh

(

uh
n+1/2 · ∇

)

uh
n+1/2 · u

h
n+1dx. (B.8)
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