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Abstract Autonomous vehicles (AV’s) are appearing on roads, based on standard robotic mapping and 
navigation algorithms. However their ability to interact with other road-users is much less well understood. If 
AVs are programmed to stop every time another road user obstructs them, then other road users simply learn that 
they can take priority at every interaction, and the AV will make little or no progress. This issue is especially 
important in the case of a pedestrian crossing the road in front of the AV. The present methods paper expands the 
sequential chicken model introduced in (Fox et al., 2018), using empirical data to measure behavior of humans in 
a controlled plus-maze experiment, and showing how such data can be used to infer parameters of the model via 
a Gaussian Process. This providing a more realistic, empirical understanding of the human factors intelligence 
required by future autonomous vehicles. 

1. Introduction 

Autonomous vehicle technology is currently claimed by many commercial organizations involved in operating 
experiments which apply robotic navigation algorithms to on-road vehicles.  Robotic mapping and navigation are 
mature research areas (Thrun, 2005) and open-source software stacks are now available to enable a car to pick 
and follow a route around static environment (Kato et al. 2015). In contrast, the human factors involved in real-
world driving in environments containing other road users are not well understood. Other road users include 
human drivers and pedestrians, and eventually other autonomous vehicles, which may or may not be able to 
communicate with one another. A recent study operated an autonomous minibus continuously on a real 
commuter route around La Rochelle, France and Trikala, Greece, for several weeks (Madigan et al., in 
preparation) and suggested that once the local population has learned that the vehicle was programmed to be 
perfectly safe and stop at any obstacle, pedestrians and other vehicles would regularly take advantage of the AV 
to push in front of it. In some cases pedestrians did this simply for fun – delaying the vehicle and its real-world 
commuter passengers on their way to work. Human drivers do not simply give way to all such threats. Instead 
they appear to use their knowledge of and predictions about the psychology of other road users to interactively 
negotiate for priority. This can include dominant behavior – driving straight toward a pedestrian at full speed, or 
even accelerating, to encourage them to yield and return to the pavement;  or polite behavior – backing off to 
allow them space to cross. A well-known scenario is for two pedestrians to meet similarly and make several 
attempts dodging from side to side in order to agree on how to pass. Two polite road users can be almost as 
dangerous as two dominant ones – by continually trying to yield to one another they get closer to a collision 
without the decision being made. 

A recent study (Fox et al., 2018) proposed an abstract mathematical model of two agents – which may be AVs, 
human drivers, and pedestrians - - meeting at an unsigned intersection and negotiating for priority. This model is 
deliberately simple and intended as a foundation whose structure can be extended with many additional details.  
In addition, it contains free parameters decrypting human preferences. The present study illustrates how such 
parameters can be fit to human data as a method of measuring behavior which combines empirical Game Theory 
and a Bayesian Gaussian Process analysis. 

Game theory of human driven vehicles is used extensively in macroscopic traffic modeling via Wardrop 
equilibrium in flow networks (Bolland et al., 1979) with focus on route selection in large, economy-like, markets 
of many road users rather than microscopic pairwise interactions. Where game theory has been applied to 
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pairwise traffic decisions, it has mostly been at the level of simple single-shot games as reviewed in (Elvik, 
2014). In a few cases such as lane-changing (Meng et al., 2016; Kim and Langari, 2014) and merging (Kita, 
1999) it has been extended to sequential games as used here, but not for AV-pedestrian interactions as here.  

2. Methods  

2.1 Sequential Chicken model 

 

Figure 1  (left): two agents negotiating for priority at an intersection. (right): game theory model of the scenario. 

The “Sequential Chicken” model of (Fox et al., 2018) represents a simplified version of the class of scenarios 
shown in fig. 1 (left) and fig. (2). In these scenarios, two agents (which may each be an AV, human driver of 
various types, and/or pedestrian) called Y and X approach the same intersection. If neither agent yields, they will 
collide and each receive a negative utility ௖ܷ௥௔௦௛. Otherwise, they each reach their destination at some time 
delay, T, from the start of the game. The model assumes a linear value of time, so the total (negative) utility of an 
agent arriving at time T is  െܶ ௧ܷ௜௠௘ . The basic model assumes both agents share the same parameters  ௖ܷ௥௔௦௛ 
and ௧ܷ௜௠௘and both know this to be the case. It assumes that no lateral motion is permitted, and that there is no 
communication between the agents other than seeing each other’s positions. It discretizes positions into a plus 
maze structure of grid squares as in fig. 1 (right), and discretizes time into turns in which both players must 
select from two speeds, of either 1 square per turn or 2 squares per turn.   The model is similar to a board game 
where each turn, both players make their choices in secret then and reveal them together before acting on them. 

The model is called “Sequential Chicken” because its theoretical optimal strategies are solvable using Game 
Theory, and related to the famous game theory model of Chicken. In (non-sequential) Chicken, two drivers Y 
and X face each other and choose (as a single decision) whether to drive straight at each other or swerve away1. 
Swerving makes one the nominal “loser”, but in practice, penalties for both are much worse if neither swerves 
and they collide. The game is considered a draw if both swerve. In game theory, this is represented by a payoff 
matrix, showing numerical utilities to the two players as in table 1. 

 

Table 1: The game of Chicken. 

 

                                                           
1
 It is convenient to use Y, X ordering throughout so that matrix indices ܯ௬ǡ௫ correspond to visualizations. 
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Standard Game Theory provides (Nash) equilibria for games in this matrix form, which are configurations of 
action selections such that neither player would change if they knew the other’s choice. (Fox et al., 2018) 
provide arguments for selecting between these equilibria in real-time traffic situations so as to choose the most 
“rational” strategy. In general, the best strategies are probabilistic, specifying that each player should choose 
between the two actions with certain probabilities. (If they were deterministic, then each player could know the 
other’s move in advance and exploit that knowledge, contradicting their supposed optimality.) 

Chicken is a one-shot game – both players make just one decision then act on it.  Sequential Chicken can be 
viewed as a sequence of one-shot (sub-)games, which can be solved similarly. Write (y,x,t) to describe the 
player’s current locations as in fig. 1 (right) at turn t and let their available actions be the speed choices   ଢ଼ ǡ  ଡ଼   ሼͳǡʹሽ. Rather than winning, losing, or crashing, the outcomes of the game at state (y,x,t) are that the 
players reach a new state, (y+ ଢ଼, x+ ଡ଼, t+1). This may be a “game-over” state, where either one player has 
reached the intersection and/or a crash has occurred, or it may be another intermediate state leading to another 
game in the sequence. Define the value ݒ௬ǡ௫ǡ௧ ൌ ሺݒ௬ǡ௫ǡ௧௒ǡ  ௬ǡ௫ǡ௧௑ሻ of state (y,x,t) as the expected utility of theݒ

game to each of the two players, assuming that both play optimally from the state.  Then the sub-game at time t 
can be written as a standard game theory matrix, 

௬ǡ௫ǡ௧ݒ ൌ ݕሺݒሺ൤ݒ െ ͳǡ ݔ െ ͳǡ ݐ െ ͳሻ ݕሺݒ െ ͳǡ ݔ െ ʹǡ ݐ ൅ ͳሻݒሺݕ െ ʹǡ ݔ െ ͳǡ ݐ ൅ ͳሻ ݕሺݒ െ ʹǡ ݔ െ ʹǡ ݐ ൅ ͳሻ൨ሻ 
which can be solved using recursion, Game Theory, and equilibrium selection to give values and optimal 
strategies at every state (given in Fox et al., 2018). Under a mild approximation (Fox et al., 2018) the solution 
may further drop all dependency on time t so that state values and optimal strategies becomes functions only of 
the player positions (y,x). 

The model shows that if the two players play optimally, there must exist a non-zero probability for a collision to 
occur. This corresponds to the intuition that a perfectly safe vehicle which yields in every case will make no 
progress. Players must include some credible threat of collision to avoid being taken advantage of. 

 

Figure 2: A “Barnes dance” or “scramble” crossing between Hollywood and Highland, Los Angeles. Real-
world pedestrian-pedestrian interactions similar to the experiment occur between users of the two diagonal 
crossings. 

2.2 Experiments 

The model allows for computation of optimal strategies given parameters ሺ ௖ܷ௥௔௦௛ ǡ ௧ܷ௜௠௘) but does not specify 
numerical values of these human preference parameters. Eventually we would like to measure such parameters 
from real-world traffic data such as CCTV of vehicles and pedestrians on roads.  The present study is intended to 
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illustrate only the method for measuring such behaviors rather than report results, so instead uses a simplified 
proxy.  Rather than interact physically, pairs of human subjects play a board-game version of Sequential Chicken 
as above. Their moves are recorded and used to show how to fit the parameters. 

Sixteen participants aged from 22 to 48 were divided into 8 groups of 2 players. Each group’s experiments took 
place with players and an experimenter seated around a table in university room and last for about 10 minutes. 
All experiments were conducted in accordance with University of Lincoln research ethics policy. 

Natural game. Two players, one designated as player Y and the other as player X were sitting around a table, 
they were asked to play the chicken game on a plus-maze shaped board with discrete space as shown in Figure 
1(right). Player Y was starting from y=10 and player X from x=10 such that they were both starting 10 squares 
before the intersection. Players were first told that their goals were to avoid a collision and to be the first to cross 
over this intersection as quickly as possible as if they were trying to commute to their office to work there in a 
morning. Players were each given two cards containing the numbers 1 and 2, and told that at each turn they 
should select one in secret then both reveal their cards and make their moves on the board simultaneously. 

Chocolate game.  After playing 3 natural games, each group played a further 3 games in which specific rewards 
were specified in advance. Players were told that the winner is the first to pass the intersection, and will receive 
two chocolates (Celebrations, Mars Inc.), while the second to pass the intersection will receive one chocolate, 
that both will receive no chocolates if there were any collision. Chocolates were provided after each game as in 
the instructions.  

2.3 Measuring behavior 

We wish to infer the parameters ߠ ൌ ሺ ௖ܷ௥௔௦௛ ǡ ௧ܷ௜௠௘ሻ from the observed data, D, assuming that players play 
Bayes-optimally as prescribed by the model, ܯ. By Bayes’ theorem, the posterior belief over these is given by, 

 ሺߠȁܯǡܦሻ ൌ   ሺܦ ȁ ߠǡܯሻ ሺߠȁ ܯሻσ ሺܦȁ ߠԢǡ   ሻܯ Ԣȁߠሻ ሺܯ
Given a set of possible ߠ values. assume a flat prior over ߠ, so that, ܲሺߠȁܯǡ ሻܦ ן   ܲሺܦ ȁ ߠǡܯሻǤ 
Hence we can work only with the data likelihood term, Pሺܦ ȁ ߠǡܯሻ, which is given by, 

 ሺܦ ȁ ߠǡܯሻ ൌ  ෑ ෑ ൫݀௒௚௔௠௘ǡ௧௨௥௡ หݕǡ ǡݔ ǡݕ ሻ  ൫݀௑௚௔௠௘ǡ௧௨௥௡ หܯǡߠ ǡݔ ሻ௧௨௥௡ܯǡߠ ǡ௚௔௠௘  

where ݀௣௟௔௬௘௥௚௔௠௘ǡ௧௨௥௡ are the observed action choices, y and x are the observed player locations at each turn of each 

game. The action probabilities ܲ൫݀௒௚௔௠௘ǡ௧௨௥௡ ห ݕǡ ǡݔ  .ሻ can be read directly from the optimal strategiesܯǡߠ

The above assumes that model ܯ is perfect. However, M assigns zero or near-zero probabilities to many events 
which are found to occur in the data. Uncontrolled, this can be catastrophic for any Bayesian model of real data. 
We know that real humans may behave near-optimally but can make mistakes in perception (of the state of the 
game, such as the values of y and x) and in action selection. Thus, we weaken the model used in the analysis to a 
noisy but more forgiving version M’. This is a mixture model which generates each observation according to M 
with some probability s, and generates unbiased random actions otherwise, 

ܲሺܦ ȁ ߠǡܯԢሻ ൌ  ෑ ෑሾሺͳ െ ǡݕሻ ൫݀௒௚௔௠௘ǡ௧௨௥௡ หݏ ǡݔ ǡݕ ሻ  ൫݀௑௚௔௠௘ǡ௧௨௥௡ หܯǡߠ ǡݔ ሻ௧௨௥௡௚௔௠௘ܯǡߠ ൅  ሺͳʹሻሿǤݏ
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These equations are unlikely to have analytic solutions for ߠ, as they include elements of the optimal strategies 
computed via a long game theoretic process.  To compute with them, we may sample various values of ߠ and 
observe ܲሺܦ ȁ ߠǡܯԢሻǤ In practice, we work in log-space to reduce numerical errors, and consider    ܲሺܦ ȁ ߠǡܯԢሻǤ 
Given a sample of these log-likelihoods, we may then fit a Gaussian Process (Rasmussen & Williams, 2006) 
regression model to them. Assuming that log-likelihood is a smooth function of the parameters, this provides 
estimates of the log-likelihoods at locations between the sampled values and can also show the uncertainty in 
these estimates. A Radial Basis Function kernel was used in the Gaussian Process model, with variance set to a 
minimum after obtaining smooth likelihood surfaces. 

3. Results  

Before performing the full analysis, we show in table 1 a rough overview of the game results.  More collisions 
have occurred in the chocolate game than in the natural game. Define “delay” as the distance in boxes, or time in 
seconds, between the arrival at the intersection of the first player to arrive and the second player to arrive. The 
average delay in distance (box) is about 1.368 for the natural game but is reduced in the chocolate game (1.125). 
The time delay is computed following the formula: ࢊ ൌ  the speed is assumed to be ࢜ ,is the distance ࢊ where ࢚࢜
the maximum (2) and ࢚ is the time delay.  

 

Table 2: Number of collisions and average time delay per game 

Fig. 3 shows the results of fitting the Gaussian processes to likelihoods sampled along a regular grid, using 
s=1/10. The surfaces have a roughly radial structure. By visual inspection, the peak of the smoothed Gaussian 
Process surface in the natural case appears to lie somewhere in the region of  ሺ ௖ܷ௥௔௦௛ ǡ ௧ܷ௜௠௘ሻ ൌ ሺͲǡ͵Ͳሻ and for 
the chocolate case, around (0, 30). Fig. 4 shows a 1D slice through the 2D surface of Fig. 3(natural) which 
provides scale and uncertainty information. 

4. Discussion 

We have illustrated a new method for measuring and modelling human road user behavior, which is intended as 
part of a method to imitate or exploit such behavior in autonomous vehicle controllers.  The model can be trained 
on human behavior then transferred into a controller to specify new robotic behaviors. 

The particular experiment here has inferred posterior beliefs about the parameters of crash utility and time delay 
for human participants, in a simplified and artificial version of a real-world intersection negotiation task. We do 
not consider either the model or the experimental setup to be especially realistic versus real-world interactions, 
but they are sufficiently complex to illustrate the general method. This method is presented as an invitation for 
future work to extend both the model (e.g. with continuous positions and speeds, uncertain beliefs in opposite 
player utility function, lateral motion) and the experimental data collection (e.g. use of “big” real-world CCTV 
video of road-user interactions) stages to be more realistic.  
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Figure 3: Gaussian process regression shows the likelihood (and hence, posterior belief) surfaces for the parameter 
valuesሺ ௖ܷ௥௔௦௛ǡ   ௧ܷ௜௠௘ሻ, for the natural and chocolate experiments. The sampled parameter locations are shown by the dots. 

(This figure should be viewed in color). 

Some conclusions from the results of the particular experiment analyzed which may be of interest, despite its 
artificial setting:  From the viewpoint of real-world interactions, it is surprising to see a preference towards time-
saving over crash avoidance in the players. In the real world, the cost of crash is usually millions of times more 
than the value of a second of commuting time, but here the players behave the opposite way. The effect is more 
pronounced in the chocolate game than in the natural one. This may be because the board-game-like nature of  
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Fig. 4. Horizontal slice though the Gaussian Process of fig. 3(natural), at U_time=10, showing mean and standard deviation 
of belief about the log likelihood, logܲሺܦ ȁ ߠǡܯԢሻ over the parameter space. 

the experimental setting encourages the players to think in terms of winning and losing rather than just 
optimizing their personal utility. In the chocolate game this is made to be explicit by rewards the players 
specifically as winner and loser in the interaction. This leads to more collisions in this more competitive game. 

The shapes of the likelihood surfaces are roughly radial, which suggest that it may only be the ratio between the 
two parameters which is important rather than their absolute values. Possibly the angles of the contour lines 
define equivalence classes of parameters.  The number of experiments performed was quite small, and future 
work including further experiments may produce more peaky posterior distributions. 

By using this method to fit more realistic models and data to human pedestrian-vehicle and vehicle-vehicle 
interactions, we can understand and predict behavior of road users to allow autonomous vehicles to more 
optimally interact with them.  The present model requires a non-zero probability of collision to exist as a threat 
in all interactions. Future work could extend the model with additional, smaller negative utilities such as 
humiliating annoying pedestrians with horns or spraying them with water jets, in order to reduce or eliminate the 
necessity of actually hitting them whilst still allowing autonomous vehicles to make progress. 
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