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Abstract

Label‐free live single‐cell Raman spectroscopy was used to obtain a chemical

fingerprint of colorectal cancer cells including the classification of the SW480

and SW620 cell line model system, derived from primary and secondary tumour

cells from the same patient. High‐quality Raman spectra were acquired from

hundreds of live cells, showing high reproducibility between experiments.

Principal component analysis with linear discriminant analysis yielded the best

cell classification, with an accuracy of 98.7 ± 0.3% (standard error) when

compared with discrimination trees or support vector machines. SW480 showed

higher content of the disordered secondary protein structure Amide III band,

whereas SW620 showed larger α‐helix and β‐sheet band content. The SW620 cell

line also displayed higher nucleic acid, phosphates, saccharide, and CH2 content.

HL60, HT29, HCT116, SW620, and SW480 live single‐cell spectra were classified

using principal component analysis or linear discriminant analysis with an

accuracy of 92.4 ± 0.4% (standard error), showing differences mainly in the

β‐sheet content, the cytochrome C bands, the CH‐stretching regions, the lactate

contributions, and the DNA content. The lipids contributions above 2,900 cm−1

and the lactate contributions at 1,785 cm−1 appeared to be dependent on the

colorectal adenocarcinoma stage, the advanced stage cell lines showing lower

lipid, and higher lactate content. The results demonstrate that these cell lines

can be distinguished with high confidence, suggesting that Raman spectroscopy

on live cells can distinguish between different disease stages, and could play an

important role clinically as a diagnostic tool for cell phenotyping.
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1 | INTRODUCTION

Mapping of tumours, from subcellular to whole organ
length scales represents a major challenge in cancer
research for understanding how biological changes relate
to pathology. Raman spectroscopy probes the vibrational
modes of molecules, offering an information‐rich,
label‐free technique for studying biological systems.
Importantly, the technique can be used to probe living
systems, providing biochemical informationwith subcellu-
lar and cellular spatial resolution on live cells.[1–5] It allows
the discrimination between cell types at the single‐cell
level and thus has a potential for application in studying
cell heterogeneity, differential response to drugs, auto-
matic mapping of tissue samples, and microfluidic‐based
identification of cancers.[6]

A number of groups have used Raman in studies on
fixed cells, where the proteins within the cells are polymer-
ized, keeping the cells in a non‐viable chemically stable
state. However, a number of publications[7–12] and recent
reviews[5,13] indicate that formalin‐fixed cells show a
decrease in lipid and protein content, an overall weaker
signal, new peaks due to the fixation, and shifts in some
bands. Raman spectroscopy has previously been
undertaken in live cancer cell lines.[14,15] A major
challenge of Raman spectroscopy in living samples is that
it can be complicated by apoptotic effects due to the
removal of cell medium, which limits the measurement
time, and thus the number of cells typically analysed is
often in the low tens.

Cells have a rich spectral content, which provides
Raman with great potential as a diagnostic tool.[16]

However, the differences between cell types are usually
subtle. This, coupled with the need to sample large
numbers of cells, means that multivariate analysis for
discrimination between cell types or states is required.[17]

Various chemometric methods have been employed to
identify the main spectral variations in preprocessed
data.[17,18] The most common method for dimensionality
reduction is principal component analysis (PCA), in
conjunction with other multivariate methods such as lin-
ear discriminant analysis (LDA)[19] or cluster analysis.[9,20]

LDA is a supervisedmultivariate method that looks for the
axis that maximizes the between‐class separation while
minimizing the within‐class scatter.[17] Other data mining
techniques, such as support vector machines (SVM),
genetic algorithms, discrimination trees (DTs), or artificial
neural networks can be very powerful for class separation
but aremore difficult to relate to the underlying biology.[21]

Tree classifiers, also known as DTs, have been less widely
used,[22,23] and even though they are sometimes less
powerful than the previously mentioned classifiers, their
output is easier to relate to the original spectral features,
and they can also capture non‐linear relationships within
the data. SVM are very powerful classification
methods[24,25], but it is sometimes difficult to extract useful
knowledge from the trained models. Partial least square
regression (PLSR) is a dimensionality reduction method
alternative to PCA that allows assigning scores to each of
the groups, finding the components that correlate with a
particular characteristic of the classes.[26] It has previously
been used to correlate metastasis potential with metabolic
data.[27]

Colorectal cancer has an estimated mortality of 56%
(2012), and around 20% of diagnosed patients already
have metastases at diagnosis.[28] Isolating the chemical
fingerprint of metastatic colorectal cells will aid tissue
and single‐cell studies on the effectiveness of preoperative
treatments and tumour identification. For this study, the
main cell lines chosen were SW480 and SW620, derived
from a primary Duke's stage B adenocarcinoma and
secondary tumour in a lymph node from the same
patient.[29–31] Using these cell lines can help isolate
metastasis variability from the person‐to‐person
variation. Previous reports of vibrational spectroscopy
on the SW620 or SW480 model system at the single‐cell
level have been undertaken using synchrotron Fourier
transform infrared microspectroscopy on live cells[32]

and Raman spectroscopy of a small number of fixed cells
combined with stimulated Raman scattering.[33]

In addition, HL60, HCT116, and HT29 cells were
analysed. HL60 is a nonadherent blood cell line derived
from human promyelocytic leukaemia and was used to
show the ability of Raman to differentiate between cell
lines with very different origins. HCT116 cells are derived
from human colon carcinoma, so are expected to show
similarities with primary colon cancer cell lines and will
challenge the system to separate between different cancer
types from the same tissue. HT29 cells are derived from
Duke's C stage human colon adenocarcinoma and are
thus expected to show similarities with the SW480 cell
line that is human colon adenocarcinoma Duke's stage
B, challenging the system to differentiate between differ-
ent stages of the same disease. A schematic outlining
the Duke's stages of colorectal adenocarcinoma is shown
in Figure S1. Previous studies have done bulk Raman
measurements in HL60 cell pellets,[34–36] on single‐nuclei
of HL60 cells,[37] and on fixed HT29 cells.[38] Single‐cell
live label‐free Raman spectroscopy of these cell lines has
been previously done comparing HCT116 cells with
HT29 cells,[39] studying apoptosis induction on HCT116
cells,[40,41] studying proliferation effects caused by
coculture of HL60 cells with mesenchymal stem cells[42]

and comparing HL60 cells with peripheral blood
mononuclear cells,[43] but the number of cells analysed
in these studies were always below 30.
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Here, we present the first report of Raman spectroscopy
on live cells on multiple colorectal cell lines SW480/
SW620/HT29/HCT116 and compare these to a
noncolorectal cell line such as HL60. Data were obtained
from 680 live cells, with excellent reproducibility between
experiments. SW480 and SW620 results were first analysed
using different multivariate methods—PCA or LDA, DT,
and SVM—to find an optimal multivariate method to
differentiate between these primary and secondary cancer
cells. Then, additional cell lines were added to the analysis
to identify possiblemetastasis biomarkers comparedwith a
greater pool of cells ranging from different disease states,
different disease types within the same organ, and different
cell origins altogether. Results have successfully classified
these cells with high accuracy and identified potential
biomarkers that will need to be tested in further
experiments in clinical samples.
2 | MATERIALS AND METHODS

2.1 | Cell culture

The SW480, SW620, HT29, and HCT116 cell lines were
cultured in Dulbecco's Modified Eagle Medium
(DMEM/F‐12, Gibco). The HL60 cell line was cultured
in Roswell Park Memorial Institute medium (RPMI
1640, Thermo Fischer Scientific). Media were supple-
mented with 10% fetal bovine serum (Sigma), 2 mM
Glutamax (Thermo Fisher Scientific), and penicillin
100 units/ml streptomycin 100 μg/ml (Sigma). Phase con-
trast images of the SW620 and SW480 cell lines grown in
flasks showed a more epithelial‐like morphology for
SW480's and a more fibroblast‐like morphology for
SW620's as shown in Figure S2. Cells were not “synced”
to allow the natural cell cycle within sample variability
of the cell lines. All experiments were done with passage
numbers below 50. SW480, SW620, HT29, and HCT116
were washed with Dulbecco's phosphate buffered saline
(DPBS) and gently retrieved from six‐well plates by incu-
bating with cell dissociation buffer (Thermo Fisher Scien-
tific) for 30 min, followed by centrifugation (100 Gs;
1 min) and resuspension in cell dissociation buffer.
HL60 cells were retrieved from media by centrifugation
(100 Gs; 1 min) and washed with DPBS once before
resuspending in DPBS. When pipetted into the setup,
cells sedimented onto the coverslip and showed no visible
Brownian motion, remaining in a spherical shape.
2.2 | Raman spectroscopy

Quartz slides (UQG Optics, 75 × 25 × 1 mm) and
coverslips (25.4 × 25.4 × 0.15–0.25 mm Alfa Aesar) were
sonicated with acetone (VWR Chemicals), 2–5% Decon
90 (VWR Chemicals) and rinsed with MilliQ. Hydrogen
peroxide 30% (Thermo Fischer) and sulfuric acid >95%
(Thermo Fischer) were mixed in a 3:7 proportion
(Piranha solution) and used to clean the slides for
20 min. Slides and coverslips were stored in MilliQ and
dried under a stream of nitrogen immediately before the
experiment. Spacers were prepared using a 50 μm
polyethylene terephthalate film (Goodfellow, UK). A
nitrocellulose‐based solution was used to bond the
coverslip to the slide and was dried at 80 °C for 30 min.
The cell solution was pipetted into this chamber immedi-
ately before measuring. All experiments were done at
room temperature and samples were measured for 1 hr.

The Raman system used was an inVia Raman confocal
inverted microscope (Renishaw) integrated with a Leica
DMi8/SP8 laser scanning confocal microscope system,
with a DPSS Diode 532 nm laser (intensity of 22 mW
on the sample). Light was collected using a Newton
EMCCD Sensor (DU970P, Andor, 1,600 × 200 px). Prior
to every experiment, a spectrum of a silicon sample was
collected using a 10× objective, and the microscope was
calibrated to the peak position (520.5 cm−1). The longer‐
term aim of our work is to measure the Raman signal of
these cells in a microfluidic platform; thus, the Raman
spectra of detached cells were measured.

The cell spectra were obtained using a 100× oil
objective (HC PL APO CS2 FWD 0.13 mm NA 1.4) and
a slit size of 20 μm. This objective and slit opening gave
a 10.2 μm full width half maximum confocality when
tracking the changes of Raman intensity of the 520.5 cm−1

with the distance to a silicon sample, ensuring the whole
volume of the cell can be measured when using this con-
figuration. The laser spot was defocused by 50% using a
beam expander, generating a laser spot of approximately
20 μm diameter. Each cell spectrum was obtained using
a step configuration with 1 s exposure time and five accu-
mulations in two different windows (300–1,800 cm−1 and
1,800–3,200 cm−1) which gave a total exposure time of
10 s per cell. Between 79 and 85 cell spectra were obtained
per experiment, and the data from multiple experiments
were combined for this paper (167 SW620 cells, 163
SW480 cells, 89 HL60 cells, 190 HT29 cells, and 71
HCT116 cells) without omitting any outliers. Five back-
ground spectra from cell‐free regions of the sample mea-
sured at the same Z position as the cells were obtained
for each experiment.
2.3 | Preprocessing of the spectra

The spectra obtained were cosmic ray filtered (WiRE
software) and exported as text files for further analysis
using Matlab's Statistics and Machine Learning Toolbox
(MathWorks). The Matlab functions used are indicated
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by italics. The silicon peak of a calibration sample was
used to calibrate the wavenumber axis of each spectrum
and the spectra were translated vertically, such that the
minimum intensity was zero. For each cell spectrum,
the average background spectrum was multiplied by an
adjustment factor before being subtracted from the cell
spectrum to ensure the quartz band at around 480 cm−1

was fully corrected. The spectrum was smoothed using a
Savitzky–Golay filter. The spectra were truncated to only
consider the regions between 730 and 3,100 cm−1. The
spectra were baseline corrected using the algorithm
developed by Koch et al. (2016). [44] The regions of the
spectra between 1,750 and 2,800 cm−1 were not consid-
ered for subsequent analysis. In order to normalize to
the protein content, for comparison with biochemical lit-
erature data, each spectrum was normalized such that the
Amide I peak was unity.
2.4 | Statistical analysis and classification

Statistical errors: Unless stated otherwise, all values are

expressed ± the standard error calculated as σ/ √ N,
where σ is the standard deviation and N the sample size.
Performance of the multivariate models was calculated as
the accuracy of the model using a 10‐fold cross validation
with five repetitions. Correlation matrix: The correla-
tion matrix of all the preprocessed data was calculated
to help with the peak assignment. The function used
was corrcoef. To simplify the correlation image, point
with p values >.0001 were set to zero, and only the peaks
that showed an absolute value of correlation greater than
0.3 were considered in the analysis. PCA: The edited data
was truncated to 730–1,750 cm−1 and 2,800–3,000 cm−1

and standardized using standard normal variate. The
FIGURE 1 (a) Average single‐cell spectra and variability spectrum, fo

the average shows one standard deviation. The region around 2,900 cm

fingerprint region. (b) Correlation matrix of the different bands for all c

significant and set to 0 to simplify the plot [Colour figure can be viewed
function used was pca. LDA was performed keeping only
the first 25 PCs using the function fitcdiscr using a “lin-
ear” discriminant type. DT: The function used was fitctree
using the exact algorithm that fits a binary classification
tree to the data. C5.0: R's C5.0 package was used to train
DT ensembles based on R. Quinlan algorithm and the
caret package was used to optimize training parameters.
It trains multiple small DTs and analyses the most
frequently chosen wavenumbers. SVM: R's kernlab
package was used to train SVM models, and the caret
package was used to select an optimal kernel function
(from amongst linear, polynomial, and Gaussian kernels).
As all the tested kernels showed a similar performance,
the linear kernel was selected. PLSR function plsregress
was used for the analysis. Scores in each of the
components were compared in pairs using an unpaired
two sample one‐tailed t tests, and the number of
components was determined so cell lines showed a
significant (p > .01) increase with the adenocarcinoma
stage. Final considered values all show at least p < .001.
Duke's stages (B primary, C primary, C metastasis) were
fitted as (1,2,3).
3 | RESULTS

3.1 | Distinction between primary and
secondary tumour cells

Figure 1a shows the SW620/SW480 averaged spectra,
normalized to the Amide I peak, and variability for each
cell line. The main peaks have been identified in accord
with the established literature and are given in
Table S1.[45–50]

The –CH2 and –CH3 stretching contributions in the
region of 2,800–3,200 cm−1 showed higher overall
r primary (SW480) and secondary (SW620) cells. The error around
−1 is shown reduced by a factor of 4 to enhance the details in the

ells, where the points with p values >10−4 were considered not

at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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intensity for SW480 cells and a greater CH2: CH3 ratio for
SW620 cells, indicating differences in lipid composition
between the two cell lines with higher lipid content for
the larger size cells SW480 (SW480 diame-
ter = 16.9 ± 0.4 μm cf. SW620 diameter = 14.4 ± 0.3 μm)
and in agreement with previous reports on fixed SW480/
SW620 cells.[33] The fits of these peaks are shown in Fig-
ure S3a and S3b.

The Amide III band (1,230–1,300 cm−1) and the
Amide I band (1,600–1,690 cm−1) are widely used for
studying the protein secondary structure. Peaks fitted to
the Amide III β‐sheet, α‐helix, α + β, and disordered
structures showed that disordered structure was higher
for the SW480 cells, and β‐sheet was higher for SW620
cells, whereas the ratios of α:β indicated that SW620 cells
had more α‐helix to β‐sheet content ratio than SW480 as
shown in Figure S3b1 and S3b2. Other protein related
peaks associated with hydroxyproline, proline, and phe-
nylalanine all showed higher intensity for the SW620
cells. The Amide I bands showed a similar trend to
the Amide III fitting for the variation in the β‐sheet and
α‐helix content.

The 782 cm−1 nucleic acid peaks and the 810 cm−1

peak usually associated with bonded phosphates or
phosphodiester bonds showed a larger contribution for
SW620 than of SW480 cells, indicating higher nucleic
acid to protein ratio. The 1,338 cm−1 band with mixed
contributions of DNA and CH vibrations showed this
same trend. This is consistent with the SW620 having
larger RNA content[51] and nuclear area[52] that SW480.

Most of the peaks associated with saccharide
contributions show higher contribution in the SW620
spectra. This could be explained by higher concentrations
of glycolysis intermediates such as acetate or lactate[53]

and an increased secretion of pericellular hyaluronan in
SW620 compared with SW480 cells.[54] Peaks associated
with phosphates also show a higher contribution for the
SW620, which is in agreement with previous reports that
showed an increase of the phosphorylated status of these
FIGURE 2 PCA/LDA results. (a) Shape of the PCs 1 to 4 and of the L

individual cell scores when projecting the cell data onto the LD from (a

LD = linear discriminant; LDA = linear discriminant analysis; PC = pr

figure can be viewed at wileyonlinelibrary.com]
cells.[32] Peaks at around 1,128; 1,310; and 1,585 cm−1 have
previously been labelled as cytochrome C resonance[46,55]

and can be used to monitor early signs of apoptosis.[46]

Peaks at 1,157; 1,517; 1,525; and 1,620 cm−1 reveal higher
contributions of double bonds to the SW620 normalized
spectra[45] and have previously been reported as cancer
biomarkers in different biological samples, assigning them
to carotenoids or porphyrins.[15,33,56]

In summary, when normalizing to the Amide I band,
SW620 cells show a larger contribution of α‐helix proteins,
saccharides, nucleic acids, and double bonds related
bands, whereas SW480 cells show larger contribution of
lipids, β‐sheet, and disordered structure proteins.
3.2 | Peak correlation

To aid peak assignments and help track cell state, we
used the p‐value filtered correlation matrix of the
preprocessed data (Figure 1b). Only correlations with an
absolute value higher than 0.3 were considered for this
analysis. A series of strongly correlated peaks associated
with cytochrome C were found at 748; 1,128; 1,156;
1,175; 1,310; 1,431; 1,438; 1,448; 1,585; 2,845–67 cm−1

which had a strong negative correlation with the Amide
I peaks at 1,682 and 1,690 cm−1 (see 1 in Figure 1b).

Other highly correlated peaks in the spectra are the
810 cm−1 series (see 2 in Figure 1b) that positively
correlates with 781; 828; and 1,732 cm−1. The 810 cm−1 is
usually labelled as being due to phosphodiester or
phosphate vibrations, with the 781 cm−1 peak associated
with the pyrimidine bases ring breathing mode and the
828 cm−1 peak due to phosphates. Overall, this indicates
that this series is related to nucleic acid vibrations.

Another notable correlation found is the series of
1,679 cm−1 (see 3 in Figure 1b), which shows positive
correlation along the Amide I peaks at 1,642; 1,671;
1,687; 1,689; and 1,697 cm−1. These bands are related to
Amide I β (1,679 and 1,671), α (1,642), and disordered
(1,687) structures that all show high correlation.
D (b) 2D plot of the scores for the first two PCs. (c) Histogram of the

) with a vertical dashed line at the point of best separation.

incipal component; PCA = principal component analysis [Colour

http://wileyonlinelibrary.com
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3.3 | Primary and secondary cell lines
discrimination using classification
algorithms

The individual cell spectra were used to classify cells by
three different methods: with PCA analysis, with DT—
both using an individual DT and using the C5.0
algorithm[57]

—and with linear kernel SVM. First, we
consider this for the potentially more challenging case of
SW480 and SW620 cell lines, which are of the same genetic
origin and grown under the same conditions. Once
optimized, we then extended this to other cell lines.
3.3.1 | Nonsupervised multivariate
analysis: PCA

Figure 2a gives the first four principal components. Using
PC1–3 was enough to separate the two cell lines, by
plotting the scores of the first two PCs (Figure 2b). PC1
showed mainly lipid‐related contributions and accounted
for 26% of the variability. PC2 and 3 showed mixed RNA
and protein‐related contributions and contributed to 5.1%
and 3.3% of the variability, respectively. PC4 showed a
strong contribution of the cytochrome C resonance.
PCA showed that the SW620 cells are more heteroge-
neous than the SW480 cells, indicating greater
within‐class variability. PC2 was the component that
better separated the two cell lines and showed two sharp
peaks at 781 (DNA) and 1,001 cm−1 (phenylalanine) and
broader peaks around 1,455 (CH2 vibrations); 1,573
(carboxylic group or nucleic acids); and 1,647 cm−1

(Amide I). This component seems to be accounting for
mixed contributions to proteins, lipids, and nucleic acids.
Interestingly, PC4 did not show different contributions
between the SW620 and SW480 cells but seemed to be
related to the within‐class heterogeneity of the cells. The
histograms of the scores are given in Figure S5.
3.3.2 | Supervised multivariate analysis:
PCA and LDA

Figure 2a shows an example of a linear discriminant (LD)
that provides a good classification of the two cell lines
(98.7 ± 0.3%). This LD is dominated by the PC2 contribu-
tion and shows positive values for SW620 cells and
negative values for SW480 cells. The shape of the LD shows
the enrichment in CH2 νs of the SW620 and the increased
contents in CH3 stretching vibrations of SW480 cells. The
cytochrome‐associated peaks are absent, indicating that
the viability of the cells was similar and that the differences
found here are not artefacts due to apoptosis. Modes
related to phosphates were in general of negative sign,
whereas the amino acid‐related peaks like phenylalanine,
tyrosine or hydroxyproline, and the Amide III band show
positive contributions. In summary, the LDA/PCA
confirm that the SW620 cells have a higher CH2:CH3 ratio
as well as larger contributions from amino acids,
phosphates, and proteins than the SW480 cells at a
single‐cell level and that these are good biomarkers to
classify the cells. The scores for the LD are shown in
Figure 2c.
3.3.3 | Comparison of performance of
different multivariate methods

The performance of all the multivariate methods
compared is shown in Figure 4a. The final performance
values obtained were of 98.7 ± 0.3% for the PCA/LDA
classifier, 86 ± 1% for the simple DT, 94.0 ± 0.9% for
the C5.0 DT, and 98.1 ± 0.4% for linear kernel SVM.
Multivariate methods often balance between intuitive
results and good performance.[21] The PCA/LDA has the
advantage that the LD shows the component of best
separation, and it is easier to relate the variance of
specific spectral features and hence to relate it to the
underlying biology. The simple DT and C5.0 output are
of single bands, which is the simplest and most intuitive
output to relate with the spectral changes from the ones
reviewed here but also gives a less powerful classifier.
More information about these models can be found in
the Supporting Information.
3.3.4 | Average and multivariate analysis
of results of multiple cell lines

Figure 3a shows the averaged spectra of each of the cell
lines. The Amide III region is shown in Figure 3b.

The HL60 cell line shows lower intensity in the
749 cm−1 band but not in other cytochrome‐related
bands, probably indicating lower DNA content than the
adherent cell lines but with higher intensity in the
782 cm−1 band associated with nucleic acids, which could
be showing a higher RNA content. When looking at the
782 cm−1 band and the 810 cm−1 bonded phosphates
band, the normalized intensity follows the trend
HL60 > HCT116 > SW620 > HT29 > SW480.
Interestingly, the modal number of the cell lines
according to the literature shows the inverse trend
HT29 (68–72) > SW480 (58) > SW620 (50)[58]>HL60
(46) > HTC116 (45).[59,60] As the peaks are normalized
to the Amide I, this could be showing that the protein
content is strongly correlated with the DNA content.

Previous studies of xenographs of HT29, HCT116, and
SW620 cells showed that the most common metabolites
were amino acids and lactate,[61] indicating that the
1,725 cm−1 peak associated with ν C=O and the 885 and
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898 cm−1 peaks probably have a strong contribution from
lactate. These peaks show the trend
HCT116 > SW620 > HT29 > SW480 ≈ HL60, which also
agrees with previous magnetic resonance spectroscopy
results.[53,61] This can be attributed to the Warburg effect,
due to which highly proliferative cancerous cells have
increased lactate contents; HCT116, SW620, and HT29
are known to have lower doubling times than SW480 and
HL60 cells.[51,62–64] For the carcinoma cell lines, the lactate
contribution appears to be correlatedwith the cancer stage.

In general, HL60 have higher phosphate than the
colorectal cell lines. For the colorectal cancer cell lines,
differences between the 810 and 828 cm−1 peaks and
the 1,095 cm−1 peak could be indicating that HCT116,
HT29, and SW620 cells have more bonded phosphates
than SW480 cells and that HCT116 cells have lower free
phosphate concentration than the other cell lines.

Spectral regions around Amide III were fitted with
Gaussian peaks as shown in Figure S3. The Amide III
band has very different shapes for the different cell lines.
Both HL60 and SW620 cells showed high contributions
for both β‐sheet, disordered, and α + β secondary
structure, with a lower contribution of α‐helix structure.
In contrast, HCT116, HT29, and SW480 cells showed
reduced β‐sheet peak height with higher disordered and
α + β contributions, suggesting that increased ratio of
α + β/β‐sheet could be a signature of primary colorectal
cancer. This would merit further investigation. SW620
and SW480 cells showed higher α‐helix contribution than
the other cell lines. Amide I fitting showed a similar trend
to the one seen in Amide III within fitting error, where
HCT116 showed a significant higher contribution of
random coils. In terms of amino‐acids content, the
phenylalanine peak had a lower contribution for the
adenocarcinoma primary cell lines (HT29 and SW480)
IGURE 3 (a) Average single cell spectra of the different cell lines used, where the error shows one standard deviation. (b) Average of the

pectra around the Amide III region with tentative assignment. The lighter coloured broad line represents the standard error [Colour figure

an be viewed at wileyonlinelibrary.com]
F
s

c

followed by SW620 cells, with higher contribution for the
HCT116 cells and the HL60 cells.

Fitting to the CH stretching region, Figure S3 showed
SW480, HL60, and HCT116 to have higher contributions
above 2,930 cm−1. HCT116 cells had a very low contribu-
tion in the 2,848 cm−1 CH2 symmetric band compared
with the other cells, showing higher fatty acids levels
for HCT116 cells than for SW620 cells.[39,61] Although
for the adenocarcinoma cell lines, the contributions
above 2,900 cm−1 appear to be dependent on the cancer
stage (SW480 > HT29 > SW620), a promising biomarker
that would need to be confirmed in further experiments.

In summary, the results suggest that HL60 cells show
low DNA, lactate, β‐sheet content, and high bonded
phosphates, lipids, disordered, and α + β secondary
protein structure, clearly separating it from the colorectal
cell lines. HCT116 cells showed lower cytochrome C
peaks, β‐sheet content, free phosphates, and CH2

symmetric stretching band, and higher lactate, disordered
and α + β contributions, all possible signatures of
colorectal carcinoma compared with adenocarcinoma.
For the colorectal adenocarcinoma cell lines, the lactate
contribution measured using the 1,725 cm−1 peak seems
to be proportional to the cancer stage, whereas the CH
stretching contributions above 2,900 cm−1 were inversely
proportional to the cancer stage. This would indicate that
more malignant cells would tend to increase their lactate/
protein ratio—due to the Warburg effect—while
decreasing their lipid/protein contents. Additionally,
SW620 cells showed lower phenylalanine peak and lower
α + β:β‐sheet ratio and SW480 showed lower bonded
phosphates.

In general, the differences between the cell lines are
subtle when looking at the average spectra, but are clear
when applying the PCA/LDA model. The LD model
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FIGURE 4 (a) Performance of the four classification methods when applied to the SW620 and SW480 datasets. (b) 3D plot of chosen LDs

of the different cell lines, where the spheres are centred on the average values and have radius of two standard deviations. (c) Composite box

plots/bee‐swarm plots for the scores of each cell line in the PLSR Components 1 and 2, showing a linear trend with disease stage. The p

values for each pair was found to be <.001 [Colour figure can be viewed at wileyonlinelibrary.com]
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consisted of 10 LDs, each of them maximizing the
separation between a pair of the five cell lines. Figure 4b
shows a 3D plot of three selected LDs that showed the best
separation where the average and two standard deviations
of each cell population has been shown as a sphere. All
cell lines show very clear clustering separated from each
other. HL60 clusters further from the other cell lines in
LD1 as the only nonadherent cell line. HCT116 shows
clear separation with the other colorectal cell lines,
underlying the ability of Raman spectroscopy to separate
between different cancer types even within the same
organ. SW480 and HT29 lie very close to each other and
show the worst separation as expected given that they
both originate from colorectal adenocarcinoma. The
PCA/LDA model using a 10‐fold cross validation showed
a performance of 92.4 ± 0.4%.

In order to find possible biomarkers for disease stage
in colorectal adenocarcinoma, the spectra of the SW480/
HT29/SW620 cell lines were fitted to a PLRS model
looking for spectral features that change linearly with
disease stage. Only Components 1 and 2 that showed a
significant increase with cancer stage (p < .01) were con-
sidered for analysis, and the cell scores for each cell line
are plotted in Figure 4c. Among other potential bio-
markers noticed in the average analysis, results showed
a decrease of the stretching peak at 2,850 cm−1, decrease
of the DNA peak at 787 cm−1, increase of the 1,438 cm−1

peak with a decrease around (1,465–1,490 cm−1), and a
decrease in the Amide I contribution above 1,675 cm−1.
An increase at 810–813 cm−1 (bonded phosphates and
phosphodiester) may be linked with increased phosphor-
ylated status with cancer stage and/or increased nucleic
acid content. The 1,556 cm−1 peak related with double
bonds and previously reported to increase in SW620 cells
compared with SW480 cells,[45] showed increase with
cancer stage when considering HT29 cells. PLSR analysis
also showed blue shifting of the phenylalanine peak at
1,002 cm−1 and the 1,174 cm−1 peak from the cytochrome
C series and red shifting of the 747 and the 1,227 cm−1
cytochrome C peaks with advancing adenocarcinoma
stage. The shape of the components is shown in
Figure S7.
4 | CONCLUSIONS

We have shown that Raman spectroscopy of hundreds of
live cells can readily be used to distinguish between
different cell types and between different colorectal
cancer cell lines including a primary and secondary cell
line from the same patient.

For the metastatic model system, we found that when
normalizing to the Amide I peak, secondary tumour cells
(SW620) displayed higher saccharides, phosphates,
nucleic acid content, α‐helix, β‐sheet, and α + β second-
ary structure, increased ratio of α:β secondary structure
and increased ratio of CH2:CH3 stretching bands. The
SW480 cells displayed a higher proportion of disordered
structure and increased overall CH stretching intensity.
PCA discrimination indicated that the cytochrome C
peaks accounted for most of the within sample variability
whilst the protein, nucleic acids, and lipid‐associated
peaks gave the largest variability between cell lines.

Supervised multivariate methods like LDA/PCA and
SVM results yielded >98% accuracy in classification
between the SW620/SW480 cell lines compared with
DTs and C5.0 DTs, that gave good but lower performance,
though they allowed obtaining single peak biomarkers.

When comparing multiple colorectal cancer cell lines,
we found that the primary colorectal cancer cell lines
(SW480, HT29, and HCT116) showed increased α + β:β‐
sheet ratio in the Amide III band compared with the
HL60 and SW620 cells. The carcinoma cell line HCT116
showed lower cytochrome C, CH2 symmetric stretching
and free phosphates, and higher lactate contributions
comparedwith the adenocarcinoma cell lines. The analysis
of the average and PLSR analysis with the colorectal
adenocarcinoma stage showed an increase on the lactate
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contribution at 1,725 cm−1, the 810–813 cm−1 peak
associated with bonded phosphates, and phosphodiester
and the 1,556 cm−1 peak related with double bonds and a
decrease on the contributions above 2,900 cm−1, the
DNA peak at 787 cm−1, and the Amide I contribution
above 1,675 cm−1 among others, and their possible
applications as biomarkers deserve further study. Overall,
the PCA/LDA performance for the separation of different
cancer types was 92.4 ± 0.4% showing the potential of
Raman spectroscopy to separate between live healthy and
cancerous cells—in future, we seek to extend these studies
to patient samples.
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