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Abstract 9 

This work extends a robust second-order Runge-Kutta Discontinuous Galerkin (RKDG2) 10 

method to solve the fully nonlinear and weakly dispersive flows, within a scope to 11 

simultaneously address accuracy, conservativeness, cost-efficiency and practical needs. The 12 

mathematical model governing such flows is based on a variant form of the Green-Naghdi 13 

(GN) equations decomposed as a hyperbolic shallow water system with an elliptic source 14 

term. Practical features of relevance (i.e. conservative modelling over irregular terrain with 15 

wetting and drying and local slope limiting) have been restored from an RKDG2 solver to the 16 

Nonlinear Shallow Water (NSW) equations, alongside new considerations to integrate elliptic 17 

source terms (i.e. via a fourth-order local discretization of the topography) and to enable local 18 

capturing of breaking waves (i.e. via adding a detector for switching off the dispersive terms). 19 

Numerical results are presented, demonstrating the overall capability of the proposed 20 

approach in achieving realistic prediction of nearshore wave processes involving both 21 

nonlinearity and dispersion effects within a single model. 22 

  23 
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1- Introduction 24 

The last decades have seen significant advances in the development of numerical models for 25 

coastal engineering applications, which have the ability to accurately represent waves 26 

traveling from deep water into the shoreline (Kirby, 2016). Such models should account for 27 

nonlinear phenomena resulting from wave interaction with structures, and dispersive 28 

phenomena due to the wave propagation over a wide range of depths (Walkley, 1999). 29 

Various simplifications of the Navier-Stokes equations (Ma et al., 2012) have been proposed 30 

to enable affordable modelling of water wave problems. Most commonly, researchers have 31 

relied on the depth-integrated Nonlinear Shallow Water (NSW) equations, which seems to 32 

work well for shallow flow modelling but are specifically not ideal for coastal applications 33 

involving deeper water and wave shoaling (Brocchini and Dodd, 2008; Brocchini, 2013). 34 

 As an alternative, Boussinesq-type (BT) equations introduce dispersion terms and are 35 

more suitable in water regions where dispersion begins to have an effect on the free surface. 36 

These models represent the depth-integrated expressions of conservation of mass and 37 

momentum for weakly nonlinear and weakly dispersive waves, where the vertical profile of 38 

velocity potential is parabolic. Peregrine (1967) used Taylor expansion of the vertical 39 

velocity about a specific level and extended the NSW equations asymptotically into deeper 40 

water. Since the pioneering work of Peregrine (1967), the Boussinesq theory has experienced 41 

many developments in accuracy, and in extension of the range of application beyond the 42 

weakly nonlinear and weakly dispersive assumptions, which were confined to relatively 43 

shallow waters (Madsen et al., 1991; Madsen and Sørensen, 1992; Nwogu, 1993; Wei et al., 44 

1995; Schäffer and Madsen, 1995; Beji and Nadaoka, 1996; Madsen and Schäffer, 1998; 45 

Agnon et al., 1999; Gobbi et al., 2000; Madsen et al., 2002, 2003; Lynett and Liu, 2004a, 46 

2004b). However, most of the enhanced BT models remain not entirely nonlinear and bring 47 



about complexities associated with the involvement of high order derivatives. It also should 48 

be noted that the Non-Hydrostatic Shallow Water (NHSW) models are another class of 49 

equations which have gained attention recently (Zijlema and Stelling, 2008; Yamazaki et al., 50 

2009; Bai and Cheung, 2013; Wei and Jia, 2013; Lu et al., 2015). These models could be seen 51 

as a variant of BT models with alternative approaches to model fully nonlinear and weakly 52 

dispersive waves (Kirby, 2016). 53 

The so-called Green-Naghdi (GN) equations (Green and Naghdi, 1976), also known 54 

as Serre equations (Serre, 1953), are viewed as fully nonlinear and weakly dispersive BT 55 

equations in which there is no restriction on the order of magnitude of nonlinearity, thereby 56 

providing the capability to describe large amplitude wave propagation in shallow waters. 57 

These equations were first derived by Serre (1953); several years later, they were re-derived 58 

by Green and Naghdi (1976) using a different method. A 1D formal derivation of these 59 

equations can be found in Barthélemy (2004) for flat bottoms and in Cienfuegos et al. (2006) 60 

for non-flat bottoms. Alvarez-Samaniego and Lannes (2008) showed that GN models can 61 

accurately predict the important characteristics of the waves in comparison with the Euler 62 

equations. Israwi (2010) derived a new 2D version of the GN system that possesses the 63 

capability of accounting for the horizontal vorticity. More recently, Bonneton et al. (2011) 64 

and Lannes and Marche (2015) derived a new system that is asymptotically equal to the 65 

classic GN equations but is featured with a much simpler structure, which is easier to be 66 

solved numerically. 67 

From a numerical modelling viewpoint, various approaches have been used for 68 

solving BT equations considering Finite Difference (FD) methods (Wei and Kirby, 1995), 69 

Finite Element (FE) methods (Filippini et al., 2016), Finite Volume (FV) methods 70 

(Cienfuegos et al., 2006; Le Métayer et al., 2010; Dutykh et al., 2011) and hybrid FV/FD 71 

approaches (Bonneton et al., 2011; Orszaghova et al., 2012; Tissier et al., 2012), to cite a few. 72 



The FV discretization seems to be the most widely adopted among the other approaches used 73 

for the numerical approximation of both NSW and BT equations given its conservation 74 

properties, geometrical flexibility, conceptually simple basis, and ease of implementation. 75 

Nonetheless, the Discontinuous Galerkin (DG) discretization seems to be a promising 76 

alternative owed to its faster convergence rates and better quality predictions on coarse 77 

meshes as compared to an equally accurate FV approach (e.g. Zhou et al., 2001; Zhang and 78 

Shu, 2005; Kesserwani, 2013; Kesserwani and Wang, 2014). 79 

For solving convection-dominated problems, a spatial DG discretization is often 80 

realized within an explicit multi-stage Runge-Kutta (RK) time stepping mechanism, leading 81 

to the standard RKDG method proposed by Cockburn and Shu (1991). A local RKDG 82 

formulation can be seen as a higher-order extension to the conservative FV method, in the 83 

Godunov (1959) sense, where one averaged variable of state over a computational element is 84 

evolved by inter-elemental local flux balance incorporating the Riemann problem solutions 85 

(Toro and Garcia-Navarro, 2007). In the RKDG method, this same principle applies, however 86 

to evolve a series of coefficients (i.e. the average and slope coefficients spanning the 87 

polynomial solution) by means of local spatial operators translated from the conservative 88 

model equations (in the weak sense). The number of coefficients that should be involved and 89 

the number of inner RK stages required are proportional to the desired order-of-accuracy; the 90 

latter is, on the other hand, inversely proportional to the maximum allowable CFL number. 91 

Hence, increase in operational and runtime costs is inevitable in line with increasing order-of-92 

accuracy. For solving the NSW equations, many RKDG formulations were proposed 93 

(Kesserwani and Liang, 2010, 2012; Xing, 2014; Tavelli and Dumbser, 2014; Gassner et al., 94 

2016). However, practically speaking, higher than second-order accurate RKDG (RKDG2) 95 

formulations remain significantly harder to generally stabilize, e.g. when it comes to carefully 96 

selecting and limiting slope coefficients and ensuring well-balanced and conservative 97 



numerical predictions over rough and uneven terrain (Kesserwani and Liang, 2011, 2012; 98 

Caviedes-Voullième and Kesserwani, 2015). 99 

In the context of numerically solving elliptic equations with higher order derivatives, 100 

often the so-called Local Discontinuous Galerkin (LDG) method is employed as proposed in 101 

Cockburn and Shu (1998). Since the early 2000s, different variants of the DG method were 102 

utilized for solving the BT equations (e.g. Eskilsson and Sherwin (2003, 2005, 2006), 103 

Eskilsson et al. (2006), Engsig-Karup et al. (2006, 2008), de Brye et al. (2013); Dumbser and 104 

Facchini (2016) for enhanced Boussinesq equations; Li et al. (2014), Dong and Li (2016), 105 

and Duran and Marche (2015, 2017) for the GN equations). Most of these works lacked a full 106 

consideration and assessment to the issues of practical relevance, such as the simultaneous 107 

presence of highly irregular bathymetry, wetting and drying and friction effects. To the best 108 

of our knowledge, only the work of Duran and Marche (2015, 2017) considered some of these 109 

issues in an alternative RKDG formulation solving the GN equations derived by Lannes and 110 

Marche (2015). The investigators successfully solved the pre-balanced NSW equations with 111 

higher than second-order RKDG methods. However, the use of the pre-balanced NSW 112 

equations is unnecessary (Lu and Xie, 2016) and entails sophisticated flux terms with 113 

topography, which add on to the operational costs.  114 

Another important practical issue in modeling nearshore wave processes is wave 115 

breaking. Like other BT models, the GN equations only provide satisfactory description of 116 

the waves up to the breaking point and cannot represent the energy dissipation pertinent to 117 

this phenomenon. To address this issue, a strategy for handling potential breaking waves 118 

must be deployed and several methods have been proposed for this purpose. One traditional 119 

method would be to add an ad-hoc viscous term to the momentum equation to account for 120 

energy dissipation (Zelt, 1991; Karambas and Koutitas, 1992; Sørensen et al., 1998; Kennedy 121 

et al., 2000; Chen et al., 2000; Cienfuegos et al., 2009; Roeber et al., 2010). Another method, 122 



which has been gaining popularity in recent years, is to simply neglect the dispersive terms so 123 

that to enable the BT model to switch to the NSW equations in the region where wave 124 

breaking takes place (e.g. Borthwick et al., 2006; Bonneton, 2007; Tonelli and Petti, 2009, 125 

2010; Roeber and Cheung, 2012; Tissier et al., 2012; Orszaghova et al., 2012; Shi et al., 126 

2012; Kazolea and Delis, 2013); in other words, treat the broken waves as shocks (Filippini et 127 

al., 2016). To do so, a sensor is required for triggering the initiation and possibly termination 128 

of breaking process, many of which are reported based on different physical criteria. For 129 

example, Kennedy et al. (2000) used vertical speed of the free surface elevation, Tonelli et al. 130 

(2009, 2010) employed the ratio of the surface elevation to the water depth, Roeber and 131 

Cheung (2012) involved local momentum gradients, Tissier et al., (2012) combined local 132 

energy dissipation, front slope and Froude number, and Filippini et al. (2016) combined the 133 

surface variation and local slope angle. 134 

To this end, this paper aims to develop a robust RKDG2-based model for simulation 135 

of wave propagation from intermediate to shallow waters and its possible transformations 136 

including wave breaking. A simplified form of the GN equations (Lannes and Marche, 2015) 137 

will be considered, in which the model equations can be decomposed into the conservative 138 

form of the NSW equations and elliptic source terms accounting for dispersion effects. This 139 

decomposition will be exploited to enable handling breaking waves by switching off the 140 

dispersive terms based on an entirely numerical criterion specific to the DG method. In this 141 

work, e.g. as opposed to Duran and Marche (2015), the pre-balanced NSW equations were 142 

purposefully avoided to entirely keep the topography and its derivatives (up to third-order) as 143 

source terms. A hybrid topography discretization is adopted for treating these higher-order 144 

derivative terms using a local fourth-order DG expansion (DG4). The RKDG2-based model 145 

solving the GN equations is further supported with stable friction source term discretization 146 

and a conservative wetting and drying condition, to enable applicability for a range of tests 147 



involving nearshore wave processes with nonlinearity, dispersion, interaction with uneven 148 

and rough topographies and/or wetting and drying. 149 

In what follows, Section 2 summarizes the GN model equations; Section 3 presents 150 

the details of the DG discretizations used including the details relevant to the integration of 151 

the topography source terms, treatment of wetting and drying and dispersive terms 152 

computations; Section 4 contains an exhaustive and systematic validation of the proposed 153 

model development over a series of selected test cases; Section 5 outlines the conclusions. 154 

 155 

2- The Green-Naghdi (GN) equations 156 

The standard one-dimensional (1D) GN system can be cast in an alternative form, which 157 

involves an optimization parameter and incorporates time-independent dispersive terms in 158 

diagonal matrices (Lannes and Marche 2015). This (so-called “one-parameter”) model reads:  159 

۔ۖەۖ
ۓ ߲௧݄  ߲௫ሺ݄ݑሻ ൌ Ͳൣͳ  ॻሾ݄ሿ൧ߙ ൬߲௧ሺ݄ݑሻ  ߲௫ሺ݄ݑଶሻ  ߙ െ ͳߙ ݄߲݃௫ߞ൰  ͳߙ ݄߲݃௫ߞ ݄൫࣫ଵሺݑሻ  ݃࣫ଶሺߞሻ൯  ݃࣫ଷ ൬ൣͳ  ሻ൰ߞॻሾ݄ሿ൧ିଵሺ݄߲݃௫ߙ ൌ Ͳ  (1) 

 160 

Fig. 1. Sketch of the free surface flow domain 161 

where ݑሺݔǡ ሻ is the horizontal velocity, ݄ݐ  corresponds to the undisturbed state, ݄ሺݔǡ ሻݐ ൌ162 ߞሺݔǡ ሻݐ  ݄ is the water height,  ߞሺݔǡ  ሻ is the 163ݔሺݖ ሻ stands for the free surface elevation andݐ
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variation of the bottom with respect to the rest state, as shown in Figure 1, and Į is an 164 

optimization parameter. The differential operators ࣫ଵ and ࣫ ଶ are expressed as follows: 165 

࣫ଵሺݑሻ ൌ ʹ݄߲௫݄ሺ߲௫ݑሻଶ  Ͷ͵ ݄ଶ߲௫ݑሺ߲௫ଶݑሻ  ݄߲௫ݖሺ߲௫ݑሻଶ  ሻݖሺ߲௫ଶݑ௫߲݄ݑ  ሻݖሺ߲௫ଶߞଶ߲௫ݑ
 ݄ʹ  ሻݖଶሺ߲௫ଷݑ

(2) 

࣫ଶሺߞሻ ൌ െ ൬߲௫߲ߞ௫ݖ  ݄ʹ ߲௫ଶݖ൰ ߲௫(3) ߞ 

For a given scalar function ݓ, the second-order differential operator ॻ is defined as: 166 

ॻሾ݄ሿሺݓሻ ൌ െ ݄ଷ͵ ߲௫ଶ ൬ ൰ݓ݄ െ ݄ଶ߲௫݄߲௫ ൬  ൰ (4)ݓ݄

and ࣫ ଷ admits the simplified notation: 167 

࣫ଷሺݓሻ ൌ ͳ ߲௫ሺ݄ଶ െ ݄ଶሻ߲௫ݓ  ݄ଶ െ ݄ଶ͵ ߲௫ଶݓ െ ͳ ߲௫ଶሺ݄ଶ െ ݄ଶሻ(5) ݓ 

Eq. (1) can be rewritten in the following form: 168 

۔ۖەۖ
ۓ ߲௧݄  ߲௫ሺ݄ݑሻ ൌ Ͳ߲௧ሺ݄ݑሻ  ߲௫ሺ݄ݑଶሻ  ߙ െ ͳߙ ݄߲݃௫ߞ  ൣͳ  ॻሾ݄ሿ൧ିଵߙ ͳߙ ݄߲݃௫ߞ ݄൫࣫ଵሺݑሻ  ݃࣫ଶሺߞሻ൯  ݃࣫ଷ ൬ൣͳ  ሻ൰ቃߞॻሾ݄ሿ൧ିଵሺ݄߲݃௫ߙ ൌ Ͳ  (6) 

in which the differential operator ൣͳ   ॻሾ݄ሿ൧ is factored out, making it possible not to 169ߙ

compute third-order derivatives that are qualitatively present in Eq. (1). Replacing the free 170 

surface gradient term ݄߲݃௫ߞ as: 171 

݄߲݃௫ߞ ൌ ߲௫ ൬ͳʹ ݄݃ଶ൰  ݄߲݃௫(7) ݖ 

Eq. (6) would become: 172 

ቐ ߲௧݄  ߲௫ሺ݄ݑሻ ൌ Ͳ߲௧ሺ݄ݑሻ  ߲௫ሺ݄ݑଶሻ  ߲௫ ൬ͳʹ ݄݃ଶ൰ ൌ െ݄߲݃௫ݖ െ ࣞ 
(8) 



In which ࣞ  accounts for the dispersive source term as: 173 

ࣞ ൌ െ ͳߙ ݄݃ ௫߲ߞ  ൣͳ  ॻሾ݄ሿ൧ିଵߙ ͳߙ ݄݃ ௫߲ߞ  ݄൫࣫ଵሺݑሻ  ݃࣫ଶሺߞሻ൯  ݃࣫ଷ ൬ൣͳ   ሻ൰ቃ (9)ߞॻሾ݄ሿ൧ିଵሺ݄߲݃௫ߙ

As explained in Lannes and Marche (2015), this GN formulation (i.e. the one-parameter 174 

model) is stabilized against high-frequency perturbations via the presence of the differential 175 

operator ൣ ͳ  ॻሾ݄ሿ൧ିଵߙ
, which can also be directly assembled in a preprocessing step. 176 

Based on these aspects, this alternative GN formulation is adopted here, which can be 177 

decomposed into a conservative form of the hyperbolic NSW equations plus elliptic source 178 

terms for adding on dispersive effects. Therefore, Eq. (8) could be presented in matrix 179 

conservative form as follows:  180 

߲௧܃  ߲௫۴ሺ܃ǡ ሻݖ ൌ ǡ܃ୠሺ܁ ሻݖ  ǡ܃ሺ܁ ሻݖ െ ۲ሺ܃ǡ  ሻ (10)ݖ

܃ ൌ ݄ݍ൨,        ۴ሺ܃ǡ ሻݖ ൌ ቈ మݍ  ଵଶ ݄݃ଶ, 

ǡ܃ୠሺ܁ ሻݖ ൌ  Ͳെ݄߲݃௫ݖ൨,        ܁ሺ܃ǡ ሻݖ ൌ  Ͳെܥݑȁݑȁ൨,        ۲ሺ܃ǡ ሻݖ ൌ  Ͳࣞ൨       

(11) 

where ܃ is the vector of flow variables, ۴ represents the fluxes, ܁ୠ shows the topography 181 

source terms and ܁ defines the friction source terms, in which ܥ ൌ ಾమభ యΤ  is the coefficient of 182 

bed roughness and ݊ெ represents the Manning coefficient. The friction source terms, though 183 

were not included in the original formulation (Lannes and Marche, 2015), will be considered 184 

here as for the NSW equations. 185 

To reduce the complexity of obtaining the dispersive source terms ࣞ, Eq. (9) is 186 

reformulated in terms of the following coupled system: 187 

ቐൣܫ  ॻሾ݄ሿ൧ߙ ൬ࣞ  ͳߙ ݄߲݃௫ߞ൰ ൌ ݄ ቆͳߙ ߲݃௫ߞ  ࣫ଵሾ݄ǡ ሻݑሿሺݖ  ݃࣫ଶሾ݄ǡ ሻቇߞሿሺݖ  ࣫ଷሾ݄ǡ ݄ሿࣥൣܫ  ॻሾ݄ሿ൧ࣥߙ ൌ ߞݔ߲݄݃  (12) 



in which ࣥ  is an auxiliary variable and the respective terms are previously defined in Eqs. (2-188 

5). As for the choice of optimization parameter Į, Lannes and Marche (2015) recommended 189 

taking 1.159, which will also be adopted here. 190 

 191 

3- RKDG2-based GN numerical solver 192 

This section extends a robust RKDG2 numerical solver of the NSW with source terms 193 

considering wetting and drying (Kesserwani and Liang 2012). The RKDG2 method adopted 194 

here is particularly based on the conventional form of the NSW and supported with new 195 

technical measures to fit the case of the GN equations. 196 

A 1D computational domain with a length of ܮ, is divided by ܰ  ͳ interface points Ͳ ൌ197 ݔଵ ଶΤ ൏ ଷݔ ଶΤ ൏ ڮ ൏ ேାଵݔ ଶΤ ൌ ܫ into ܰ uniform cells, each cell ,ܮ ൌ ିଵݔൣ ଶΤ ǡ ାଵݔ ଶΤ ൧ being 198 

centered at ݔ ൌ ͳ ʹΤ ൫ݔାଵ ଶΤ  ିଵݔ ଶΤ ൯ and having a length of οݔ ൌ ାଵݔ ଶΤ െ ିଵݔ ଶΤ . In the 199 

framework of a local DG approximation, a kth order polynomial solution of the flow vector, 200 

denoted by ܃୦ሺݔǡ ሻݐ ൌ ሾ݄୦ǡ   of 201ܫ ୦ሿ், is sought that belongs to the space of polynomials inݍ

degrees at most k (giving ݇  ͳ order of accuracy in space). To get a FE local weak 202 

formulation, Eq. (10) is multiplied by a test function ݒ, then integrated by parts over the 203 

control volume ܫ to give: 204 

න ߲௧܃୦ሺݔǡ ூݔሻ݀ݔሺݒሻݐ െ න ۴൫܃୦ሺݔǡ ூݔሻ݀ݔሺݒሻ൯߲௫ݐ ቂ۴෨ ቀ܃୦൫ݔାଵȀଶǡ ൯ቁݐ ାଵȀଶ൯ݔ൫ݒ െ ۴෨ ቀ܃୦൫ݔିଵȀଶǡ ൯ቁݐ ିଵȀଶ൯ቃݔ൫ݒ
ൌ න ǡݔ୦ሺ܃ୠሺ܁ ሻǡݐ ூݔሻ݀ݔሺݒ୦ሻݖ െ න ۲୦ሺ܃୦ሺݔǡ ሻǡݐ ூݔሻ݀ݔሺݒ ୦ሻݖ  

(13) 



in which, ۲୦ and ݖ୦ are local approximations of ۲ and ݖ, which are also spanned by FE 205 

expansion coefficients, and ۴෨ is a nonlinear numerical flux function based on an approximate 206 

Riemann solver featuring in the FV philosophy (Toro and Garcia-Navarro, 2007).  207 

The local approximate solutions are expanded into polynomial basis functions ሼ߶ሽ 208 

that is compactly supported on cell ܫ, as: 209 

ǡݔ୦ሺ܃ ሻȁூݐ ൌ  ሻݔሻ߶ሺݐሺ܃
ୀ  (14) 

۲୦ሺݔǡ ሻȁூݐ ൌ  ۲ሺݐሻ߶ሺݔሻ
ୀ  (15) 

where ܃ and ۲ are time-dependent expansion coefficients. In order to achieve a decoupled 210 

version of the Galerkin formulation, Eq. (13), the local basis functions ሼ߶ሽ have been 211 

defined according to the Legendre polynomials 212 

߶ሺݔሻ ൌ ߶ ൬ݔ െ ʹȀݔοݔ ൰
 

(16) 

where ߶ሺܺሻ are the L2-orthogonal Legendre polynomials on their reference domain ሾെͳǡ ͳሿ: 213 

߶ሺܺሻ ൌ ͳʹ݇Ǩ ݀݀ܺ ሺܺଶ െ ͳሻ
 

(17) 

 214 

3.1 RKDG2 method for the convective parts 215 

By selecting ݇ ൌ ͳ a second-order DG (DG2) discretization can be obtained in which the 216 

local solution is linear: 217 

୦ȁூ܃ ൌ ሻݐሺ܃  ሻݐଵሺ܃ ൬ݔ െ ʹȀݔοݔ ൰ (18) 



where the coefficients ܃ሺݐሻ and ܃ଵሺݐሻ can be viewed as average and slope coefficients, 218 

respectively. From an available initial conditions, i.e. ܃ሺݔሻ ൌ ǡݔሺ܃ Ͳሻ, the initial state of the 219 

coefficients can be simplified to: 220 

ሺͲሻ܃ ൌ ͳʹ ቀ܃൫ݔାଵ ଶΤ ൯  ିଵݔ൫܃ ଶΤ ൯ቁ (19) 

ଵሺͲሻ܃ ൌ ͳʹ ቀ܃൫ݔାଵ ଶΤ ൯ െ ିଵݔ൫܃ ଶΤ ൯ቁ (20) 

For topography discretization of convective parts, again, linear basis functions (k = 1) are 221 

used, and hence a similar expansion for the variable ݖሺݔሻ can be obtained by means of 222 

constant coefficients ݖ and ݖଵ: 223 

୦ȁூݖ ൌ ݖ  ଵݖ ൬ݔ െ ʹȀݔοݔ ൰ (21) 

so that its derivative is used in the evaluation of the topography source term, namely: 224 

ݔ݀݀ ሻȁூݔ୦ሺݖ ൌ ݔଵοݖʹ  (22) 

The coefficients ݖ and ݖଵ are obtainable from the given topography function ݖሺݔሻ, i.e.: 225 

ݖ ൌ ͳʹ ቀݖ൫ݔାଵ ଶΤ ൯  ିଵݔ൫ݖ ଶΤ ൯ቁ (23) 

ଵݖ ൌ ͳʹ ቀݖ൫ݔାଵ ଶΤ ൯ െ ିଵݔ൫ݖ ଶΤ ൯ቁ (24) 

With this treatment for the topography, it is easy to verify that the continuity property holds 226 

in particular across interface points ݔାଵ ଶΤ  and ݔିଵ ଶΤ . For example at interface ݔାଵ ଶΤ  shared 227 

by elements ܫ and ܫାଵ, (23) and (24) yield: 228 

ାଵݔ୦ሺݖ ଶΤି ሻหூ ൌ ݖ  ଵݖ ൌ ାଵݔ൫ݖ ଶΤ ൯ ൌ ାଵݖ െ ାଵଵݖ ൌ ାଵݔ୦ሺݖ ଶΤା ሻหூశభ (25) 

Substituting the expanded variables into the weak formulation, a decoupled system of ODEs 229 

results for the evolution of each of the average and slope coefficients: 230 



߲௧܃ ൌ ିଵǡଵ܃൫ۺ ǡ ǡଵǡ܃ ାଵǡଵ܃ ൯ ߲௧܃ଵ ൌ ିଵǡଵ܃ଵ൫ۺ ǡ ǡଵǡ܃ ାଵǡଵ܃ ൯ 
(26) 

where ۺǡଵ
 represent discrete spatial operators, which may be expressed as follows: 231 

ۺ ൌ െ ͳοݔ ൣ۴෨ାଵȀଶ െ ۴෨ିଵȀଶ  ο܁ ݔୠሺ܃ǡ ଵሻ൧ݖ െ  ሻ (27)ݐሺܦ

ଵۺ ൌ െ ο͵ݔ ቊ൫۴෨ାଵȀଶ െ ۴෨ିଵȀଶ൯ െ ۴൫܃  ଵȀξ͵൯܃ െ ۴൫܃ െ ଵȀξ͵൯܃
െ οݔξ͵ ܃ୠ൫܁ൣ  ଵȀξ͵ǡ܃ ଵ൯ݖ െ ܃ୠ൫܁ െ ଵȀξ͵ǡ܃ ଵ൯൧ቋݖ െ  ሻݐଵሺܦ

(28) 

where the “hat” symbol refers to the slope-limited coefficients resulting from the local slope-232 

limiting process (see Section 3.4). In addition, the special numerical treatments regarding dry 233 

cells detection, numerical fluxes and friction source terms could be summarized as follows: 234 

 The flux evaluations across cells interfaces ۴෨േଵȀଶ are achieved based on a two-235 

argument numreical flux function ۴෨, associted with the HLL solver. 236 

 A threshold of ݄݈ݐௗ௬ ൌ ͳͲିଷ is used for dry cells detection based on internal 237 

evaluations considering four inner cell points (i.e. two Gaussian points and two 238 

interface points). 239 

 For discretization of the friction source terms, a compound approach is deployed in 240 

which they are first calculated implicitly using a splitting method and then are 241 

explicitly discretized in Eqs. (27) and (28). This approach is aimed to avoid 242 

instabilities due to possible unphysically-reversed flow at drying zones (Murillo et al., 243 

2009; Kesserwani and Liang, 2012). 244 

 Ad-hoc wetting and drying condition is proposed in coherence with the current choice 245 

for the model equations and topography discretization (details in Section 3.1.1). 246 



Finally, the average and slope coefficients are marched in time using a two-stage RK time 247 

integration method with a time step restricted by the CFL condition (i.e. with a Courant 248 

number smaller than 0.333 in respect of the analysis in Cockburn and Shu (1991) as follows: 249 

൫܃ǡଵ൯ାଵ ଶΤ ൌ ൫܃ǡଵ൯  οݐ൫ۺǡଵ൯
 (29) 

൫܃ǡଵ൯ାଵ ൌ ͳʹ ቂ൫܃ǡଵ൯  ൫܃ǡଵ൯ାଵ ଶΤ  οݐ൫ۺǡଵ൯ାଵ ଶΤ ቃ (30) 

3.1.1 Ad-hoc wetting and drying condition 250 

In this work, the depth-positivity preserving reconstructions in Liang and March (2009) will 251 

be applied and simplified at the interfaces, however under the following hypotheses: 252 

 The standard NSW equations (10)-(11) will be considered instead of the so-called pre-253 

balanced form. 254 

 There is no intermediate involvement of the free-surface elevation for ensuring depth-255 

positivity preserving reconstructions.  256 

 Topography continuity, i.e. at the interfaces, based on Eqs. (23)-(24), is ensured.  257 

By denoting ܃േଵȀଶേ ൌ േଵݔ୦൫܃ ଶΤേ ൯ ൌ ൣ݄േଵȀଶേ ǡ േଵȀଶേݍ ൧
േଵȀଶݖ , ൌ േଵݔ୦൫ݖ ଶΤേ ൯ to be values at the 258 

interfaces ݔାଵ ଶΤ  and ݔିଵ ଶΤ , respectively, well-balanced and positivity preserving versions 259 

can be obtained and will be appended with the superscript “star”: 260 

݄ିଵȀଶേǡכ ൌ max൫Ͳǡ ݄ିଵȀଶേ ൯       and      ݍିଵȀଶേǡכ ൌ ݄ିଵȀଶേǡכ ିଵȀଶേݑ  (31) 

݄ାଵȀଶേǡכ ൌ max൫Ͳǡ ݄ାଵȀଶേ ൯       and      ݍାଵȀଶേǡכ ൌ ݄ାଵȀଶേǡכ ାଵȀଶേݑ  (32) 

where ݑିଵȀଶା ൌ ିଵȀଶାݍ Ȁ݄ିଵȀଶା  and ݑାଵȀଶି ൌ ାଵȀଶିݍ Ȁ݄ାଵȀଶି  when ݄ ୦ȁூ   ௗ௬. Further to (31) 261݄݈ݐ

and (32), the following (numerical) conditions for interface topography evaluations are 262 

necessary to also ensure the well-balanced property for partially wet cases, i.e. when the flow 263 

(from one side) is blocked by a dry obstacle (from the other side): 264 



כିଵȀଶݖ ൌ ିଵݖ ଶΤכ െ max൫Ͳǡ െ݄ିଵȀଶା ൯       and      ݖାଵȀଶכ ൌ ାଵݖ ଶΤכ െ max൫Ͳǡ െ݄ାଵȀଶି ൯ (33) 

It may be worth noting that Eqs. (31-33) only act on potentially changing interface 265 

evaluations for the states of the flow and/or topography variables. These potential changes 266 

must then be used to consistently re-define “positivity-preserving coefficients”, which can be 267 

done by reapplying Eqs. (19), (20), (23) and (24) to re-initialize the coefficients as a 268 

subsequent step to Eqs. (31-33). This will lead to revised coefficients for use in the DG2 269 

operators (27-28), which will be appended by a “bar” symbol: 270 

ሻݐഥሺ܃ ൌ ͳʹ ൫܃ାଵȀଶିǡכ  כିଵȀଶାǡ܃ ൯ (34) 

ሻݐഥଵሺ܃ ൌ ͳʹ ൫܃ାଵȀଶିǡכ െ כିଵȀଶାǡ܃ ൯ (35) 

ҧݖ ൌ ͳʹ ൫ݖାଵȀଶכ  כିଵȀଶݖ ൯ (36) 

ҧଵݖ ൌ ͳʹ ൫ݖାଵȀଶכ െ כିଵȀଶݖ ൯ (37) 

 271 

3.2 Dispersive terms computation 272 

To consistently discretize the dispersive terms in Eq. (12), which have higher order 273 

derivatives, an alternative DG discretization approach (Cockburn and Shu, 1998) is used. In 274 

contrary to the work in Duran and Marche (2015), the mass and stiffness matrices obtained 275 

are diagonal, due to the adoption of the Legendre polynomials, hence resulting in a simpler 276 

structure. First, the following second-order Partial Differentiable Equation (PDE) for an 277 

arbitrary scalar valued function ݑ is considered:  278 

݈ െ ߲௫ଶݑ ൌ Ͳ (38) 



Defining an auxiliary variable ݓ, the above equation could be rearranged as a set of two 279 

coupled first-order PDEs: 280 

ݓ  ߲௫ݑ ൌ Ͳ ݈  ߲௫ݓ ൌ Ͳ 
(39) 

Then, a weak formulation is obtained by multiplying the equations by a test function ݒ, then 281 

integrating by parts over the control volume ܫ: 282 

න ூݔ݀ݒݓ െ න ݑ μ௫ݔ݀ݒூ  ାଵݑ ଶΤ ାଵݔ൫ݒ ଶΤ ൯ െ ିଵݑ ଶΤ ିଵݔ൫ݒ ଶΤ ൯ ൌ Ͳ 

න ூݔ݀ݒ݈ െ න ݓ μ௫ݔ݀ݒூ  ାଵݓ ଶΤ ାଵݔ൫ݒ ଶΤ ൯ െ ିଵݓ ଶΤ ିଵݔ൫ݒ ଶΤ ൯ ൌ Ͳ 

(40) 

The interface fluxes ݑ  and ݓ  are computed as (Cockburn and Shu, 1998): 283 

ݑ ൌ തݑ െ  ۄݑۃߦ
ݓ ൌ ഥݓ  ۄݓۃߪ  ݔοߣ  (41) ۄݑۃ

in which the interface average ݑത ൌ ሺݑା  ۄݑۃ ሻȀʹ and jumpିݑ ൌ ሺݑା െ  ሻȀʹ are defined 284ିݑ

based on the right and left interface values ݑା and ିݑ, respectively. The value of upwind 285 

parameters, ߦ and ߪ, and penalization parameter ߣ depends on the selected method to 286 

compute fluxes. Different approaches are available for computing these fluxes, e.g. the 287 

centered Bassi and Rebay (BR) approach and its stabilized version (sBR), the alternate 288 

upwind approach also known as Local Discontinuous Galerkin (LDG) and the Interior 289 

Penalty (IP) approach. In the present study the BR flux was avoided given its sub-optimal 290 

convergence rates (Duran and Marche, 2015). Among the other options, which can deliver 291 

optimal convergence rates (Kirby and Karniadakis, 2005; Eskilsson and Sherwin, 2006; 292 



Steinmoeller et al., 2012, 2016), the LDG flux is chosen in this work and can be obtained by 293 

setting ߦ ൌ ߪ ൌ ͳ and ߣ ് Ͳ (Cockburn and Shu, 1998).  294 

In the same manner as the RKDG method, all variables in Eqs. (39) have local 295 

expansions. Setting the test functions equal to basis function ߶ and replacing the approximate 296 

solutions of variables, the global formulations of Eqs. (39) are obtained in matrix form as 297 

follows: 298 

ॸ܅ ൌ ॺ܃ െ ሺॱ െ  ܃ॲሻߦ

ॸۺ ൌ ॺ܅ െ ሺॱ  ܅ॲሻߥ െ ߣ݄ ॲ܃ 

(42) 

where ܃ ,܅, and ۺ are vectors of expansion coefficients of ݑ ,ݓ and ݈, respectively. ॸ and ॺ 299 

are the mass and stiffness matrices which have a block diagonal structure: 300 

ॸ ൌ ۻଵ ڰ ேۻ ǡ         ॺ ൌ ܁ଵ ڰ  ே (43)܁

where each block is of the form: 301 

ܯ ൌ න ߶߶ ூݔ݀ ǡ         ܵ ൌ න ߶ ݔ݀݀ ߶ ூݔ݀  (44) 

Because of adopting the Legendre polynomials as basis functions, the mass and stiffness 302 

matrices are diagonal, resulting in a simpler structure especially when the order of the method 303 

increases. Matrices ॱ and ॲ which account for the interface fluxes, have the following block 304 

tri-diagonal structure:  305 



1/ 2 3 / 2 1/ 2 1/ 2

3 / 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 0 1 1/ 2 1/ 2

1/ 2 1/ 2 1 0 1/ 2 1/ 2

1/ 2 1/ 2 0 1 1/ 2 1/ 2

1/ 2 1/ 2 1 0 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 3 / 2

1/ 2 1/ 2 3 / 2 1/ 2

  
   
   
 

 
 

  
 
   
 

 
    
 

E  (45) 

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1 0 1/ 2 1/ 2

1/ 2 1/ 2 0 1 1/ 2 1/ 2

1/ 2 1/ 2 1 0 1/ 2 1/ 2

1/ 2 1/ 2 0 1 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

1/ 2 1/ 2 1/ 2 1/ 2

   
    
  
 
    
 

  
 
  
 

    
      

F
 

(46) 

Finally, the first and second order derivative operators are obtained as: 306 

܅ ൌ െ॰௫ۺ    ,܃ ൌ ॰௫ଶ(47) ܅ 

where: 307 

॰௫ ൌ െॸିଵሺॺ െ ॱ   ॲሻ (48)ߦ

॰௫ଶ ൌ ॸିଵ ൬െሺॺ െ ॱ െ ॲሻ॰௫ߥ െ ߣ݄ ॲ൰ (49) 

Deploying these differentiation matrices, all the derivatives and nonlinear products could be 308 

computed. For solving the differential matrices there are several choices, e.g. Duran and 309 

Marche (2015) used the LU Factorization method. Here, the block tri-diagonal matrices were 310 



solved by block forward and back substitution and since they were diagonally dominant, no 311 

pivoting was required. 312 

3.3 Fourth-order bed projection for the dispersive terms  313 

Another consideration regarding the discretization of the dispersive terms is how to handle 314 

the associated local bed projection. In contrast to the convective part where the bed projection 315 

is linear, the dispersive source terms entail third-order derivatives for the topography, which 316 

hence means that a fourth-order Discontinuous Galerkin (DG4) approximation is needed 317 

(݇ ൌ ͵) to accountably achieve this operation. Such a local expansion for the topography has 318 

the following form: 319 

ሻȁூݔ୦ሺݖ ൌ  ሻݔ߶ሺݖ
ୀ ൌ ߶ሺܺሻݖ  ଵ߶ଵሺܺሻݖ  ଶ߶ଶሺܺሻݖ  ଷ߶ଷሺܺሻݖ

 
(50) 

in which ܺ ൌ ௫ି௫ο௫Ȁଶ, and ߶ሺܺሻ are the L2-orthogonal Legendre polynomials, as previously 320 

introduced in Eq. (17). These polynomials are written as: 321 

߶ሺܺሻ ൌ ͳǡ ߶ଵሺܺሻ ൌ ܺǡ ߶ଶሺܺሻ ൌ ͳʹ ሺ͵ܺଶ െ ͳሻǡ ߶ଷሺܺሻ ൌ ͳʹ ሺͷܺଷ െ ͵ܺሻ
 

(51) 

The derivatives of the topography can be obtained by differentiating Eq. (50) with respect to 322 

x, i.e. 323 

߲௫ൣݖ୦ሺݔሻȁூ൧ ൌ ߲௫ሾ߶ሺܺሻሿݖ  ଵ߲௫ሾ߶ଵሺܺሻሿݖ  ଶ߲௫ሾ߶ଶሺܺሻሿݖ  ଷ߲௫ሾ߶ଷሺܺሻሿݖ
 

(52) 

Inserting the derivatives of polynomials into Eq. (52) results in, 324 

߲௫ൣݖ୦ሺݔሻȁூ൧ ൌ οʹݔ ଵݖ  ܺοݔ ଶݖ  ቆͳͷܺଶοݔ െ ο͵ݔቇ ଷݖ
 

(53) 

Recursive differentiating of Eq. (53) would result in higher derivatives as follows, 325 



߲௫ଶൣݖ୦ሺݔሻȁூ൧ ൌ ͳʹοݔଶ ଶݖ  Ͳܺοݔଶ ଷݖ
 

(54) 

߲௫ଷൣݖ୦ሺݔሻȁூ൧ ൌ ͳʹͲοݔଷ ଷݖ
 

(55) 

In center of the cells, X equals to zero, therefore, 326 

߲௫ൣݖ୦ȁூ൧ ൌ οʹݔ ଵݖ െ ο͵ݔ ଷݖ
 

(56) 

߲௫ଶൣݖ୦ȁூ൧ ൌ ͳʹοݔଶ ଶݖ
 

(57) 

߲௫ଷൣݖ୦ȁூ൧ ൌ ͳʹͲοݔଷ ଷݖ
 

(58) 

The degrees of freedom for the topography ሺݖଷሻୀǡଵǡଶǡଷ are calculated as the projection of 327 ݖ୦ሺݔሻ onto the space of approximating polynomials: 328 

ݖ ൌ ʹ݈  ͳοݔ න ሻூݔ୦ሺݖ ߶ ൬ݔ െ ʹȀݔοݔ ൰ ݔ݀
 

(59) 

The integral terms are evaluated by Gaussian quadrature rule and result in the followings: 329 

ݖ ൌ ͳʹ ାଵȀଶ൯ݔ൫ݖൣ  ିଵȀଶ൯൧ݔ൫ݖ
 

(60) 

ଵݖ ൌ ξ͵ʹ ቈݖ ቆݔ  οݔ ξ͵ ቇ െ ݖ ቆݔ െ οݔ ξ͵ ቇ
 

(61) 

ଶݖ ൌ ͷͻ ቈݖ ቆݔ  οݔ ξͳͷͳͲ ቇ െ ሻݔሺݖʹ  ݖ ቆݔ െ οݔ ξͳͷͳͲ ቇ
 

(62) 

ଷݖ ൌ ሼߜߤሺʹͲߜଶ െ ͵ሻሾݖሺݔ  οߜݔሻ െ ݔሺݖ െ οߜݔሻሿ ԢଶߜԢሺʹͲߜԢߤ െ ͵ሻሾݖሺݔ  οߜݔԢሻ െ ݔሺݖ െ οߜݔԢሻሿሽ
 

(63) 



where Ɂ ൌ ͳ ʹට൫ͳͷ  ʹξ͵Ͳ൯Ȁ͵ͷൗ , ɁԢ ൌ ͳ ʹට൫ͳͷ െ ʹξ͵Ͳ൯Ȁ͵ͷൗ ߤ , ൌ ͳ Ͷ െ ξ͵ͲȀʹΤ  and 330 

Ԣߤ ൌ ͳ Ͷ  ξ͵ͲȀʹΤ . It should be noted that quadrature weights and coefficients in Eqs. (60-331 

63) are specific to a forth order approximation. In practice, topographic data are often 332 

provided as a set of discrete values and are generally difficult to be defined as a mathematical 333 

expression. Therefore, proper interpolation techniques are required which is not a 334 

straightforward issue (Kesserwani and Liang, 2011). In the present study, a simplified and 335 

practical consideration is used for determining ݖ without involving direct calculation of the 336 

topographic values at the local points. Within a computational cell ܫ ൌ ିଵȀଶǢݔൣ  ାଵȀଶ൧, 337ݔ 

assuming that the discrete topographic data are available at its lower and upper limits, i.e. 338 ݖ൫ݔିଵȀଶ൯ and ݖ൫ݔାଵȀଶ൯, the topography is defined linearly by ݖ൫ݔିଵȀଶ൯ and ݖ൫ݔାଵȀଶ൯ in 339 

cell ܫ and the intermediate topographic data at ݖ ቀݔ േ οݔ ξଷ ቁ and ݖ ቀݔ േ οݔ ξଵହଵ ቁ may then 340 

be obtained by linear interpolation. As a result the topography-associated degrees of freedom 341 

are written as: 342 

ݖ ൌ ͳʹ ାଵȀଶ൯ݔ൫ݖൣ  ିଵȀଶ൯൧ݔ൫ݖ
 

(64) 

ଵݖ ൌ ͳʹ ାଵȀଶ൯ݔ൫ݖൣ െ ିଵȀଶ൯൧ݔ൫ݖ
 

(65) 

ଶݖ ൌ ξͳͷͻ ାଵȀଶ൯ݔ൫ݖൣ െ ݖʹ  ିଵȀଶ൯൧ݔ൫ݖ
 

(66) 

ଷݖ ൌ ൛ߜߤሺʹͲߜଶ െ ͵ሻൣʹݖߜ൫ݔାଵȀଶ൯ െ ିଵȀଶ൯൧ݔ൫ݖߜʹ ᇱଶߜԢ൫ʹͲߜԢߤ െ ͵൯ൣʹߜԢݖ൫ݔାଵȀଶ൯ െ ିଵȀଶ൯൧ൟݔ൫ݖԢߜʹ
 

(67) 

3.4 Localized handling of wave breaking 343 

To account for wave breaking, an approach for switching from the GN equations to the NSW 344 

equations is implemented and locally activated (i.e. to switch off dispersive source terms) 345 



when the wave is about to break. In this work, wave breaking detection has been achieved by 346 

a numerical criterion (instead of deploying sophisticated physical parameters, as discussed in 347 

Section 1). This criterion is specific to the DG method’s superconvergence behavior, which is 348 

also used for shock detection in order to restrict the operation of the slope limiter 349 

(Krivodonova et al., 2004). In summary, regions of potential instability where switching 350 

should occur are here identified according to the following sensor:  351 

ାଵȀଶି܁۲  Ǥ        ܁۲       ࢘ିଵȀଶା  Ǥ 
 

(68) 

where ۲܁ାଵȀଶି  and ۲܁ିଵȀଶା  are the discontinuity detectors at the two cell edges (ݔାଵȀଶ and 352 ݔିଵȀଶ) within cell ܫ (Kesserwani and Liang, 2012). The expression for ۲܁ାଵȀଶି  is given by 353 

ାଵȀଶି܁۲ ൌ ห܃ାଵȀଶା െ ାଵȀଶି܃ หቚοʹݔቚ max൫ห܃ െ ଵȀξ͵หǡ܃ ห܃   ଵȀξ͵ห൯܃
(69) 

and ۲܁ିଵȀଶା  is defined by analogy. It is worth nothing that once (68) switches the RKDG2 354 

model to solving the NSW equations, it has been found necessary not to let the model return 355 

to the GN equations or otherwise the model may experience instabilities in the vicinity of the 356 

breaking point. It is also useful to stress out that another version of the sensor in Eq. (68) has 357 

been used for the detection of local cells that are in need for slope limiting, based however on 358 

a higher threshold value of 10.  359 

 360 

4- Model verification and validation 361 

This part will demonstrate the performance of the proposed RKDG2-GN model in predicting 362 

wave propagation and transformation through comparisons with analytical and experimental 363 

data. The inlet and outlet boundary conditions will depend on the test as detailed in the 364 



following. For quantitative analysis, errors and orders of accuracy are calculated based on the 365 

L2-norms per number of cells ܰ, i.e. as follows: 366 

ݎݎݎܧ ൌ ͳܰ ԡ ܷ௫௧ െ ܷ௨ԡଶԡ ܷ௫௧ԡଶ  (70) 

 367 

Fig. 2. Motionless flow over different patterns for the topography and wetting and drying. Computed full 368 

RKDG2 solution (blue lines) of: (a) free surface elevation, (b) the flow rate. Also included the interface 369 

points of the RKDG2 solutions (green dots), the continuous DG2 projection of the topography (black 370 

lines) and its interface evaluations (red dots) 371 

 372 

4.1 Quiescent flow over an irregular bed 373 

This test has been aimed and designed to validate the well-balanced, or conservative property 374 

of the proposed model over a domain that simultaneously involves various topography shapes 375 

ranging from smooth hump-like to sharp building-like geometries, and also considering wet 376 

and dry zones. The topography shapes are defined in Eq. (71) below. 377 

ሻݔሺݖ ൌ ۔ۖەۖ
ʹͲǤۓ െ ͲǤͲͷሺݔ െ ͳͲሻଶ ͺ ൏ ݔ  ͳʹͲǤͲͷݔ െ ͳǤͳ ʹʹ ൏ ݔ  ʹͷെͲǤͲͷݔ  ͳǤͶ ʹͷ ൏ ݔ  ʹͺͲǤͲ͵ ͵ͻ ൏ ݔ  Ͷ݈݁݁ݎ݄݁ݓ݁ݏ  (71) 

The still initial conditions are given by: 378 
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ݑ݄ ൌ Ͳ,    ݄  ݖ ൌ ͲǤʹ (72) 

Eq. (71) enables to distinguish three important scenarios for assessing the conservation 379 

property with wetting and/or drying, i.e. at a drying point at x = 10 m, for a wet case over a 380 

sharp topography gradient at x = 25 m and when the wet-dry front results from an intersection 381 

with a dry building at x = 39 and 46 m (see Figure 2a). The computational domain, of length 382 

50 m, is divided into 50 cells and the model is run up to 100 seconds. Figure 2 reveals the 383 

behavior of the full RKDG2-GN (linear) solutions, showing clearly still steady state of the 384 

free surface elevation (i.e. Figure 2a) and slightly perturbed local solutions for the flow rate 385 

(i.e. Figure 2b) that, although illustrative of the discontinuous character, remain within 386 

machine precision error (1×10-16). These results hence indicate that the proposed numerical 387 

model verify the well-balanced property, which should hold irrespective of the mesh size. In 388 

particular, looking at the zoom in portion in Figure 2a, the proposed scheme remains stable 389 

for the well-balanced property when the local linear solution cut through the dry step-like 390 

obstacle, which is likely to yield practical conveniences (e.g. negating the need for expanding 391 

significant amount of time for treating the presence of building within the mesh). Notable 392 

also, the magnitude of dispersive terms has been observed to be in the range of machine 393 

precision, indicating that the proposed RKDG2-GN model will not predict any spurious flows 394 

when handling potentially realistic flow scenarios involving highly irregular topography 395 

shapes and wetting and/or drying. 396 

 397 

4.2 Oscillatory flow in a parabolic bowl 398 

This test is mainly featured by moving wet-dry interfaces over an uneven topography and is 399 

known to be challenging for NSW-based numerical models. It is here considered to assess 400 

many properties of the proposed GN model. It consists of an oscillatory flow taking place 401 



inside a convex parabolic topography. The bed topography is described by ݖሺݔሻ ൌ ݄ሺݔȀܽሻଶ 402 

with constants ݄ and ܽ . By assuming a friction source term proportional to the velocity, i.e. 403 

ܵ ൌ െ߬ ݄ݑ (߬ is a constant friction factor), the analytical solution would be (Sampson, 404 

2009):  405 

ǡݔሺߟ ሻݐ ൌ ݄  ܽଶܤଶ݁ିఛ௧ͺ݃ଶ݄ ቆെ߬ݏ sin ݐݏʹ  ቆ߬ଶͶ െ ଶቇݏ cos ቇݐݏʹ െ ଶ݁ିఛ௧Ͷ݃ܤ
െ ݁ିఛ௧Ȁଶ݃ ൬ݏܤ cos ݐݏ  ܤʹ߬ sin ൰ݐݏ  ݔ

ǡݔሺݑ  ሻݐ ൌ ఛ௧Ȁଶି݁ܤ sin  ݐݏ

(73) 

 406 

where ܤ is a constant and  ݏ ൌ ඥͺ݄݃ െ ߬ଶܽଶȀʹܽ. The computational domain is considered 407 

to have a length L = 14,000 m, i.e. [-7000 m; 7000 m], and the problem constants are selected 408 

to be: ݄  ൌ ͳͳ m, ܽ ൌ ͶͲͲͲ m and ܤ ൌ ͻ mȀs. According to the value of ߬, a frictionless 409 

and a frictional sub-case can be considered. When ߬ ൌ Ͳ, the frictionless sub-case is obtained 410 

in which the flow is expected to oscillate indefinitely with a period of ܶ ൌ ͳͳͳ s; whereas 411 

when ߬  Ͳ, here equal to ͲǤͲͲͳͷ sିଵ, friction effects will be activated inducing a frictional 412 

flow that will be expected to decay with time until reaching a steady state. 413 



 414 

Fig. 3. Oscillatory flow in a parabolic bowl, numerical vs. analytical solutions at t = T / 2. From top: free 415 

surface elevation, velocity and magnitude of dispersive terms 416 
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 418 

Fig. 4. Oscillatory flow in a parabolic bowl, numerical vs. analytical solutions at t = T. From top: free 419 

surface elevation, velocity and magnitude of dispersive terms 420 
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Figures 3 and 4 compare simulated results obtained on different meshes (i.e. involving 421 

20, 40, 80, 160 and 320 computational cells) with the analytical solutions for both frictional 422 

and frictionless sub-cases at ݐ ൌ ܶȀʹ  and ݐ ൌ ܶ, respectively. In terms of predictability of 423 

the free surface elevation (Figures 3 and 4 – upper part), the simulations involving more than 424 

40 cells are seen to agree very well with analytical solution. However the velocity predictions 425 

(Figures 3 and 4 – middle part) seems to be more illustrative about the impact of the mesh 426 

size on the simulations, clearly indicating that more cells would be needed (i.e. ≥ 80 cells for 427 

the frictional case and ≥ 160 cells for the frictionless case) in order to fairly capture the trail 428 

of the vanishing velocity due to the moving wet-dry front. As to the spikes occurring in the 429 

vicinity of the wet-dry fronts, they are commonly observed discrepancies for such a test and 430 

would be expected to slightly reduce with mesh refinement (e.g. Kesserwani and Wang, 431 

2014). Figures 3 and 4 (lower part) include a view of the dispersive terms, which have a 432 

negligible magnitude, as expected for this kind of shallow flow, and a bounded variation 433 

(even after a longer time evolution, i.e. until t = 18T in our case). These results, supported 434 

also with the results in Section 4.1, indicate that the nonlinear and dispersive terms associated 435 

with extra source term, ۲, does not interfere with the stability of the proposed GN numerical 436 

solver when faced with dynamic wetting and drying processes over rough topographies. 437 

To investigate the conservation property of the present model, the time evolution of 438 

the domain-integrated total energy was computed over 18T, which writes: 439 

ሻݐሺܧ ൌ  ቀଵଶ ଶݑ݄  ଵଶ ଶቁߟ݃ ାȀଶିȀଶݔ݀     (74) 

Following the work in Steinmoeller et al. (2012), this quantity is normalized by its initial 440 

value ܧ and then recorded over time for two of the meshes (i.e. with 80 and 160 cells) 441 

considering both frictional and frictionless cases. The normalized total energy histories are 442 

plotted in Figure 5 with the histories produced by the use of the exact solution (Eq. 73). 443 



444 

Fig. 5. Oscillatory flow in a parabolic bowl; domain-integrated total energy time histories after a long 445 

time simulation (i.e. t = 18T). 446 

In both sub-cases, the normalized energy variation seems to be consistent despite the mesh 447 

size. For the frictional sub-case, the observed drop of energy level after some time is 448 

expected as the kinetic energy is proportional to the friction factor; however, after this drop, 449 

the remaining energy line remains constant, suggesting that there is no notable diffusivity in 450 

the proposed numerical scheme. As for the frictionless sub-case, the energy line appears to 451 

remain constant albeit with an oscillatory pattern, which is likely to be related to vanishing 452 

velocity as a result of the constant wetting and drying as can be noted from the exact profile. 453 

For the latter sub-case, the numerical model does not seem to be able to catch up with the 454 

analytical energy line at those instants where velocity vanishes after drying (i.e. when the 455 

kinetic energy instantaneously drops to zero). However, as can be seen in the frictional sub-456 

case, such an impact from the vanishing velocity after drying reduces as the velocity 457 

magnitude drops. Despite this discrepancy, the evolution of the total energy line, in both 458 

cases, shows no signal of a drop throughout the simulation, reinforcing that the presented 459 

RKDG2-GN model is conservative.  460 
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Finally, an accuracy-order analysis (Table 1) is provided based on the errors 461 

generated from the results of the frictional sub-case at ݐ ൌ ܶ. The numerical orders in the 462 

table show that the model is able to deliver second-order convergence rates, achieving on 463 

average orders of 2.2 and 2.3 for the depth and discharge variables, resp. These results further 464 

imply that the accuracy of the proposed RKDG2-GN model will be preserved even while 465 

coping with nearshore water simulations. 466 

Table 1: Errors and orders of accuracy for parabolic bowl flow (frictional) 467 

No. of elements  h  q 

  L2-error L2-order  L2-error L2-order 

20  7.95E-04 --  3.23E-02 -- 

40  1.88E-04 2.08  9.97E-03 1.72 

80  3.73E-05 2.33  2.25E-03 2.14 

160  7.80E-06 2.25  3.41E-04 2.72 

320  1.25E-06 2.64  6.93E-05 2.30 

4.3 Propagation of a solitary wave 468 

For accuracy assessment of dispersive wave behavior, a solitary wave propagating with a 469 

celerity c in the still water of depth ݄ is considered. The exact solution of the solitary wave 470 

that is similar in shape to solitons predicted by Korteweg-de Vries (KdV) equations 471 

(Steinmoeller et al., 2012), which is given by: 472 

݄ሺݔǡ ሻݐ ൌ ݄  ܽsechଶ ቆ ξଷଶబඥబା ሺݔ െ     ሻቇݐܿ

ǡݔሺݑ ሻݐ ൌ ܿ ൬ͳ െ ݄݄ሺݔǡ  ሻ൰ݐ

(75) 

where ܿ ൌ ඥ݃ሺ݄  ܽሻ is the wave celerity. The first case demonstrates the propagation of a 473 

highly nonlinear solitary wave in a 200 m long channel with a reference water depth of ݄ ൌ474 



ͳ m, and an amplitude of ܽ ൌ ͲǤʹ m, initially centered at ݔ ൌ ͷͲ m. Figure 6 compares the 475 

predicted wave profiles at different instants with the exact solution, the results in Duran 476 

(2014) on a mesh with 400 cells and our results on meshes with 400, 300 and 200 cells. 477 

 478 

Fig. 6. Comparison of solitary wave profiles at (a) t = 0, (b) t = 9.4, (c) t = 18.75 (d) t = 28.15 seconds, for 479 

exact analytical solution, numerical results of Duran (2014) using 400 cells, and the present model using 480 

400, 300 and 200 cells. 481 
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 482 

Fig. 7. Comparison of magnitudes of the dispersive source terms for the solitary wave at (a) t = 0, (b) t = 483 

9.4, (c) t = 18.75 (d) t = 28.15 seconds 484 
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Zoom-in portions of the wave are also included for allowing close qualitative comparisons. 486 

On the finest mesh of 400 cells, the proposed RKDG2-GN predictions are seen to be 487 

comparable with the predictions made in Duran (2014) using an RKDG3-GN approach on the 488 

same mesh, both agreeing well with the exact solution at all the output times. On the medium 489 

mesh of 300 cells, the RKDG2-GN predictions preserve a good agreement with results on 490 

finer meshes and the exact solution, which implies that the proposed RKDG2-GN can deliver 491 

the level of fidelity required despite being less costly and complex. 492 

 493 

Fig. 8. Comparison of solitary wave profiles with 200 cells using respective penalization parameters (Ȝ) at 494 

t = 28.15 s 495 
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said to be acceptable in terms of not being dissipative for the wave prediction, though it 498 

underperforms at the trailing wave (e.g. at t = 28.15 s). There, a larger amplitude is predicted 499 

when the coarse grid is used, which is not observed for the results on the finer meshes. Figure 500 

7 further provides a view on the evolution of the dispersive terms, which shows 501 
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inconsistently larger amplitude predictions on the coarsest mesh considered. However, these 502 

larger amplitudes seem to vanish by altering the penalization parameter of the LDG fluxes, 503 

e.g. when the ߣ parameter is equal to 5.6 as reveals Figure 8. This means that a user is likely 504 

to have the option to retain a fairly coarse mesh for this type of simulations, but may have to 505 

cope with more sensitive tuning for the parameters involved in the dispersive term solver. 506 

Table 2: Errors and orders of accuracy for depth and discharge for solitary wave propagation 507 

No. of elements  h  q 

  L2-error L2-order  L2-error L2-order 

20  1.21E-03 --  8.83E-02 -- 

40  1.86E-04 2.70  6.60E-03 3.74 

80  4.08E-05 2.19  1.54E-03 2.10 

160  7.24E-06 2.50  2.63E-04 2.55 

320  7.34E-07 3.30  2.69E-05 3.29 

640  1.76E-07 2.05  6.80E-06 1.99 

 508 

For a quantitative analysis, orders of accuracy (listed in Table 2) for free surface and 509 

discharge are computed based on errors associated with simulations on meshes with 20 to 640 510 

cells. On average, an order of 2.54 and 2.73 for the depth and discharge were achieved by the 511 

proposed RKDG2-GN solver, which are in the range of the orders achieved by other GN 512 

models based on a second-order formulation (e.g. Panda et al., 2014; Li et al., 2014). It may 513 

be useful to report that the contribution of the dispersive effects, which was noted significant 514 

for this test (i.e. ranging between |Dc| < 0.2, see Figure 7), could be responsible for the 515 

slightly higher average (numerical) orders acquired here (as also observed in the investigation 516 

in Duran (2014)).  517 



 518 

Fig. 9. Free surface profiles of head-on collision of two solitary waves, between numerical (dashed line) 519 

and experimental data of Craig et al. (2006) (dots). 520 

In order to perform further analysis on nonlinear and dispersive effects, the head-on 521 

collision of two solitary waves propagating in opposite directions has also been investigated. 522 

The experimental data of this case is based on Craig et al. (2006), which consists of a 3.6 m 523 

long flume for with still water depth of ݄ ൌ ͷ cm. The two waves are initially located at x = 524 

0.5 m and x = 3.1 m with the amplitudes equal to ܽଵ ൌ ͳǤͲ͵ cm and ܽ ଶ ൌ ͳǤʹͳ cm, 525 
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respectively. The simulations are conducted using N = 360 elements. Figure 9 shows the free 526 

surface profiles at different times, which shows a good agreement between numerical and 527 

experimental results. The maximum height occurs at t = 1.693 s. As it can be seen, the wave 528 

amplitude during the collision is larger than the sum of the amplitudes of the two incident 529 

waves, and even though after the collision a slight phase lag is observed, the waves 530 

eventually return to their initial shapes.  531 

 532 

Fig. 10. Experimental setup of Grilli et al. (1994) 533 

4.4 Shoaling of a solitary wave 534 

This test case concerns the nonlinear shoaling of a solitary wave over sloped beaches.  The 535 

performance of the numerical model is tested with the experimental data of Grilli et al. 536 

(1994). The setup consists of a solitary wave of relative amplitude ܽ ݄Τ ൌ ͲǤʹ propagating in 537 

a 27.4 m long flume with constant water depth of ݄ ൌ ͲǤͶͶ m approaching a mild sloped 538 

beach (1:35) (Figure 10). The free surface elevation was measured by several wave gauges 539 

with locations given in Table 3. The computational grid had a number of 685 cells (οݔ ൌ540 Ͷ cm), and the simulation was run for 10 s. 541 

Table 3: Location of the wave gauges in solitary wave shoaling test case  542 

Gauge g1 g3 g5 g7 g9 

Location 

(m) 
21.22 21.92 22.42 22.85 23.84 

15.4 m12.0 m
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44

 m
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 543 

Fig. 11. Comparison of free surface elevations as a function of time between the computed results of 544 

present model (lines) and experimental data of Grilli et al. (1994) (circles) at different gauges. 545 

 546 

Fig. 12. Comparison of free surface profiles between present model predictions (lines) and experimental 547 

data (circles) of Grilli et al. (1994) at times 4.93, 7.28, 9.1, 9.2 and 9.42 s, Left to right 548 

Figure 11 shows the comparison of computed free surface elevations as a function of time 549 

against the experimental data of Grilli et al. (1994) at different wave gauges, while in Figure 550 

12 free surface profiles of the computed and experimental results are compared at different 551 

times. The results show that with wave propagating toward the slope, it becomes more and 552 

more asymmetric and its crest steepens, and by increase of shoaling the wave gets closer to 553 

the breaking point. It is observed that the wave evolution is well predicted by the model, with 554 

just slight differences close to the breaking point. This shows that the present model is able to 555 

describe the shoaling processes with good accuracy. 556 
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 557 

Fig. 13. Periodic waves over a submerged bar: sketch of the basin and gauges location 558 
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4.5 Periodic waves over a submerged bar  560 

In this test, the model is examined for a more complex situation involving the propagation of 561 

a wave train over a submerged bar following the experimental work of Dingemans (1994) 562 

which is a classic test case for investigating both nonlinear and dispersive behavior of the 563 

waves. Figure 13 shows the experimental setup of Dingemans (1994). Periodic waves are 564 

generated and propagate in a 25 m long flume, with a still water depth of ݄ ൌ ͲǤͶ m 565 

offshore which reduces to 0.10 m on top of the bar with bottom topography defined as 566 

follows (in meters): 567 

ሻݔሺݖ ൌ ൞െͲǤͶ  ͲǤͲͷሺݔ െ ሻ   ݔ  ͳʹെͲǤͳ ͳʹ  ݔ  ͳͶെͲǤͳ െ ͲǤͳሺݔ െ ͳͶሻ ͳͶ  ݔ  ͳെͲǤͶ ݁ݎ݄݁ݓ݁ݏ݈݁     (76) 

Of the experiments reported in Dingemans (1994), we consider the configuration with the 568 

relative wave amplitude ܽȀ݄ ൌ ͲǤͲʹͷ and the period ܶ ൌ ʹǤͲʹ s, which is often used to 569 

validate dispersive wave propagation without breaking. Waves are generated using a third-570 

order Stokes solution to impose the free surface elevation governed by:  571 

ǡݔሺߞ ሻݐ ൌ ܽ cos ൬ʹߨ ቀ௫ఒ െ ௧்ቁ൰  గమఒ cos ൬Ͷߨ ቀ௫ఒ െ ௧்ቁ൰ െ గమయଶఒమ ቂcos ൬ʹߨ ቀ௫ఒ െ ௧்ቁ൰ െ (77) 
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cos ൬ߨ ቀ௫ఒ െ ௧்ቁ൰ቃ    
where ܶ , ܽ and ߣ are the wave period, amplitude and wavelength, respectively. The free 572 

surface elevation was measured by 10 wave gauges with locations specified in Figure 11. The 573 

computational domain is meshed with 625 cells (i.e. οݔ ൌ ͲǤͲͶ m) and waves are propagated 574 

for 35 seconds. Figure 14 shows the time series of computed free surface elevations at 575 

different wave gauges, in comparison with the data of Dingemans (1994). Monochromatic 576 

waves shoal and steepen over the mild sloped beach, causing transfers of energy toward 577 

higher harmonics which are subsequently released in the shallowest part and the lee side of 578 

the bar, then continue to propagate at their own deep-water phase speed. In the first 6 gauges, 579 

which correspond to the front slope of the bar, the wave shoaling effects are prominent and 580 

good agreements could be observed. However, there are discrepancies in the last 4 gauges 581 

located on the lee side. These anomalies are most likely because of the high non-linear 582 

interactions generated as a result of waves approaching the upper parts of the submerged bar. 583 

The same results are reported by Duran and Marche (2015) using finer grid size (οݔ ൌ584 ͲǤͲʹͷ m) and 3rd order polynomials, which suggests that sole improvement in the numerics 585 

would not be enough to remove such anomalies. Rather, they seem to result from the one-586 

parameter model, i.e. Eq. (1), deployed here, which is reported to have shortcomings in 587 

accurately describing the full release of the “higher harmonics” associated with highly 588 

dispersive waves (Duran and Marche 2015).  589 



 590 

Fig. 14. Time series of free surface elevation of waves passing over the submerged bar at different 591 

locations. Comparison between numerical (solid line) and experimental data (circles) of Dingemans (1994) 592 
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A possible alternative to improve the simulation for such scenarios would be the three-593 

parameters optimized GN model proposed in Lannes and Marche (2015). However, for 594 

general purpose modelling, the latter model is more complex (i.e. to conveniently decompose 595 

into a conservative hyperbolic form that also includes elliptic source terms), is 20% more 596 

computationally demanding (i.e. it requires the resolution of an additional sparse 597 

unsymmetric linear system), and trade-off with sensitivity issues (i.e. to choose and tune 598 

across three parameters, instead of one, to achieve a simulation for individual problems). 599 

4.6 Solitary wave breaking and run-up and -down over a sloped beach 600 

This test is considered to assess the ability of the present RKDG2-GN solver to model a high 601 

energy wave breaking over a sloped (initially dry) beach with wave run-up and run-down. 602 

The domain is a sloping beach (1:19.85) of length 45 m and holding a still water level ݄ ൌ603 ͳ m and an incident solitary wave of relative amplitude ܽȀ݄ ൌ ͲǤʹͺ (Synolakis, 1987). 604 

Simulations are performed on meshes with 300 and 150 cells, respectively. The numerical 605 

free surface elevation profiles at different output (normalized) times כݐ ൌ  ሺ݃Ȁ݄ሻଵȀଶ are 606ݐ

included in Figure 15 where they are also compared with the experimental profiles reported 607 

in Synolakis (1987), RKDG3-GN results produced in Duran and Marche (2015) using 600 608 

cells, and the results of the non-hydrostatic shallow water model in Lu et al. (2015) solved by 609 

a hybrid FV-FD scheme on a mesh with 376 cells. The results show wave height increase due 610 

to shoaling until around כݐ ൌ ʹͲ when breaking occurs. After breaking at כݐ ൌ ʹ͵, the wave 611 

height decreases rapidly and the induced run-up collapses over the beach. During ʹͷ  כݐ 612 ͷͷ, run-up and run-down phases are observed. All the models can be said to be in good 613 

agreement with the experiments; however, at the breaking moment (כݐ ൌ ʹͲ) the results of 614 

present model and those of Lu et al. (2015)’s model are closer to the experiment. The good 615 

performance of the latter could be a result of the higher level of physical complexity in the 616 

incorporation of non-hydrostatic terms.  617 
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Fig. 15. Comparison of free surface elevation for solitary wave breaking, runup and run down at various 619 

instances on a plane beach: experimental data of Synolakis (1987) (circles); numerical results of Lu et al. 620 

(2015) using 376 cells (gray long dash); numerical results of Duran and Marche (2015) using 600 cells 621 

(green short dash); results of present model with 300 cells (red solid line); results of present model with 622 

150 cells (black solid line). Note that at t*=23, the results of Lu et al. (2015) were not available. 623 

 624 

This also shows that using the present numerical criteria (68) for wave breaking detection, 625 

despite its simplicity, could well be a convenient choice for the RKDG2-GN model. The 626 

higher level of numerical accuracy and of resolution involved in Duran and Marche (2015) 627 

model does not seem to comparatively improve much in the predictions. The proposed 628 

RKDG2-GN model results on the coarser meshes (i.e. using 150 and 300 cells) remain 629 

predominantly close to experimental results throughout the transformations and processes 630 

that the wave has undergone, suggesting that it can form the base for an efficient substitute to 631 

handle coastal modeling in a fairly affordable model structure. 632 

 633 

5. Conclusions 634 

A second-order RKDG method (RKDG2) is proposed to simulate propagation and 635 

transformation of fully nonlinear and weakly dispersive waves over domains involving 636 

uneven beds and wet-dry fronts. The mathematical model has been based on a set of newly 637 

developed efficient 1D Green-Naghdi (GN) equations. The numerical method extends a 638 

robust RKDG2 hydrodynamic solver by further considering elliptic source terms that account 639 

for dispersive corrections. This has been achieved by a Local Discontinuous Galerkin (LDG) 640 

discretization for solving the decoupled elliptic-hyperbolic governing equations and by 641 

locally involving fourth-order topography discretization for the dispersive components. 642 

Quantitative and qualitative assessments with test cases covering nearshore water flow 643 



propagations have been performed. The results demonstrate that the proposed RKDG2-GN 644 

solver is able to switch across different water wave patterns, while preserving accuracy, 645 

conservation and practical properties featuring the original shallow water RKDG2 model. 646 

Future work will further consider strategies for extension and validation for the 2D case, and 647 

incorporation of an adaptive meshing strategy.  648 
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