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Abstract Two structures A and B are n-equivalent if player II has a winning strategy
in the n-move Ehrenfeucht-Fraı̈ssé game on A and B. We extend earlier results about n-
equivalence classes for finite coloured linear orders, describing an algorithm for reducing
to canonical form under 2-equivalence, and concentrating on the cases of 2 and 3 moves.
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1 Introduction

In [1] we studied the equivalence of finite coloured linear orders up to level n in an
Ehrenfeucht-Fraı̈ssé game, written as ≡n. This means that player II has a winning strategy
in an n-move Ehrenfeucht-Fraı̈ssé game. We also made some remarks about the infinite
case. We gave some bounds for the optimal representatives in the finite case, meaning ones
of minimum length, and the infinite case for up to 2 moves. These results were extended
in [2] to all coloured ordinals, in the monochromatic case giving a precise list of optimal
representatives, and in the coloured case giving bounds.

In this paper we return to the finite case, and extend the work of the first paper, by
improving the bounds in some instances, and throwing further light on uniqueness of repre-
sentatives. First we briefly recall the required definitions. A coloured linear ordering, also
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called a coloured string, is a triple (A,<, F ) where (A,<) is a linear order and F is a map-
ping from A onto a set C of ‘colours’. We just write A instead of (A,<, F ) provided that
the ordering and colouring are clear, and if X ⊆ A, we write F(X) for {F(x) : x ∈ X}.
In the n-move Ehrenfeucht-Fraı̈ssé game on coloured linear orders A and B players I and
II play alternately, I moving first. On each move I picks an element of either structure, and
II responds by choosing an element of the other structure. After n moves, I and II between
them have chosen elements a1, a2, . . . , an of A, and b1, b2, . . . , bn of B, and player II wins
if the map taking ai to bi for each i is an order and colour-isomorphism, and player I wins
otherwise. We say that A and B are n-equivalent and write A ≡n B, if II has a winning strat-
egy. Then ≡n is an equivalence relation having just finitely many n-equivalence classes. An
optimal representative is a member of an equivalence class of least possible length (which is
chosen lexicographically least if there is more than one such, that is according to dictionary
order assuming some fixed ordering of the set of colours), and a string or coloured string is
called optimal if it is optimal in its equivalence class.

In [1] we gave upper bounds for the lengths of optimal representatives of ≡n-classes
of m-coloured finite linear orders. Only for the case n = 2 were these bounds exact. We
return to this case, describing explicitly the classification of finite m-coloured linear orders
up to ≡2-equivalence (based on the idea of an ‘m-configuration’ introduced in [1]). From
this we are able to read off which equivalence classes are finite or infinite, and provide an
algorithm for determining an optimal representative corresponding to any given finite m-
coloured linear order. We also show that a finite coloured linear order is ≡2-optimal if and
only if each 1-character (see below for the definition) appears at most once.

The problem for more than 2 moves seems to be quite hard, so we concentrate on the case
of 3 moves. The idea is that using a key inductive lemma from [1], we need to understand
better how the 2-characters behave, and that is the reason for re-examining the case n = 2
in more detail.

Next we recall the notion of ‘character’ from [1], and the main result about characters.
Let us fix an ordering of the set of colours. We write �(m, n) for the family of all finite m-
coloured linear orders A such that A has least length in its ≡n-class, and subject to this, A is
lexicographically least (with respect to the ordering of the colours chosen). Since there are
only finitely many ≡n-classes, �(m, n) is finite. We may therefore define g(m, n) to be the
maximum of the lengths of members of �(m, n). We write the representative for A as [A]n.
In a coloured linear order A, the n-character of a ∈ A having colour c is the ordered triple
〈[A<a]n, [A>a]n, c〉 (where A<a = {x ∈ A : x < a} and A>a = {x ∈ A : x > a}). We let
ρn(A) = {〈[A<a]n, [A>a]n, F (a)〉 : a ∈ A}. Thus we shall always include the colour as part
of the n-character of a, (unlike in [1]). This means for instance that the next theorem reads
a little differently from there, but it has precisely the same content. We interchangeably say
that a realizes this n-character, or determines it, or exhibits it.

Theorem 1.1 ([1]) A ≡n+1 B if and only if ρn(A) = ρn(B).

We need the following result, which is Theorem 2.1 of [1] (which we call the ‘Cutting
lemma’).

Lemma 1.2 Let A be a finite m-coloured linear order and let a and b be elements of A

such that a < b satisfying the following conditions:

(i) a and b determine the same n-character,
(ii) for every x ∈ A with a < x ≤ b, there is y ≤ a having the same n-character as x.

Then A is (n + 1)-equivalent to B = A \ (a, b].
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Note that this may be applied in a trivial case, namely, that no two consecutive points of
an ≡n+1-optimal finite string can have equal n-characters.

It is clear from Theorem 1.1 that if in an m-coloured linear order, no two points have
the same n-character, then the ordering is ≡n+1-optimal, meaning that it is not (n + 1)-
equivalent to any shorter ordering. Based on this, we present a construction of a finite
2-coloured linear order of length 70 in which all points have distinct 2-characters, and which
is therefore ≡3-optimal, and show that 70 is the greatest possible number in which all 2-
characters are distinct. We also construct a finite coloured ≡3-optimal linear order of length
74, in which 2-characters must therefore repeat. It should be possible to find longer exam-
ples, but the details would be quite tedious, so giving one of this length is good enough
to illustrate the idea. This casts some light on the hypothesis required for the ‘cutting
lemma’ (that is, what it says is not that we can reduce the length just based on repetition of
characters—more is required about what happens in between).

The typical case we have in mind is that when searching for optimal representatives, we
start with a possibly long coloured order, and successively reduce it by removing pieces,
retaining n-equivalence, till it becomes optimal. The proof of [1] is too indirect to guarantee
immediately that the final ordering is a subordering of the one we start with. We therefore
extend the material of [1] by showing that for 2-equivalence at any rate, we can guarantee
that the optimal representative is contained in the original one; we present an algorithm for
achieving this. We believe that this is false for n = 3, and in Section 3 explain why.

With regard to the general case, but particularly applied to n = 3, we use directed graphs
to help analyze n-equivalence. One method would be to take (n − 1)-characters themselves
as vertices of the directed graph, with an arrow going from 〈X1, Y1, c1〉 to 〈X2, Y2, c2〉 if
for some representatives x1, x2, y1, y2 of X1, Y1, X2, Y2, x1c1 ≡n−1 x2 and c2y2 ≡n−1 y1,
where these are the strings obtained from x1, y2 by adding a c1-coloured point on the right,
a c2-coloured point on the left respectively. The idea is that in scanning a (long) word from
left to right, at each point we can view its (n − 1)-character to left and right, and see how
this varies. In practice in what we present here for m = 2, n = 3, we focus just on the
‘middle’ section of the given string, in which case a simplified directed graph gives all the
information we require.

2 Classification of 2-Equivalence Classes

In this section we give a lot more detail about the 2-equivalence classes of finite coloured
linear orders. In [1] we established the precise value (m2 + 2m) of the least upper bound
of the lengths of the optimal representatives of ≡2-classes. Here we are able, using similar
ideas, to give an explicit list of all the ≡2-classes, from which we can read off, for instance,
the length of the optimal representative of each class, and also note which classes are finite
or infinite. The key idea here is to use the notion of ‘m-configuration’ which was introduced
in [1].

We fix m as the number of colours. An m-configuration is then defined to be a linear
order of the form T = {xi : 1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ m} in which x1 < x2 < . . . < xm

and y1 > y2 > . . . > ym, and x1 and y1 are the least and greatest members of T respectively.
Here all the xi are therefore distinct, and so are the yi , but it is not ruled out that xi = yj for
certain i and j . Each m-configuration therefore has size between m and 2m. It is understood
that the sequences (xi) and (yi) are part of the configuration. That is, to determine the
configuration, we have to know not just which linear ordering it is, but also which of its
entries are which xi or yj (as is clear from the examples given after Theorem 2.4).
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Let (A,≤, F ) be a finite coloured linear order having m colours. From this we can derive
an associated m-configuration, which is defined to be the linear order induced on {xi :
1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ m} where for each i, xi is the least point x of A such
that {F(z) : z ∈ A, z ≤ x} has i elements, and yi is the greatest point y of A such that
{F(z) : z ∈ A, z ≥ y} has i elements. Under these circumstances, an m-configuration
receives the colouring induced from that on A. However, the same m-configuration may
be thereby coloured in several different ways, if it is viewed as a substructure of possibly
different coloured linear orders. Furthermore, not all m-configurations are associated with
a coloured linear order at all. The following lemma explains when this happens. An m-
configuration together with a colouring that it receives in this way from some (A,≤, F ) is
called a coloured m-configuration.

Lemma 2.1 The m-configuration T = {xi : 1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ m} is associated
with some m-coloured linear order if and only if i + j ≤ m + 1 ⇒ xi ≤ yj .

Proof First to check the necessity of the given condition, suppose that {xi : 1 ≤ i ≤ m} ∪
{yi : 1 ≤ i ≤ m} is the m-configuration arising from the coloured linear order (A,≤, F ),
and let i + j ≤ m + 1. Let k be greatest such that xi ≤ yk . Then {yl : l > k} are distinctly
coloured points lying in (−∞, xi), which exhibits i − 1 colours. Hence m − k ≤ i − 1, so
m + 1 ≤ i + k. We deduce that i + j ≤ i + k and hence j ≤ k, so that xi ≤ y .

The colouring is now given as follows. If yj = xi then we let F(yj ) = F(xi). Otherwise
consider colouring all the yj s which lie in (xi, xi+1). By the remark just made, there are at
most i values of j such that yj < xi+1, and there are i colours available for {yj : yj <

xi+1}. We have so far used |{j : yj ≤ xi}| of these colours, so the number remaining is
i − |{j : yj ≤ xi}| ≥ |{j : yj < xi+1}| − |{j : yj ≤ xi}| = |{j : xi < yj < xi+1}|, and
these points are coloured in any way using the available colours.

The construction has explicitly ensured that for each i, xi is the least point such that
(−∞, xi] is coloured by i colours. To verify the corresponding condition for yi , note that
there are certainly exactly i values of k ≤ i such that yk ≥ yi , and these points are all
coloured by distinct colours. Suppose that xj ≥ yi . Then as there are m colours, and all
yk points are distinctly coloured, there is k such that F(xj ) = F(yk). If k > i then yk <

yi ≤ xj , contrary to xj the least point coloured F(xj ). We deduce that k ≤ i, and so
F(xj ) ∈ {F(yk) : k ≤ i} as required.

To specify a finite coloured order (A, ≤, F ) up to 2-equivalence, we need to know first
of all what its associated m-configuration T is, and in addition what colouring T receives
(so we need to know what its associated coloured m-configuration is). We also need to

j j yj

Conversely, assuming the given condition holds, let the m-configuration T = {xi : 1 ≤
i ≤ m} ∪ {yi : 1 ≤ i ≤ m} be given, and we have to find a coloured linear order (A,≤, F )

such that T is the associated m-configuration. We take A = T , and have to show how the
points can be coloured so that xi is the least point x of A such that {F(z) : z ∈ A, z ≤ x}
has i elements, and yi is the greatest point y of A such that {F(z) : z ∈ A, z ≥ y} has i

elements. Let us start by colouring the xi by distinct colours. Clearly this ensures that xi

is the least point such that {F(xk) : xk ∈ A, xk ≤ xi} has i elements. We have to colour
the yj so that no member of {F(z) : z ∈ A, z ≤ xi} has a ‘new’ colour. We assign colours
successively to ym, ym−1, . . ., y1 according to which of the sets {x1}, (x1, x2), {x2}, (x2, x3),
. . ., {xm}, (xm,∞) they lie in. Given i, let j be the least such that yj < xi+1 (if any). Then
by hypothesis, i + 1 + j �≤ m + 1, so j > m − i. Hence there are at most i values of j such
that yj < xi+1.
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know which colours arise as the colours of points (of A) lying between any two consecutive
members of T , and we write the set of colours between u and v as χ(u, v). We write CT ,χ for
the set of all finite coloured orders such that T is the associated coloured m-configuration
and colours between the points are given by χ . Note that not all sets of colours are possible
for χ(u, v) and they will be constrained by the xi and yj . If for ease we write xm+1 = ∞
and ym+1 = −∞ (not coloured) then a point with colour c can be inserted (without alte-
ring the m-configuration realized) in (xi, xi+1)∩ (yj+1, yj ) if and only if c ∈ F(−∞, xi]∩
F [yj ,∞).

Theorem 2.2 Two finite C-coloured linear orders are 2-equivalent if and only if for some
T and χ , where T is a coloured m-configuration, they both lie in CT ,χ . In other words, the
CT ,χ classify the ≡2-classes of m-coloured finite linear orders.

Proof This relies on Theorem 1.1, which tells us that A ≡2 A′ if and only if they exhibit
the same 1-characters. Let {xi : 1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ m} and {x′

i : 1 ≤ i ≤
m} ∪ {y′

i : 1 ≤ i ≤ m} be the coloured m-configurations associated with A and A′, and
suppose first that A ≡2 A′. Thus A and A′ exhibit the same 1-characters. Now by definition
of xi , |{F(z) : z < xi}| = i − 1 and |{F(z) : z ≤ xi}| = i. Let x′ ∈ A′ realize the
same 1-character in A′ as xi does in A. Then F ′(x′) = F(xi), |{F ′(z) : z < x′}| = i − 1
and |{F ′(z) : z ≤ x′}| = i. This implies that x′ = x′

i . Similarly for yj and y′
j . Next we

have to see that xi ≤ yj ⇔ x′
i ≤ y′

j , and similarly for <. Suppose that xi ≤ yj (xi < yj

respectively). Then xi has at least j − 1 colours to the right (at least j respectively), and as
it realizes the same character as x′

i , this is also true of x′
i in A′, and so it follows that x′

i ≤ y′
j

(x′
i < y′

j respectively). We deduce that the same coloured m-configurations arise from A

and A′. To see that the corresponding functions χ and χ ′ are equal, let u < v be consecutive
members of {xi : 1 ≤ i ≤ m} ∪ {yi : 1 ≤ i ≤ m}, and u′ < v′ be the corresponding
consecutive members of {x′

i : 1 ≤ i ≤ m} ∪ {y′
i : 1 ≤ i ≤ m}. Then the left and right 1-

characters of each member of (u, v) are {F(z) : z ≤ u} and {F(z) : z ≥ v} respectively, and
furthermore, these characters are not realized by any other members of A. Precisely these
same left and right characters are realized in (u′, v′), and since the only extra ingredient
required to specify the character is the colour of the point, it follows that exactly the same
set of colours arises in (u, v) and (u′, v′). In other words, χ(u, v) = χ ′(u′, v′).

Conversely, supposing that A and A′ both lie in the same CT ,χ , we see that they both
realize the same 1-characters, so are 2-equivalent.

Corollary 2.3 A ≡2-class of finite linear coloured orders is finite if and only if it is a
singleton, which holds if and only if χ(u, v) = ∅ for each u, v.

From Theorem 2.2 we derive an algorithm for determining an optimal member of the
2-equivalence class of a finite coloured linear order A. From A we first evaluate xi and
yj . Then we replace each interval (u, v) such that u and v are consecutive points of the
resulting m-configuration by one in which each of its colours only arises once. This leads
to the following result.

Theorem 2.4 Any finite coloured string has a 2-equivalent ≡2-optimal substring.

Let us see how the algorithm works out for small values of m:
If m = 0 there is only one order, namely ∅.
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If m = 1 with colour r , then there are two possible m-configurations, with x1 = y1 or
x1 < y1. The former gives us just a singleton r (since there is no interval of consecutive
points into which new elements can be inserted), and the latter rr which is a singleton
≡2-class, and rrr , which lies in the infinite ≡2-class {rn : 3 ≤ n} (where χ(x1, y1) = {r}).

If m = 2, these are the possible m-configurations, with the corresponding singleton
≡2-classes given:

x1 < x2 < y2 < y1, rbrb, rbbr , brbr , brrb,
x1 < x2 = y2 < y1, rbr , brb,
x1 < y2 < x2 < y1, rrbb, bbrr ,
x1 = y2 < x2 < y1, rbb, brr ,
x1 < y2 < x2 = y1, rrb, bbr ,
x1 = y2 < x2 = y1, rb, br .

Including the allowed insertions, where we write rk for an arbitrary sequence of k r’s
(k ≥ 0), similarly bl , and w(r, b) an arbitrary string of r’s and b’s, this gives rise to the
following list

for rbrb: rrkbw(r, b)rbl , 16 ≡2-classes (two options for each of k and l, and four for
w(r, b)), similarly for brbr , rbbr and brrb,
for rbr: rrkbrlr , 4 ≡2-classes, similarly for brb,
for rrbb: rrkrbblb, 4 ≡2-classes, similarly for bbrr ,
for rbb: rbblb, 2 ≡2-classes, similarly for brr ,
rrb, bbr are similar to rbb,
rb, just one ≡2-class, and br is similar.

This gives a total of 90 ≡2-classes in which two colours appear. Note that the optimal
representative of each class is unique, except when there is a ‘middle’ section in which both
colours appear. For instance, rrbrbrbb ≡2 rrbbrrbb, though each is of optimal length.

If m = 3, there are 26 possible m-configurations, of which all but four fulfil the stipula-
tions of Lemma 2.1 (the four which do not are given by x1 ≤ y3 < y2 < x2 < x3 ≤ y1). To
list even these is quite laborious, and when their possible colourings are taken into account,
as well as the possible insertions, it is seen that the list increases dramatically over the case
m = 2. For instance, for the m-configuration x1 < x2 < x3 < y3 < y2 < y1 there are 36
ways of colouring the points, and for the rbg (red/blue/green) colouring of xi and yi points,
the ≡2-classes are of the forms rri1bri2bj2gri3bj3gk3rbj4gk4bgk5g where the indices are all
0 or 1, giving 29 possibilities, so even for this case there are 36 × 29 = 18432 ≡2-classes.

We remark that it would also be possible to find an algorithm to reduce to an optimal
form inductively on the number of colours. If we define the subsets L, R, and M of A, for
‘left’, ‘right’, and ‘middle’, by L = (−∞, xm), R = (ym,∞), and M = A \ (L ∪ R) in the
above notation, then the induction would be based on the fact that each of L and R exhibit
only m−1 colours. There are however some (minor) complications in the case where L and
R overlap, so the method presented just before the statement of Theorem 2.4 is preferable.

Now the easiest way to demonstrate that a finite string is optimal in its ≡2-class is to
show that all its points have distinct 1-characters (then appeal to Theorem 1.1), and in fact
this suffices for all 90 strings for m = n = 2, as one sees by inspection. The same holds
for any number of colours (though not with greater values of n, as we see in the next
section).

Theorem 2.5 For any m, no ≡2-optimal m-coloured string realizes the same 1-character
more than once.
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Proof Suppose on the contrary that (A,<, F ) is ≡2-optimal but a < b realize the same
1-character. We show that A ≡2 A \ {b}, contradicting optimality of A. This is similar to
the Cutting Lemma, Lemma 1.2. We just need to show that A and A′ = A \ {b} realize the
same 1-characters, and the result then follows by appeal to Theorem 1.1. First let x �= b,
and we show that x realizes the same 1-character in A and A′. The 1-character is determined
by the colour of the point, and by which colours occur on its left and right, so we have
to show that A<x and A′<x exhibit the same colours, and so do A>x and A′>x . If x < b

then A<x = A′<x , and the colours in A>x and A′>x could only possibly differ on F(b),
but as A>a ≡1 A>b, and b ∈ A>a , there is a point > a coloured F(b), and therefore also
a point > b (and hence > x) coloured F(b). A similar argument applies if x > b (using
A<a ≡1 A<b).

If x = b, we show that it realizes the same 1-character in A as a does in A′. Since a and b

have the same colour, we just have to show that A<b and A′<a exhibit the same colours, and
so do A>b and A′>a . Now A<b ≡1 A<a = A′<a and A>b ≡1 A>a ≡1 A′>a . In all cases,
≡1 means that the two sets exhibit the same sets of colours, and this holds for A>a and A′>a

because the only point of difference between these sets is b, but because A>a ≡1 A>b, and
b ∈ A>a , there must be a point > b coloured by F(b).

3 3-Equivalence Classes

To help analyze the behaviour of strings up to 3-equivalence, we introduce various labelled
directed graphs to keep track of the transitions between 2-characters as we pass through the
string. The basic idea is that if a1a2a3 . . . ak is a string over an alphabet of m colours, then a
node of the digraph will be taken to be a 2-character of the form 〈x, y, c〉 and we include a
directed edge from 〈x1, y1, c1〉 to 〈x2, y2, c2〉 provided that for some strings u1, v1, u2, v2,
x1 = [u1]2, x2 = [u2]2, y1 = [v1]2, y2 = [v2]2 and u2 = u1c1, v1 = c2v2. This corresponds
to the fact that the string a1a2a3 . . . ak gives rise to a path

〈[∅]2, [a2 . . . ak]2, F (a1)〉 −→ 〈[a1]2, [a3 . . . ak]2, F (a2)〉 −→
〈[a1a2]2, [a4 . . . ak]2, F (a3)〉 −→ . . . −→ 〈[a1a2a3 . . . ak−1]2, [∅]2, F (ak)〉.

In practice, retaining all of both co-ordinates is too cumbersome, and we use an abbrevi-
ated string which at any rate for points in the ‘middle’, suffices to describe the 2-character.
In [1] Theorem 2.3, a very crude upper bound for g(m, n), the maximum of the lengths of
optimal representatives of finite m-coloured strings under ≡n, is given. The object here is
to obtain some lower bounds on g(m, 3), by producing as long optimal strings as possible.
The easiest way in which optimality can be assured is to arrange that all points have distinct
2-characters. That this is not necessary for optimality is later remarked (by contrast with
Theorem 2.5 for ≡2).

To illustrate this, we show how for two colours we can construct an ≡3-optimal string A

of length 70. Certain features of this seem to depend heavily on the specifics of this case,
and we are unsure of how to generalize. The string is composed of three sections, L,M ,
and R (of lengths 19, 32, and 19) with L < M < R. The idea is that, by the time we get to
the middle section M , the 2-character has sufficiently ‘settled down’, to enable us to handle
substrings rather uniformly. To describe what L, M , and R are in this case, we emphasize
that this subdivision applies just to the 3-move case. The subdivision used in Section 2 for
the 2-move case is also used, but on the left and right subsets, where inductively, and using
Theorem 1.1 we need to look at 2-characters. To avoid confusion, we use L, M , and R to
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stand only for the subdivision of the whole string, and if we need to refer to the subdivision
of a left or right segment, we use the terms ‘left’, ‘middle’, and ‘right’. The definition here
is that M comprises all those points whose left and right 2-characters both themselves have
non-empty middle sections. Since it is clear that M so defined is convex, we can then let L

and R be the subsets of its complement which are to its left, right respectively.
Note that we adopt the notation from the previous section, usually with respect to the

initial segment L, or more generally, initial segments of the form A<a for a ∈ M ∪ R, (and
this will be applied ‘similarly’ to R, but without corresponding details). That is, xi will stand
for the least point of this set such that exactly i colours are used up to (and including) it, and
yj is the greatest point of the same set such that exactly j colours are used to its right. This
perspective enables us to give a more explicit description of what M is. It comprises exactly
those points a such that in A<a , xm < ym, and (xm, ym) �= ∅, and similarly for A>a .

Since we shall take L = rrrrrrbbbbbbrbbbbbr , the discussion given in the previous
section shows that for any a in M , [A<a]2 begins rrb, and it ends with rb, rbb, br , or brr

(since we must have x1 < x2 < y2 < y1), and as (x2, y2) contains points of both colours, the
middle may be taken as rb. This means that we can essentially describe the left 2-character
of a point a in M by the ending of A<a (and its colour). Although the ending will actually
have length 2 or 3, we can tell what it is just from its last two points. Taking [A>a]2 into
account in a similar way, a point is entirely characterized by just 5 entries, two on the left,
two on the right, and the colour of a in the middle. The following general lemma is invoked
here just for m = 2 and k = 5, but may be more widely applicable.

Lemma 3.1 If m, k are integers ≥ 2, then there is a string of length mk with entries in
{0, 1, . . . , m − 1} such that every string of length k in {0, 1, . . . , m − 1} arises exactly once
as a substring of k consecutive entries (counting cyclically).

Proof This method, using an eulerian circuit, was pointed out by P J Cameron.
We form a digraph having as vertices all strings over {0, 1, . . . , m − 1} of length

k − 1, and including a directed edge from (x1, x2, . . . , xk−1) to (y1, y2, . . . , yk−1) pro-
vided that (x2, x3, . . . , xk−1) = (y1, y2, . . . , yk−2). Then the directed edges starting at
(x1, x2, . . . , xk−1) are those of the form (x1, x2, . . . , xk−1) → (x2, . . . , xk−1, y) so there
are exactly m of them, and similarly the in-degree of each vertex is also m. Further-
more, the digraph is strongly connected, since there is a path from (x1, x2, . . . , xk−1) to
(y1, y2, . . . , yk−1) passing by way of (x2, x3, . . . , xk−1, y1), (x3, x4, . . . , xk−1, y1, y2), . . .,
(xk−1, y1, y2, . . . , yk−2). Hence the digraph has an eulerian circuit, and this provides the
desired string of length mk .

Given this lemma, we can form a binary string of length 32, such that cyclically ordered,
every 5-element string arises exactly once, and this may be taken explicitly as

M = rbrbrrbbbrbrbbrbbbbbrrrrrbrrrbbr.

To form our sequence of length 70, we precede M by L = rrrrrrbbbbbbrbbbbbr and
succeed it by R = rbbbbbrbbbbbbrrrrrr (which is L in reverse, easing some verifica-
tions). Let us write this string as a1a2a3 . . . a70. We verify that all 70 points have distinct
2-characters.

First we can see that for every point a of M ∪ R, in A<a , x1 = a1, x2 = a7, y1 = ai

and y2 = aj where i ≥ 19 and i > j ≥ 18, so its left 2-character begins rrbrb, and ends
rb, rbb, br , or brr . However, if a ∈ L, A<a has the form ribj rbk , ribj r , ribj , or ri for
some i, j, k, so its left 2-character is not of this form. By symmetry, we can see that no
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point of L ∪ M shares a right 2-character with a point of R. We now treat each of L and M

individually (and R is similar to L).
For L, the left 2-characters of the 19 points are ∅, r , rr , rrr , rrr , rrr , rrr , rrrb, rrrbb,

rrrbbb, rrrbbb, rrrbbb, rrrbbb, rrbbbr , rrbbrb, rrbbrbb, rrbbrbb, rrbbrbb, rrbbrbb

respectively. The fourth point for each of the repeated left 2-characters has a different colour
from the others, and the three remaining points are distinguished by their right 2-characters,
which in each case are distinct members of {rrbrbbrr , rbrbbrr , bbrrbbrr , brrbbrr}.

Finally, we can see that all points of M have distinct 2-characters since they are midpoints
of distinct 5-element strings—notice that we have arranged things so that a18a19a20a21 =
a50a51a52a53, which means that distinctness of the 5-element strings persists even at the
‘ends’.

This shows that g(2, 3), which is the maximum of the lengths of optimal representatives
of finite 2-coloured strings under ≡3 is at least 70. The upper bound given in [1] is clearly
absurdly high, but even so, 70 is a big increase on the optimal length for m = n = 2 which
is 8.

Let us see that this is the best we can do by these methods, in which optimality is guaran-
teed by distinctness of the 2-characters. We can always subdivide a given 2-coloured finite
linear order into 3 sections, L, M , and R, where in M , both left and right 2-characters have
rb as ‘middle’. Clearly M is convex, so we may take L and R to be the sets of points to the
left, right of M respectively. If a ∈ M , then the left and right 2-characters of a must have
at least 6 entries, and as in the discussion above, the 2-characters of the points of M are
entirely determined by the 5-element strings of which they are mid-points. Hence |M| ≤ 32.

Now consider what L can be. Without loss of generality, suppose it begins with r . If it
has an initial segment of the form ribj rkblrpbq with positive exponents, then the next point
does not lie in L, and similarly, q = 1 (since otherwise the final point does not lie in L), and
by similar arguments, j = l = 1, giving L = ribrkbrpb. If i ≥ 7 then the fourth and fifth
points of A realize the same 2-characters, contrary to assumption. Hence i ≤ 6. Similarly,
k, p ≤ 6. If k = 6, then 2-characters are repeated for the middle two entries in that block.
Hence k ≤ 5, and similarly p ≤ 5. Hence |L| ≤ 6 + 5 + 5 + 3 = 19 (and one can check
that rrrrrrbrrrrrbrrrrrb is possible).

If L = ribj rkblrp it again follows that j = l = 1, i ≤ 6, k, p ≤ 5, so |L| ≤ 18.
If L = ribj rkbl then j = 1 or k = 1, and again, i ≤ 6, l ≤ 5, and also j, k ≤ 5, so
|L| ≤ 6 + 1 + 5 + 5 = 17.
If L = ribj rk then i ≤ 6, j ≤ 7, k ≤ 6 so |L| ≤ 19.
If L = ribj then |L| ≤ 14 and if L = ri then |L| ≤ 7.

It follows similarly that |R| ≤ 19, and hence |A| ≤ 19 + 32 + 19 = 70.
Finally we remark that in ≡3-optimal strings, 2-characters may be repeated, and using

this we are able to construct a longer ≡3-optimal 2-coloured string. We first give a small
example. Consider A = rbrbrbrbrbrbrbr , which has length 15, is a palindrome (reading
the same forwards and backwards), and whose 7th and 9th entries realize the same 2-
character (though apart from this, all 2-characters are distinct). To see that A is ≡3-optimal,
suppose that B ≡3 A, and we show that B has length at least 15. Since A realizes 14 2-
characters, so does B, and hence it has length at least 14. Now A realizes the 2-character
〈rbrb, brrbbr, r〉, so B must realize this as well, and as rbrb lies in a singleton ≡2-class,
B begins rbrbr . Similarly, B realizes 〈rbrbr, rbrbbr, b〉, so as the ≡2-class of rbrbr is
{rbrpbr : p ≥ 1}, B begins with rbrpbrb for some p ≥ 1. Since B begins with rbrbr it
follows that p = 1, and that B begins rbrbrb. Similarly B ends with brbrbr . The other two
2-characters realized by B are χ1 = 〈rbrbrb, brrbbr, r〉 and χ2 = 〈rbrbbr, rbrbbr, b〉.



116 Order (2019) 36:107–117

Since B<b7 = rbrbrb, b7 must realize χ1, and so b7 = r . Similarly, the 7th point from
the right realizes χ1 and is r . Since |B| ≥ 14, these two points are distinct, and as B also
realizes χ2, there must be another point between them, so B has length at least 15.

We now present a 3-optimal string of length 74 having the same L and R as in the
example given of length 70, but with longer M:

A = rrrrrrbbbbbbrbbbbbr|rbrbbbbbrbbrrbrbrrrrrbrrrbbrbrrrbbbr|rbbbbbrbbbbbbrrrrrr.

The subdivision into L, M , R is indicated. By the previous discussion, this must have
repeated 2-characters in M . We let L′ = br (the end of L) and R′ = rb (the begin-
ning of R). To verify that A is ≡3-optimal we first note that by the previous arguments,
the 2-characters of all elements of L ∪ R are uniquely determined and different from all
those occurring in M , so any 3-equivalent string must begin and end in this way. Now A

determines a path through the digraph D having as vertices strings of length 4 over {r, b}
arising as convex subsets of L′ ∪ M ∪ R′, and the edges of D which may be viewed as
quintuples (x1, x2, x3, x4, x5) (though they are ‘officially’ pairs of overlapping quadruples
(x1, x2, x3, x4) → (x2, x3, x4, x5) as in the proof of Lemma 3.1) tell us precisely which
2-characters are realized in the path. So although some will now be repeated, we have
to check that no shorter path through D can realize precisely the same 2-characters. One
checks that D has 28 edges. Suppose therefore that P is a path through D traversing pre-
cisely the same edges (though not necessarily the same number of times). We shall show
that P has length at least 36. We may also view P as a ‘multi-digraph’ in which the mul-
tiplicities with which the edges of D arise in P are also recognized, and in this sense we
may talk of the ‘in-degree’ in(x) and ‘out-degree’ out (x) of a vertex x. By the usual theory
of eulerian paths, if i and f are the initial and final vertices of P , then i �= f implies that
out (i) = in(i)+1 and in(f ) = out (f )+1; all other vertices x, and also i and f if they are
equal, satisfy in(x) = out (x). Furthermore, since L′ = br , i must equal brrr , brrb, brbr ,
or brbb, and similarly f must equal rrrb, rbrb, brrb, or bbrb. The digraph D is shown in
Fig. 1.

Now we note that the vertex rrbb is therefore an internal vertex of P , so has equal in-
and out-degrees in P . Since its out-neighbours (in P ) rbbr and rbbb are distinct, it follows
that its in-degree is at least 2. Similarly, in(rbrb), out (rbrr), out (brbr), out (bbrr) ≥ 2.
In D, each of rrbb and rbrb has only one in-neighbour, so the corresponding edges in P

must each appear at least twice. Similarly for the out-neighbours of rbrr , brbr , and bbrr .
This already assures us that P has length at least 33. But now we know that in(rbrr) ≥ 3,
and as rbrr is internal, also out (rbrr) ≥ 3. Similarly, in(rrbr), in(rrrb) ≥ 3. Since the
extra edges thereby assured and contributing to out (rbrr), in(rrbr), and in(rrrb) must be
rbrr → brrr , rrrb → rrbr or brrb → rrbr , and rrrr → rrrb or brrr → rrrb, this
gives at least 3 extra edges in P , showing that it has length at least 36, as desired.

Fig. 1 Digraph helping verify optimality of the string A
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Future Work We have really only scratched the surface of this topic, in [1] and here, and
a great deal more effort would be required to understand fully the structure of ≡n-optimal
strings for all n, and for all colour set sizes. The method in the final example just given
seems very laborious, merely to increase the length by 4, and that is only for two colours
and n = 3. Undoubtedly there will be longer examples, requiring more careful checking.
We remark that we also believe that one can construct finite strings having no ≡3-equivalent
optimal substring. The idea would be to find a string as above obtained by modifying the
length 70 example, but such that this time, the path is not optimal, but that any optimal path
traversing the same edges as D would have to have them in a different order, so that the
optimal string would not actually be a substring of the original one.

We conclude by illustrating the specific problem which applies even to increase the num-
ber of colours by 1. We would like to apply the same kind of analysis as for the case of
2 colours, which relied on the subdivision of the string A into L, M , R. We can still do
this, and for long enough strings there will be a non-trivial M , comprising those points such
that the left and right 2-characters both themselves have a ‘middle’ in which all 3 colours,
red, blue, and green, appear. Since this time 2-characters have length up to 15 (see [1]) the
lengths of L and R will usually be a lot longer. The main problem comes about in M how-
ever. Last time we were able to pin down the 2-character of a point in M by a sequence of
length 5. This time though, the right end of the left 2-character may be rbg, rbgg, rbbgg,
rbgbg, rbggb, as well as others obtained by permuting the three colours, and we seem to
need the final 4 entries at least to tell which is which, and so we’d have to have sequences of
length 7, 8, or 9, in place of 5, that is, not constant. Thus the trick of using an Euler circuit
does not seem to apply.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.
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