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ABSTRACT

At its core, the Document Object Model (DOM) deines a tree-like

data structure for representing documents in general and HTML

documents in particular. It is the heart of any modern web browser.

Formalizing the key concepts of the DOM is a prerequisite for

the formal reasoning over client-side JavaScript programs and for

the analysis of security concepts in modern web browsers.

We present a formalization of the core DOM, with focus on the

node-tree and the operations deined on node-trees, in Isabelle/HOL.

We use the formalization to verify the functional correctness of the

most important functions deined in the DOM standard. Moreover,

our formalization is (1) extensible, i.e., can be extended without the

need of re-proving already proven properties and (2) executable, i.e.,

we can generate executable code from our speciication.
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1 INTRODUCTION

In a world in which more and more applications are ofered as

services on the internet, web browsers start to take on a similarly

central role in our daily IT infrastructure as operating systems.

Thus, web browsers should be developed as rigidly and formally

as operating systems. While formal methods are a well-established

technique in the development of operating systems (see, e. g., Klein

[15] for an overview), there are few proposals for improving the

development of web browsers using formal approaches [2, 9, 12, 17].

As a irst step towards a veriied client-side web application stack,

we model and formally verify the Document Object Model (DOM)

in Isabelle/HOL. The DOM [21, 23] is the central data structure

of all modern web browsers. At its core, the Document Object
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Model (DOM) deines a tree-like data structure for representing

documents in general and HTML documents in particular. Thus,

the correctness of a DOM implementation is crucial for ensuring

that a web browser displays web pages correctly. Moreover, the

DOM is the core data structure underlying client-side JavaScript

programs, i. e., client-side JavaScript programs are mostly programs

that read, write, and update the DOM.

In more detail, we formalize the core DOM as a shallow embed-

ding [14] in Isabelle/HOL. Our formalization is based on a typed

data model for the node-tree, i. e., a data structure for representing

XML-like documents in a tree structure. Furthermore, we formalize

a typed heap for storing (partial) node-trees together with the nec-

essary consistency constraints. Finally, we formalize the operations

(as described in the DOM standard [23]) on this heap that allow

manipulating node-trees.

Our machine-checked formalization of the DOM node tree [23]

has the following desirable properties:

(1) It provides a consistency guarantee. Since all deinitions in our

formal semantics are conservative and all rules are derived,

the logical consistency of the DOM node-tree is reduced to

the consistency of HOL.

(2) It serves as a technical basis for a proof system. Based on

the derived rules and speciic setup of proof tactics over

node-trees, our formalization provides a generic proof en-

vironment for the veriication of programs manipulating

node-trees.

(3) It is executable, which allows to validate its compliance to

the standard by evaluating the compliance test suite on the

formal model and

(4) It is extensible in the sense of [5], i. e., properties proven over

the core DOMdo not need to be re-proven for object-oriented

extensions such as the HTML document model.

Finally, we show the correctness of the functions for manipulat-

ing the DOM w.r.t. the assumptions made in the standard.

After introducing Isabelle and higher-order logic in Sect. 2, we

introduce the formal datamodel of theDOMand operations over the

DOM in Sect. 3. In Sect. 4, we formalize the requirements for a valid

heap, followed by the discussion of the veriication of important

properties of DOM operations in Sect. 5. Finally, we discuss related

work (Sect. 6) and draw conclusions (Sect. 7).

2 FORMAL AND TECHNICAL BACKGROUND

In this section, we will outline the underlying logical and method-

ological framework of our formalization of the DOM node-tree.

2.1 Higher-Order Logic and Isabelle

Isabelle [16] is a generic theorem prover implemented in the func-

tional programming language SML. Isabelle/HOL is the instance
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of Isabelle supporting Higher-order logic (HOL) [1, 8]. It supports

conservativity checks of deinitions, datatypes, primitive and well-

founded recursion, and powerful generic proof engines based on

rewriting and tableau provers.

HOL is a classical logic with equality enriched with total poly-

morphic higher-order functions. HOL is strongly typed, i.e., each

expression e has a type 'a, written e::'a. In Isabelle, we denote

type variables with a prime (e. g., 'a) instead of Greek letters (e. g.,

α ) that are usually used in textbooks. The type constructor for the

function space is written using inix notation: 'a ⇒ 'b. HOL is

centered around the extensional logical equality ↓ − ↓ with type

'a ⇒ 'a ⇒ bool, where bool is the fundamental logical type.

Functions in HOL are curried and pure, i.e., they take exactly

one argument, return exactly one result, and cannot produce side-

efects. To simulate functions with more than one argument, we let

these functions again return a function, until it will inally return a

non-function. Therefore, when reading curried function deinitions,

it can be helpful to interpret the chain of function deinitions in the

following way: the last type deinition represents the łreturn valueł

of the function, whereas the other types in the chain represent

arguments to the function. When modeling stateful functions, such

as in our case, we usually deine functions that take an argument

that represents the state and return an updated version (i.e., a map

that contains an additional entry) that represents the state change.

The type discipline rules out paradoxes such as Russel’s para-

dox in untyped set theory. Sets of type 'a Set can be deined iso-

morphic to functions of type 'a ⇒ bool; the element-of-relation

↓ ∈ ↓ has the type 'a ⇒ 'a set ⇒ bool and corresponds basi-

cally to the function application; the set comprehension {↓ . ↓}

(usually written {_ | _} in textbooks) has type 'a set ⇒ ('a ⇒

bool)⇒ 'a set and corresponds to the λ-abstraction.

Isabelle/HOL allows for deining abstract datatypes. For example,

the following statement introduces the option type:

datatype 'a option − None | "Some 'a"

Besides the constructors None and Some, there is thematch-operation

case x of None ⇒ F | Some a ⇒ G a. The option type allows

us to represent partial functions (often calledmaps) as total functions

of type 'a ⇒ 'b option. For this type, we introduce the short-

hand 'a ⇀ 'b. We deine dom f, called the domain of a partial

function f, by the set of all arguments of f that do not yield None.

We alsomake use of the sum type, 'a + 'b, and the product type,

'a ×'b. With the sum type, it is possible to express tuples, which,

for example, can be used to achieve a similar result to returning

a tuple from a function. The product type represents either 'a or

'b, and is useful to model errors, as it allows to let functions return

either some result on a successful calculation, or return an error.

When extending logics, two approaches can be distinguished:

the axiomatic method on the one hand and conservative extensions

on the other. Extending the HOL core via axioms, i.e., introducing

new, unproven laws seems to be the easier approach but it usually

leads easily to inconsistency; given the fact that in any major theo-

rem proving system the core theories and libraries contain several

thousand theorems and lemmas, the axiomatic approach is worth-

less in practice. In contrast, a conservative extension introduces

new constants (via constant deinitions) and types (type deinitions)

only via a particular schema of axioms; the (meta-level) proof that

axioms of this schema preserve consistency can be found in [10].

2.2 Shallow Embeddings vs. Deep Embeddings

We are now concerned with the question how a language is rep-

resented in a logic. Two techniques are distinguished: First, deep

embeddings represent the abstract syntax as a datatype and deine a

semantic function I from syntax to semantics. Second, shallow em-

beddings deine the semantics directly; each construct is represented

by some function on a semantic domain.

Assume we want to embed a simple logical language BOOL,

consisting of the two logical operators _ and _ and _ or _, into HOL.

The semantics I : expr → env → bool is a function that maps

BOOL expressions and environments to bool, where environments

env = var → bool maps variables to bool values. Using a shallow

embedding, we deine directly:

x andy ≡ λ e • x e ∧ y e x ory ≡ λ e • x e ∨ y e

Shallow embeddings allow for direct deinitions in terms of seman-

tic domains and operations on them. In a deep embedding, we have

to deine the syntax of BOOL as a recursive datatype:

expr = var var | expr and expr | expr or expr

and the explicit semantic function I :

IJvar xK = λ e • e(x)

IJx andyK = λ e • IJxK e ∧ IJyK e

IJx oryK = λ e • IJxK e ∨ IJyK e

This example reveals the main drawback of deep embeddings: the

language is more distant to the underlying meta language HOL,

i.e. semantic functions represent obstacles for deduction. However;

for analyzing certain meta-theoretic analysis, deep-embeddings

have advantages. Since we are interested in a concise semantic

description of the DOM and eicient proof support (and we are not

interested in meta-theoretic proofs), we chose a shallow embedding.

3 FORMALIZING THE DOM

In this section, we will present our formalization of the core DOM

which follows theWHATWG speciication [23], the updated version

of the W3C DOM 4 standard [21]. This includes the deinition of

the tree-like data structure for representing documents and a set of

functions for creating and modifying a document.

3.1 The Core DOM Data Model: The Node-Tree

The main purpose of the DOM is to provide the data structure for

managing tree-structured documents, e. g., following the HTML

or XML standard. Fig. 1 illustrates a small example: Fig. 1a shows

the textual representation of a simple document (using HTML as

syntax), Fig. 1b shows the visualization of the DOM node-tree, and

Fig. 1c shows the rendered output (e. g., in a web browser).

As the DOM models a tree-like data structure, it is not a surprise

that the core datatypes of the DOM speciications are Document

and the datatype Node with the two specializations Element and

CharacterData. In our data model, we omitted attributes that can

computed from others, e.g., the parent attribute which represent
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<!DOCTYPE html>

<html class−e>

<head>

<title>Aliens?</title>

</head>

<body>Why yes.</body>

</html>

(a) HTML

DOCTYPE: html

HTML class−e

HEAD

TITLE

text: Aliens?

BODY

text: Why yes.

(b) DOM

Why yes.

(c) Rendering

Fig. 1: A simple example of a DOM: (a) shows a textual rep-

resentation using HTML syntax, (b) a visualization of the

node-tree of the DOM, and (c) shows the result of rendering

this DOM, e.g., by a rendering engine of a web browser.

the inverse relation already represented by the childNodes and

documentElement attributes.

While the core idea of formalizing object-oriented data models

in an extensible way1 follows the construction presented in [3, 5],

we difer signiicantly in aspects such as the modeling of typed

pointers (references) and late binding of method invocations. Due

to space constraints, we will not discuss this in this paper.

First, we start by deining abstract datatypes for typed pointers

for the common super-class Object and the classes Node, Element,

CharacterData, and Document:

datatype

'object↓ptr object↓ptr − Ext 'object↓ptr

'node↓ptr node↓ptr − Ext 'node↓ptr

'element↓ptr element↓ptr − Ref ref | Ext 'element↓ptr

'character↓data↓ptr character↓data↓ptr − Ref ref

| Ext 'character↓data↓ptr

'document↓ptr document↓ptr − Ref ref | Ext 'document↓ptr

The pointers to the abstract classes object↓ptr and node↓ptr only

support a constructor for extensions; regular classes also have a con-

structor for the reference of the object itself. We use these datatypes

to introduce type synonyms representing the actual pointer types

for our DOM model (see Fig. 2).

The type polynomials are constructed in such a way that the

HOL types for pointers of sub-classes in the object-oriented model

are instances of the HOL type of their super-class. This is the key

construction allowing an extensible formalization. For details, we

are referring the reader to [5].

In the rest of this paper, we will use an underscore to denote

the tuple of type variables of the type constructors for pointer

and object types. For example, we will write ↓ node↓ptrCore↓DOM
instead of

('node↓ptr, 'element↓ptr,

'character↓data↓ptr) node↓ptrCore↓DOM

and assume that type variables of the same name are instantiated

with the same types.

1This object-oriented form of extensibility allows us, e.g., to later extend the DOM
model to a formal model of standards based on the DOM standard, such as HTML,
without the need to re-prove properties over the DOM.

Second, we deine HOL types representing objects using the

record-package provided in Isabelle. Overall, we use the same con-

struction of type polynomials to represent inheritance in HOL. Due

to space reasons, we omit the technical details of the type construc-

tion. We refer interested readers to the Isabelle formalization [4].

For each class, we deine one record:

record Object −

nothing :: unit

record Node − Object +

nothing :: unit

record ↓ Element − Node +

tag↓name :: tag↓type

child↓nodes :: "↓ node↓ptrCore↓DOM list"

attributes :: attributes↓type

record CharacterData − Node +

data :: DOMString

record ↓ Document − Object +

doctype :: doctype

document↓element :: "↓ element↓ptrCore↓DOM option"

disconnected↓nodes :: "↓ node↓ptrCore↓DOM list"

Due to technical constraints of the record package, we need to

introduce an attribute nothing for classes that do not deine at

least one attribute themselves. Given these deinitions, we can, e.g.,

deine a CharacterData object as follows:

definition

"CharacterDataExample − (|Object.nothing − (),

Node.nothing − (),

data − ''Why yes.'' |)"

Essentially, this models an object-oriented data model of a tree-

like data structure, called node-tree in the DOM standard, where

(1) the root of the tree is an instance of Document, (2) instances of

the class Element can be internal nodes or leaves, and (3) instances

of the class CharacterData can only appear as leaves.

Finally, we deine a heap for storing node-trees, i.e., instances of

our DOM data model. A DOM heap is a map from object pointers

to objects:

type_synonym ↓ heapCore↓DOM

− "↓ object↓ptrCore↓DOM ⇀↓ ObjectCore↓DOM"

Where ↓ ObjectCore↓DOM is the type synonym for the instantiated

super-type of object (similar to the construction for pointers).

Fig. 3 illustrates how the simple document from our example in

Fig. 1 can be expressed in our formal DOM heap.

3.2 Operations and Queries on Node-Trees

In the following, we will deine the core DOMmethods for creating,

querying, and modifying the node-trees that are stored in a DOM

heap. We deine the following functions formally in Isabelle/HOL.

Fig. 4 provides an overview of their formal type signatures.

All operations are deined over the DOM heap, i.e., they take a

heap as input and return either an exception or a tuple containing

the return value and a new heap:

type_synonym (↓, 'result) dom↓prog − "↓ dom↓heapCore↓DOM

⇒ exception + ('result ×↓ dom↓heapCore↓DOM)"
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type_synonym

('object↓ptr, 'node↓ptr, 'element↓ptr, 'character↓data↓ptr, 'document↓ptr, 'shadow↓root↓ptr) object↓ptrCore↓DOM
− "(('element↓ptr element↓ptr + 'character↓data↓ptr character↓data↓ptr + 'node↓ptr) node↓ptr

+ 'document↓ptr document↓ptr + 'shadow↓root↓ptr shadow↓root↓ptr + 'object↓ptr) object↓ptr"

('node↓ptr, 'element↓ptr, 'character↓data↓ptr) node↓ptrCore↓DOM
− "('element↓ptr element↓ptr + 'character↓data↓ptr character↓data↓ptr + 'node↓ptr) node↓ptr"

'element↓ptr element↓ptrCore↓DOM − "'element↓ptr element↓ptr"

'character↓data↓ptr character↓data↓ptrCore↓DOM − "'character↓data↓ptr character↓data↓ptr"

'document↓ptr document↓ptrCore↓DOM − "'document↓ptr document↓ptr"

Fig. 2: The HOL types of our extensible, typed pointers for the core DOM. The type polynomials ensure that pointers for

sub-classes in the object-oriented data model are instances of the HOL type of the pointer of their super-class.

definition "test↓heap − map↓of [

(cast (document↓ptr.Ref 1), cast (|Object.nothing − (), doctype − ''html'',

document↓element − Some (element↓ptr.Ref 1), disconnected↓nodes − [] |)),

(cast (element↓ptr.Ref 1), cast (|Object.nothing − (), Node.nothing − (),

tag↓name − ''html'', child↓nodes − [cast (element↓ptr.Ref 2), cast (element↓ptr.Ref 4)],

attributes − map↓of [(''class'', ''e'')], shadow↓root↓opt − None |)),

(cast (element↓ptr.Ref 2), cast (|Object.nothing − (), Node.nothing − (),

tag↓name − ''head'', child↓nodes − [cast (element↓ptr.Ref 3)],

attributes − empty, shadow↓root↓opt − None |)),

(cast (element↓ptr.Ref 3), cast (|Object.nothing − (), Node.nothing − (), tag↓name − ''title'',

child↓nodes − [cast (character↓data↓ptr.Ref 1)], attributes − empty, shadow↓root↓opt − None |)),

(cast (character↓data↓ptr.Ref 1), cast (|Object.nothing − (), Node.nothing − (), data − ''Aliens?'' |)),

(cast (element↓ptr.Ref 4), cast (|Object.nothing − (), Node.nothing − (), tag↓name − ''body'',

child↓nodes − [cast (character↓data↓ptr.Ref 2)], attributes − empty, shadow↓root↓opt − None |)),

(cast (character↓data↓ptr.Ref 2), cast (|Object.nothing − (), Node.nothing − (), data − ''Why yes.'' |))

]"

Fig. 3: The formal representation of a heap containing our simple example DOM (recall Fig. 1).

All operations result in an exception if an argument is invalid,

e. g., a pointer that does not represent a valid object in the current

heap. We use a heap and error monad for modeling exceptions. This

allows us to deine composite methods similar to stateful program-

ming in Haskell, but also to stay close to the oicial speciication.

The function create↓element takes an (owner)document and

the tag name of the new element. It returns the updated heap that

includes the new element with no children and no attributes along

with a reference to the new element, which is stored in the irst free

location in the heap. This ensures that it will not change any existing

locations in the heap, which we will prove later. Additionally, the

new element is added to the list of disconnected nodes of the given

document, as it is not yet part of the node tree.

The function get↓child↓nodes takes a heap and a pointer to

a node and returns a list of pointers to its children. For elements,

it returns the children list that is stored in the datatype. For text

nodes, it returns the empty list. For documents, we convert their

document element into the appropriate node list.

The function get↓attribute looks up the given attribute in

the element’s attribute map. It returns Some attr if there exists

an attribute with the given key, and None otherwise. The oicial

speciication also has a concept called łrelected content attribute,ž

which basically returns the stored attribute of the same name, but

returns the empty string if the attribute is not present.

The function set↓attribute updates the given attribute of the

pointer in the heap. In the oicial speciication, it is not allowed to

set the attribute to None or null, respectively, to delete the attribute.

We generalize this deinition by allowing this.

The function get↓parent↓node takes a pointer to a node and

returns a pointer to its parent, or None, if the node does not have

a parent. The case where a node does not have a parent can only

occur in disconnected node-trees, which we will discuss later. Our

API does not accept documents, since they can never have a parent.

Having the types as narrow as possible will enable easier proofs. The

function get↓parent↓node is an example of a method where the

oicial speciication leaves much room for interpretation regarding

the implementation. It neither provides an algorithm explaining

to how obtain a parent, given a node, nor does it specify that the

parent reference should be stored in the objects. To avoid specifying

additional consistency constraints that would be needed if both

children and parent references were to be stored, we implemented

get↓parent↓node by searching the whole heap for any node whose

get↓child↓nodes contains the given reference.

The function remove↓child is rather close to the oicial specii-

cation; if child’s parent is diferent from the passed parent, then

we łthrowž a NotFoundError. Otherwise, we add the removed child

to the disconnected node list of its owner document and remove it

from either the document↓element or the child↓nodes attribute.
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create_element :: "tag↓type ⇒ ↓ document↓ptrCore↓DOM ⇒ ↓ dom↓prog"

get_attribute :: "↓ element↓ptrCore↓DOM ⇒ attributes↓key ⇒ ↓ dom↓prog"

set_attribute :: "↓ element↓ptrCore↓DOM ⇒ attributes↓key ⇒ attributes↓value option ⇒ ↓ dom↓prog"

get_child_nodes :: "↓ object↓ptrCore↓DOM ⇒ ↓ dom↓prog"

get_parent :: "↓ node↓ptrCore↓DOM ⇒ ↓ dom↓prog"

remove_child :: "↓ object↓ptrCore↓DOM ⇒ ↓ node↓ptrCore↓DOM ⇒ ↓ dom↓prog"

get_element_by_id :: "↓ object↓ptrCore↓DOM ⇒ attributes↓value ⇒ ↓ dom↓prog"

adopt_node :: "↓ document↓ptrCore↓DOM ⇒ ↓ node↓ptrCore↓DOM ⇒ ↓ dom↓prog"

insert_before :: "↓ object↓ptrCore↓DOM ⇒ ↓ node↓ptrCore↓DOM ⇒ ↓ node↓ptrCore↓DOM option ⇒ ↓ dom↓prog"

Fig. 4: The formal type signatures of the methods for creating, querying, and modifying the core DOM.

The function get↓element↓by↓id searches in tree order (depth-

irst, left-to-right) for the irst element with the given id. Our dei-

nition is more general than the oicial speciication, as we dropped

the requirement that get↓element↓by↓id should only be available

on documents, which is a legacy requirement.

3.2.1 Adopting Nodes. Themethod adopt↓node removes a node

from its previous parent, if it had any, and assigns it to the new

ownerDocument. First, it tries to retrieve the parent of the node to be

adopted. If the node has a parent node, it removes the node from the

children list, otherwise it removes it from the list of disconnected

nodes of the previous owner document. Finally, the node is now

added to the disconnected nodes of the new document.

definition adopt↓node ::

"↓ document↓ptrCore↓DOM ⇒ ↓ node↓ptrCore↓DOM

⇒ ↓ dom↓prog"

where

"adopt↓node document node − do {

parent↓opt ←get↓parent node;

(case parent↓opt of

Some parent ⇒ remove↓child parent node

| None ⇒ do {

old↓document ←get↓owner↓document (cast node);

remove↓from↓disconnected↓nodes old↓document

node});

add↓to↓disconnected↓nodes document node

}"

3.2.2 Inserting Nodes. Using insert↓before, one can insert

arbitrary nodes (i.e., not necessarily in the same node-tree) from

the heap into a node-tree:

definition insert↓before ::

"↓ object↓ptrCore↓DOM ⇒ ↓ node↓ptrCore↓DOM

⇒ ↓ node↓ptrCore↓DOM option ⇒ ↓ dom↓prog"

where

"insert↓before ptr node child − do {

ensure↓pre↓insertion↓validity node ptr child;

reference↓child ←(if Some node − child

then next↓sibling node

else return child);

owner↓document ←get↓owner↓document ptr;

adopt↓node owner↓document node;

insert↓node ptr node reference↓child

}"

Document

Element

Element Element

Element CharacterData CharacterData

Element

Element CharacterData

Fig. 5: DOM with a visible document (gray) and a runtime

tree (white)

A node that should be inserted needs to fulill cer-

tain well-formedness criteria. This is checked using the

ensure↓preinsertion↓validity function which formalizes the

concept of pre-insertion validity from the DOM standard. Then, the

reference child needs to be determined, which is that node before

which the to-be-inserted node should be placed. Then, we adopt the

node into the (possibly new) node-tree and actually insert the node

into either the child↓nodes or document↓element attributes.

4 WELL-FORMEDNESS OF THE DOM HEAP

Our DOM heap is a map from object pointer to object. While a

map alone would allow numerous łillegalž heaps, two features of

our formalization already rule out many misconigurations: Our

data model is typed and, thus, rules out illegal heaps such as one

that contains a document that contains a character data object as

its only child. Additionally, our data model omits some ields of

the standard, such as parentNode, which we calculate by using the

heap and get↓child↓nodes.

Still, some possible illegal heap conigurations remain, such as

one with a cyclic get↓child↓nodes relationship. Thus, we need

further well-formedness constraints and we need to show that

the DOM methods preserve the well-formedness. We will now

introduce predicates that validate whether a given heap conforms

to the standard.

4.1 The Owner Document

The DOM speciications requires that each node is owned by ex-

actly one document, its owner document. Moreover, each node

participates in a tree w.r.t. the get↓child↓nodes-relation. A DOM

mightÐand usually willÐconsist of several trees, i.e., a DOM is a

forest of trees. We call the tree that has the main document as root

the visible document, as this is the part of the DOM that would be

rendered, e. g., by a web browser.
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Fig. 5 illustrates this relationship for an example: the gray nodes

(connected by solid arrows that visualize the get↓child↓nodes-

relation) represent the visible document. The white nodes (con-

nected by dotted arrows that visualize the get↓owner↓document

relationship) are forming a temporary runtime tree. Runtime trees

are not serialized (e. g., in an HTML or XML document) and only

exist at runtime.

We deine get↓owner↓document of a node to be the root, if the

root is an document; otherwise, we return that document whose

disconnected↓nodes contains said node. In order for this deini-

tion to be well-formed, we need the following predicate:

definition owner↓document↓valid :: "↓ heapCore↓DOM ⇒ bool"

where "owner↓document↓valid h − (

{node↓ptr. ∀doc↓ptr disc↓node↓ptrs.

(h ⊢ get↓disconnected↓nodes doc↓ptr → r disc↓node↓ptrs)

−→ node↓ptr ∈set disc↓node↓ptrs}

− {node↓ptr. ∀ptr.

(h ⊢ get↓root↓node (cast node↓ptr) → r ptr)

−→ ¬is↓document↓ptr↓kind ptr})"

This predicate guarantees us that the set of nodes in all

disconnected↓nodes ields is exactly the set of nodes that do not

have a document as their root.

4.2 Restricting DOMs to Trees

So far, we do not restrict the relation given by get↓child↓nodes

to be acyclic, which is possible since we use pointers. To prevent

this, we can use the following predicate:

definition acyclic↓heap :: "↓ heapCore↓DOM ⇒ bool"

where "acyclic↓heap h − acyclic {(parent, child). ∀children.

(h ⊢ get↓child↓nodes parent → r children)

−→ child ∈ cast ‘ set children}"

We leverage the deinition of acyclicity on relations, i.e., a set of

tuples. Our relation contains all pointers parent and child where

child is in the set of children of parent.

4.3 Node Sharing

The DOM standard assumes that a node cannot be the child of more

than one node. This property of heaps is informally implied by

the oicial standard, and all tree-modifying methods ensure that

such a DOM cannot be built. We, however, must deal with all heaps

that conform to our heap type. Therefore, in addition to our heap

predicate that guarantees us that all trees in our heap are acyclic,

we need a predicate that prevents the nodes from having more than

one parent. Therefore, we formally deine another heap predicate:

definition maximal↓one↓parent :: "↓ heapCore↓DOM ⇒ bool"

where "maximal↓one↓parent h − (∀node↓ptr.

(length (sorted↓list↓of↓set {parent. ∀children.

(h ⊢ get↓child↓nodes parent → r children)

−→ node↓ptr ∈set children})) ≤1)"

The deinition checks whether for any node, the set of possible

parents (i.e., pointers whose children contains said node), contains

exactly zero or one parents.

4.4 Pointer Validity

Moreover, we need to ensure that objects do not contain invalid

pointers (e. g., pointers that do not point to an object stored in

the heap of the same type). Otherwise, whenever we work with

our pointers, we would have to deal with the possibility of a łnull-

pointer exceptionž. Thus, we require:

definition all↓ptrs↓in↓heap :: "↓ heapCore↓DOM ⇒ bool"

where "all↓ptrs↓in↓heap h − ((∀ptr children.

(h ⊢ get↓child↓nodes ptr → r children)

−→ set children ⊆node↓ptr↓kinds h)

∧ (∀doc↓ptr disc↓node↓ptrs.

(h ⊢ get↓disconnected↓nodes doc↓ptr → r disc↓node↓ptrs)

−→ set disc↓node↓ptrs ⊆node↓ptr↓kinds h))"

The only place where we can ind pointers (without arbitrar-

ily constructing them, which should be avoided) is in one of the

datatype ields. Therefore, for all pointers in the heap, we re-

trieve the corresponding object, and check whether all pointers

stored in applicable ields (childNodes, document↓element, and

disconnected↓nodes) are present in the heap.

4.5 Heaps are Strongly Typed

As we model typed pointers and objects, we want to assure that a

pointer of a certain type actually maps to an object of the related

type in a given heap, e. g., that a document↓ptr actually maps to a

document. The following predicate assures us that this holds for

the whole heap:

definition matches↓heapCore↓DOM :: "↓ heapCore↓DOM ⇒ bool"

where "matches↓heapCore↓DOM −

(∀doc↓ptr ∈document↓ptr↓kinds heap.

the (get (cast doc↓ptr) is↓document↓kind heap)))

∧ . . .

Similarly to document, the deinition also contains checks for the

other classes, which we omitted here due to space constraints. The

deinition checks whether for all, e.g., document pointers, the heap

actually returns and object for which is↓document↓kind holds.

4.6 No Multi-Edges

The childNodes and disconnected↓nodes attributes are of type

list. Thus, they may contain duplicates, i.e., the same pointer mul-

tiple times. This can lead to strange efects, such as that after

remove↓child has been called, the pointer still is in the list. This

behavior is not addressed by the oicial speciication. We make this

requirement explicit:

definition distinct↓lists :: "↓ heapCore↓DOM ⇒ bool"

where "distinct↓lists h − ((∀ptr children.

(h ⊢ get↓child↓nodes ptr → r children)

−→ distinct children)

∧ (∀doc↓ptr disc↓node↓ptrs.

(h ⊢ get↓disconnected↓nodes doc↓ptr → r disc↓node↓ptrs)

−→ distinct disc↓node↓ptrs))"

We retrieve the lists for every pointer in the heap and require

that they are distinct. In Sect. 5.2, we will show a formal proof of

the fact that insert↓node actually can never lead to a childNodes

list with duplicates.
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Table 1: Well-formedness properties of core heap methods

side-efect modiies preserves

free only well-formedness

get↓child↓nodes ✓

get↓parent↓node ✓

get↓element↓by↓id ✓

get↓attribute ✓

create↓element ✓ ✓

set↓attribute ✓ ✓

remove↓child ✓ ✓

adopt↓node ✓ ✓

insert↓before ✓ ✓

4.7 Well-Formed Heaps

To put it all together, we deine a well-formed heap as a heap that

satisies all discussed constraints:

definition heap↓is↓wellformed :: "↓ heapCore↓DOM ⇒ bool"

where "heap↓is↓wellformed h ←→

finite (object↓ptr↓kinds h) ∧matches↓heapCore↓DOM h ∧

owner↓document↓valid h ∧acyclic↓heap h ∧

all↓ptrs↓in↓heap h ∧maximal↓one↓parent h ∧

distinct↓lists h"

5 REASONING OVER THE DOM

So far we only deined the DOM data structure, a heap for storing

DOM instances, and methods over them. We now discuss the verii-

cation of these methods in the sense of formally proving that they

preserve the well-formedness of the heap.

5.1 Properties of DOMMethods

5.1.1 Well-formedness of the Heap Methods. The DOMmethods

(see Sect. 3.2 and Table 1) can be divided into two categories: All

query functions (starting with the preix get↓) use the heap to

compute a value, but do not modify the heap. It is therefore easy to

show that they preserve the well-formedness of the heap. For all

other function, we have to formally prove their correctness w.r.t.

preserving the well-formedness of the heap. If all methods preserve

the well-formedness then we have shown that any exception-free

sequence of DOM methods creates a well-formed DOM heap.

For all methods, we need to prove a lemma of this form:

lemma insert↓before↓preserves↓wellformedness:

assumes "heap↓is↓wellformed h"

and "h ⊢ insert↓before ptr new↓child ref↓child → h h'"

shows "heap↓is↓wellformed h'"

All variables in lemmas are all-quantiied, meaning they can

take all possible values of the corresponding type, only re-

stricted by the statements in the assumption. As the predicate

heap↓is↓wellformed is a conjunction of more speciic predicates

(e. g., acyclic↓heap), we can split the proof for these lemmas into

separate proofs that the methods are preserving those more speciic

conditions. We will discuss such a proof in more detail at the end

of this section. Due to space limitations we will omit most proofs,

for which we refer the reader to our full formalization.

5.1.2 Heap Modifications are Local. We want to ensure that

heap-modifying functions do not modify the heap arbitrarily. Thus,

we irst introduce two predicates that characterize a function by

specifying which locations (pointers) and ields are being read or

written, respectively:

definition reads :: "(↓ object↓ptrCore↓DOM

× (↓ object↓ptrCore↓DOM ⇒ ↓ heapCore↓DOM

⇒ ↓ heapCore↓DOM ⇒ bool)) set

⇒ ↓ dom↓prog ⇒ bool"

where "reads S f ←→(∀h h' x. (h ⊢f → r x)

−→ (∀(ptr, P) ∈S. P ptr h h') −→(h' ⊢f → r x))"

definition writes :: "(↓ object↓ptrCore↓DOM

× (↓ object↓ptrCore↓DOM ⇒ ↓ heapCore↓DOM

⇒ ↓ heapCore↓DOM ⇒ bool)) set

⇒ ↓ dom↓prog ⇒ bool"

where "writes S f ←→(∀h h'. (h ⊢f → h h')

−→ (∀ptr. ∀get ∈Sg. (ptr, get) <S −→get ptr h h'))"

Both predicates take a set of pointers and predicates that assert

something about the speciied heap location in both the old and new

heap. This will be, for example, a predicate checking whether the

attributes ield of Elementwill have the same value in both heaps.

The writes predicate is characterized by these getter predicates

that remain unafected, which is why it references a set Sg, which

contains all such getter predicates for the getters of our classes.

For example, for the get↓attribute and set↓attribute DOM

methods we prove the following:

lemma get↓attribute↓reads:

"reads {(cast element↓ptr,

element↓getter↓preserved attributes)}

(get↓attribute element↓ptr k)"

lemma set↓attribute↓writes:

"writes {(cast element↓ptr,

element↓getter↓preserved attributes)}

(set↓attribute element↓ptr k v)"

5.1.3 Exceptions. All our functions can throw exceptions, i. e.,

they return a sum type of exception and their real return type,

which is a common way to model exceptions in functional lan-

guages. Therefore, we can provide lemmas that show under which

preconditions our functions will return their normal result and not

throw an exception. Most functions will throw an exception under

exactly one circumstance: if they try to resolve a pointer on the

given heap, but the heap does not have an object of the same type

stored in that location, i. e., the lookup returns None. This is not

surprising, since most functions will need to do something with

the object, and not just the pointer to the object. For example, we

show:

lemma set↓attribute↓ok:

assumes "matches↓heapCore↓DOM h"

and "ptr ∈element↓ptr↓kinds h"

shows "h ⊢ ok (set↓attribute ptr k v)"
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lemma adopt↓node↓removes↓child:

assumes wellformed: "heap↓is↓wellformed h"

and parent↓known: "
∧
parent.

h ⊢ get↓parent node↓ptr → r Some parent =⇒
is↓known↓ptrCore↓DOM parent"

and adopt↓node: "h ⊢adopt↓node owner↓document node↓ptr → h h2"

and known↓ptr: "is↓known↓ptrCore↓DOM ptr"

and children: "h2 ⊢get↓child↓nodes ptr → r children"

shows "node↓ptr <set children"

Fig. 6: The method adopt_node removes the node that is to

be adopted (proof in formalization document).

lemma adopt↓node↓children↓remain↓distinct:

assumes wellformed: "heap↓is↓wellformed h"

and parent↓known: "
∧
parent.

h ⊢ get↓parent node↓ptr → r Some parent

=⇒ is↓known↓ptrCore↓DOM parent"

and adopt↓node: "h ⊢adopt↓node owner↓document node↓ptr → h h2"

and ptr↓known: "is↓known↓ptrCore↓DOM ptr"

and children: "h2 ⊢get↓child↓nodes ptr → r children"

shows "distinct children"

Fig. 7: After using adopt_node, all children lists remain dis-

tinct (proof in formalization document).

5.2 Proving Properties Over DOMMethods

Our DOM model allows us to prove properties of our speciied

DOM methods over arbitrary heaps. In proofs, the general line of

arguing will usually utilize the fact that heap-modifying methods

consist of a series of heap updates in single locations, whose proven

properties we can utilize. We will show one example of such a proof

to demonstrate how one can work with the formalization.

For example, we can prove that using insert↓before does cer-

tainly never lead to duplicates in the node’s children list, even if a

pointer is being inserted that is already in this node’s children. We

express this property in our formalization as follows:

lemma insert↓before↓children↓remain↓distinct:

assumes wellformed: "heap↓is↓wellformed h"

and parent↓known: "
∧
parent.

h ⊢ get↓parent new↓child → r Some parent

=⇒ is↓known↓ptrCore↓DOM parent"

and known: "is↓known↓ptrCore↓DOM ptr"

and insert↓before:

"h ⊢ insert↓before ptr new↓child child↓opt → h h2"

shows "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h2 ⊢ get↓child↓nodes ptr → r children

=⇒ distinct children"

We irst assume that we start with a wellformed heap. The next

two assumptions guarantee us that ptr and the parent, if any,

of new↓child are of a known type Ð so either a element↓ptr,

character↓data↓ptr, or document↓ptr. These two assumptions

are necessary to prove something about one of our late-bound

functions, get↓child↓nodes and set↓child↓nodes, later. The

last assumption introduces h2 as the heap after an application of

insert↓before.

The conclusion is to be read as follows: After the use of

insert↓before (h2), all lists of children of all known pointers will

be distinct. Fig. 9 shows a formal proof sketch (i.e., a simpliied

excerpt of a formal proof using Isabelle’s proof language Isar [22]).

lemma insert↓node↓children↓remain↓distinct:

assumes ptr↓known: "is↓known↓ptrCore↓DOM ptr"

and insert↓node: "h ⊢insert↓node ptr new↓child reference↓child↓opt

→ h h2"

and "
∧
children. h ⊢get↓child↓nodes ptr → r children

=⇒ new↓child < set children"

and "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h ⊢ get↓child↓nodes ptr → r children =⇒distinct children"

shows "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h2 ⊢ get↓child↓nodes ptr → r children =⇒distinct children"

Fig. 8: After using insert_node, all children lists remain dis-

tinct if the child is not already in the children list into which

it will be inserted (proof in formalization document).

lemma insert↓before↓children↓remain↓distinct:

assumes wellformed: "heap↓is↓wellformed h"

and parent↓known: "
∧
parent.

h ⊢ get↓parent new↓child → r Some parent

=⇒ is↓known↓ptrCore↓DOM parent"

and known: "is↓known↓ptrCore↓DOM ptr"

and insert↓before:

"h ⊢ insert↓before ptr new↓child child↓opt → h h2"

shows "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h2 ⊢ get↓child↓nodes ptr → r children

=⇒ distinct children"

proof -

obtain reference↓child owner↓document h' where

reference↓child: "h ⊢(if Some new↓child − child↓opt

then next↓sibling new↓child

else return child↓opt) → r reference↓child" and

owner↓doc: "h ⊢ get↓owner↓document ptr → r owner↓document" and

h': "h ⊢ adopt↓node owner↓document new↓child → h h'" and

h2: "h' ⊢ insert↓node ptr new↓child reference↓child → h h2"

by (insert assms, unfold insert↓before↓def) unfold↓progs

have "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h' ⊢ get↓child↓nodes ptr → r children

=⇒ distinct children"

using adopt↓node↓children↓remain↓distinct parent↓known

using wellformed h' by blast

moreover have "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h' ⊢ get↓child↓nodes ptr → r children

=⇒ new↓child < set children"

using h' parent↓known wellformed adopt↓node↓removes↓child

by blast

ultimately show "
∧
ptr children. is↓known↓ptrCore↓DOM ptr

=⇒ h2 ⊢ get↓child↓nodes ptr → r children

=⇒ distinct children"

by (metis insert↓node↓children↓remain↓distinct known h2)

qed

Fig. 9: A formal proof that insert_before preserves the dis-

tinctness of the child nodes list

5.2.1 Proof Structure. Recall the deinition of insert↓before

in Sect. 3.2, which consists of two heap-modifying functions:

adopt↓node, which removes the new child from its old parent and

updates the owner document, and insert↓node, which appends

the new child to the actual children list. The proof is therefore

structured as follows:

First, we unroll the deinition of insert↓before to get a handle

to the individual statements. Additionally, we obtain h', which is

the intermediate heap in between adopt↓node and insert↓node.

Second, we prove that after adopt↓node, in addition to all

children lists still being distinct (we only remove one child

from one list), the child will not be part of any of these (as

it has been removed from the only children list that contained
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it). For this proof, we can use two properties of adopt↓node

that we proved earlier, adopt↓node↓removes↓child (Fig. 6) and

adopt↓node↓children↓remain↓distinct (Fig. 7).

Third, since we know that before the use of insert↓node all

children lists are distinct and do not contain the node that is to be in-

serted, we can prove that all children list will remain distinct, as we

only insert the given node and nothing else. Again, for this proof, we

can use a property that we have already proven about insert↓node,

insert↓node↓children↓remain↓distinct (Fig. 8).

6 RELATEDWORK

To our knowledge, there are only very few formalizations of data

structures for manipulating XML-like document structures avail-

able. Sternagel and Thiemann [19] present an łXML libraryž for

Isabelle/HOL. The purpose of this library is to provide XML pars-

ing and pretty printing facilities for Isabelle. As such, it is not a

formalization of XML or XML-like data structures in Isabelle/HOL.

Our DOM typed formalization shares several design decision

with the type-safe DOM API of Thiemann [20]. The most closely

related works are [9, 17, 18] in which the authors present a non-

executable, non-extensible, and non-mechanized operational se-

mantics of a minimal DOM and show how this semantics can be

used for Hoare-style reasoning for analyzing heaps of DOMs. The

authors focus on providing a formal foundation for reasoning over

client-side JavaScript programs that modify the DOM.

A more informal model of the DOM that focuses on the needs

of building a static analysis tool for client-side JavaScript programs

is presented by Jensen et al. [13]. This model does not focus on the

DOM as such, instead the authors focus on the representation of

HTML documents on top of the DOM.

Finally, there are several works, e. g., [2, 11, 12] on formalizing

parts of web browsers for analyzing their security. These works

use high-level speciications of web browsers and do not contain a

formalization of the DOM itself.

7 CONCLUSION AND FUTURE WORK

We presented a typed formalization of the Document Object Model

(DOM) in Isabelle/HOL. Technically, our formalization is an ex-

ecutable shallow embedding of the oicial speciication of the

WHATWG [23] and the W3C.

We see several lines of future work. We consider tightening the

link between the formal speciication and the actual implementa-

tions used by various web browsers as the most important line

of future work. One promising approach to achieve this goal is

the systematic generation of test cases from the formal speciica-

tion using test case generation techniques hat are integrated into

Isabelle/HOL [6, 7]. The generated test cases can, as the already

existing manually developed test cases, be used for validating the

compliance of actual browser implementation.

Furthermore, there are two promising areas w.r.t. extending

the scope of our formalization: irst, formalizing and analyzing

the łDOM with Shadow Roots,ž i. e., the new component model

proposed as part of the DOM standard of the WHATWG [23]. Sec-

ond, using the extensibility of our formalization to add support for

HTMLElement (and its sub-types such as HTMLIFrameElement). As

the concept of iframes is fundamental for restricting information

low between parts of a website originating from diferent security

domains, such a formalization would allow us to reason over web

security properties in Isabelle/HOL.

Availability. The formalization is available under a 2-clause

BSD license in the Archive of Formal Proofs [4]. A copy is also

available at https://git.logicalhacking.com/afp-mirror/Core_DOM.
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