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Abstract. Recent reports of magnetotransport measurements of InSb/Al1-xInxSb quantum well 

structures at low temperature (3 K) have shown the need for inclusion of a new scattering 

mechanism not present in traditional transport lifetime models.  Observations and analysis of 

characteristic surface structures using differential interference contrast DIC (Nomarski) optical 

imaging have extracted representative average grain feature sizes for this surface structure and 

shown these features to be the limiting low temperature scattering mechanism. We have 

subsequently modelled the potential profile of these surface structures using Landauer-Büttiker 

tunnelling calculations and a combination of a Monte-Carlo simulation and Drude model for 

mobility. This model matches experimentally measured currents and mobilities at low 

temperatures, giving a range of possible barrier heights and widths, as well modelling the 

theoretical trend in mobility with temperature. 

1.  Introduction 

Indium antimonide (InSb) exhibits the lowest reported electron effective mass (𝑚∗ = 0.014 𝑚e) [1] and 

highest reported room-temperature electron mobility ( = 78,000 cm2V-1s-1) [1] of any compound 

semiconductor. These properties make InSb particularly suited to many electronic applications, 

including low power high frequency electronics and quantum device realisation. There has been  

recent interest in the development of high quality InSb material following the report of two-

dimensional electron gas (2DEG) channel mobilities in excess of 200,000 cm2V-1s-1 at 𝑇 = 1.8 K [2-9] 

and the recent reports of Majorana fermion observation in InSb nanowires [10, 11]. There is renewed 

interest in this material system, when coupled with superconducting material, to provide a potentially 

robust quantum system for information processing. 

Furthermore, the strong spin-orbit interaction and extremely large Landé g-factor (𝑔 ≈ -50) [1, 12] 

exhibited in InSb has gained attention for potential exploitation in spintronics and quantum 

information control [13-15]. 
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Previous studies of carrier transport in InSb 2DEGs [3, 4] have considered standard scattering 

mechanisms using the relaxation time approximation, describing the mobility variation over a wide 

range of temperature (typically 3 K – 300 K). Whilst there has been good agreement, parameters used 

have tended to be extreme values to enable acceptable fits to data [9]. It has recently been shown that a 

previously unaccounted for major scattering mechanism due to surface features (hillocks [6-8]), 

associated with material quality, must be considered, with this having a major effect on the measured 

mobility. Considering this additional structural scattering allows for more reasonable values for 

standard scattering mechanisms, showing that there is immense potential for mobility improvement in 

this material [8]. Due to this potentially large mobility improvement in InSb QWs, there have been 

further recent investigations into methods of improved MBE growth via buffers and superlattice 

structures [6], as well as research into hillock growth and formation [7]. 

2.  Growth and Sample Details  

Detailed descriptions of the growth and fabrication of samples can be found in references [8] and [9]. 

In summary, 30 nm InSb quantum well heterostructures were grown by solid source molecular beam 

epitaxy (MBE) on semi-insulating GaAs substrates (and so are therefore lattice mismatched with 

regard to the substrate). Hall bar devices with an aspect ratio of 5:1 (nominally 200 μm × 40 μm) were 

then fabricated using standard techniques for subsequent magnetotransport measurements. 

3.  Experimental Determination of Mobility and Sheet Carrier Density 

We recently reported observed trends in magnetoresistance Hall measurements of several InSb QW 

samples with the results reproduced here (see references [8] or [9] for experimental details).  

Figure 1 shows the extracted mobilities, , and carrier densities, 𝑛2D, for a range of different 

samples at 3 K, with samples with increasing δ-doping (filled symbols) broadly defining three regimes 

in the data. Initially, in region 1, an increasing mobility is observed for an increase in carrier 

concentration (from 1 × 1011 cm-2 to 3 × 1011 cm-2). This is believed to be due to single subband filling, 

calculated from Schrödinger-Poisson (S.P.) modelling [16], giving rise to increased Thomas-Fermi 

screening. The mobility then begins to plateau at ~250,000 cm2V-1s-1 for a narrow range of carrier 

densities (region 2), before decreasing beyond 4 × 1011 cm-2 (region 3). In region 3, S.P. modelling 

shows there is the possibility of multiple subband occupancy and additional intersubband scattering. 

 

 

 

Figure 1. Left: Measured mobility (two carrier fit) vs. 2D sheet carrier density (𝑛2D) from 3 K Hall 

measurements. A series of samples with increasing δ-doping levels is shown by the larger, filed 

symbols, broadly defining three regimes (labelled with principal physical cause).  Smaller, unfilled 

symbols indicate similar samples from other growth batches. Dashed lines are contours of constant 

conductance from 2 mS to 20 mS. Right: Optical Nomarski image of sample surface, magnification 

× 50, for a sample with 𝑛2D ~3 × 1011 cm−2 and mobility ~200,000 cm2V−1s−1. The surface is clearly 

textured, with features of varying sizes. 
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Figure 2. Ratio of mean feature diameter (with one 

standard deviation error determined from size 

distributions given by multiple image sampling) to 

measured mean free patch 𝜆 as a function of 

mobility (open circles), approaching limiting value 

of 1 (dashed line). 

 

To examine the limiting factors affecting the higher mobility samples, we recently reported on the 

study of the surface morphology using optical differential interference contrast DIC (Nomarski) 

imaging [8]. A raw Nomarski image of a standard sample with 𝑛2D ~3 × 1011 cm-2 and  

 ~200,000 cm2V-1s-1 is shown in figure 1 at a magnification of × 50.   

The Nomarski image shows clear surface roughness, present similarly on all samples imaged [6, 7]. 

The roughness consists of approximately circular features with clear boundaries separating features. 

For the samples studied here, the embedded quantum well where the 2DEG resides is situated at a 

depth of 50 nm below the surface, whereas the threading dislocations that cause these surface features 

are created at the substrate/buffer interface at a depth of 3 m. Any dislocations that propagate through 

the buffer to the quantum well will therefore continue to the surface. Consequently, due to the 

proximity of the 2DEG to the surface, it is reasonable to assume that this surface roughness, and in 

particular the boundaries, have a severe impact on the electron transport in the quantum well.  

Using basic image analysis techniques (described in reference [8]), we extracted average feature 

sizes for multiple samples in figure 1. The ratio of the mean feature diameter to the mean free paths, 𝜆, 

deduced from 3 K Hall mobility data via a basic Drude transport model, is shown in figure 2. Figure 2 

shows there is a clear trend in the ratio of feature size with 𝜆, approaching a value of 1 for the highest 

mobility samples. This limiting value is strongly suggestive that these features, with an average size of 

~2.43 ± 0.13 μm, are the low temperature transport lifetime limiting scattering mechanism. At low 

temperatures, when phonon effects are reduced, an electron traveling in the quantum well may travel 

ballistically through a feature until it reaches a boundary where it scatters. 

 

  

Figure 3. Left: Transport modelled mobility (lines) and measured data (symbols) vs. temperature 

including standard scattering mechanisms (using typical values [8, 9]). Right: Adapted model 

including scattering due to 2.43 m surface features, matching well to Hall measured mobilities. 
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Transport lifetime modelling of InSb QW devices has been performed previously by Orr et al [4] 

and more recently by McIndo et al [8] and Hayes et al [9]. These models include several of the 

standard dominant scattering mechanisms present in III-V heterostructures as well as band non-

parabolicity, via a modified effective mass, deduced from a six-band Kane model [3, 17, 18]. 

By consideration for parameters for each sample, including 𝑛2D at 3 K, and reasonable values of 

background 𝑝-type impurities (~1 – 10 × 1015 cm-3) it was shown [8, 9] that the mobility could not be 

matched to measured data without the inclusion of surface feature scattering derived from a Drude 

model, given by  

 
1𝜏l = ( ℎ𝑚∗√2𝜋) ( 𝑙e√𝑛2D)−1

 (1) 

where 𝑙e is the mean feature size, assuming inelastic scattering occurring at the boundaries. The 

background impurity density has subsequently been experimentally measured at ~2 × 1013 cm-3 

through low temperature Hall measurements on AllInSb flat layers. A typical graph of the modelled 

temperature dependant mobility, including a non-parabolic effective mass, is shown in figure 3 left, 

excluding surface feature scattering. Figure 3 right is modified to include surface feature scattering 

following equation (1). As can be seen, the model matches well the measured data for a sample with a 

3 K mobility of approximately 200,000 cm2V-1s-1. In the low temperature regime the dominant 

scattering mechanism is associated with the surface features, whereas at high temperature, the mobility 

is dominated by phonon scattering processes. 

4.  Modelling of surface feature potential profile 

In the transport model above, it was assumed that surface features are regions of constant potential 

where transport occurs ballistically, whereas the boundaries between features act as potential barriers 

(scattering centres). These features are believed to be caused by screw-like growth around a threading 

dislocation [7], with the barriers at the boundaries due to the nonconformity in the crystal structure, 

giving rise to effective barrier widths of several monolayers. Landauer-Büttiker theory has been used 

to calculate tunnelling currents, and a combination of a Monte-Carlo (MC) simulation and a simple 

Drude model has been used to calculate corresponding mobilities. The measured and calculated 

parameters for the sample modelled are given in table 1, where the number of barriers is given by the 

length of the Hall bar divided by the average feature size. The width of the barriers is assumed 

negligible compared to the spacing between barriers. 

Table 1. Measured and calculated parameters of sample modelled. 

Parameter Symbol Value Parameter Symbol Value 

Number of barriers 𝑁 82 Experimental current 𝐼 1 A 

Carrier density 𝑛2D 3 × 1011 cm-2 Experimntal voltage 𝑉 0.4 mV 

Limiting mobility  270,000 cm2V-1s-1 Mean feature size 𝑙e 2.43 m 

 

Following references [18] and [19], a tunneling current density, 𝐽, can be obtained for a confined 

2D sheet of charge (xy) tunneling through barriers in the y direction for an applied voltage, 𝑉, 

 𝐽 = 2𝑒ℎ ∫ [𝑛1D(𝐸F − 𝐸y) − 𝑛1D(𝐸F − 𝐸y − 𝑒𝑉)]𝑇(𝐸y)d𝐸y∞
0  (2) 

 𝑛1D(𝐸F) =  √2𝑚∗ℎ ∫ (√𝐸x)−1 [1 + exp((𝐸x − 𝐸𝐹)/𝑘B𝑇)]−1d𝐸x∞
0  (3) 

where 𝐸F is the Fermi energy (calculated from 𝑛2D, accounting for non-parabolic effects using a six 

band Kane model [3, 17, 18]), 𝑇 is the temperature, 𝑘B is the Boltzmann constant and 𝑇(𝐸y) is the 

energy dependent transmission coefficient. For a specific barrier height, width and applied voltage, 𝑇(𝐸y) can be obtained numerically following Tsu and Esaki [19] or Ando and Itoh [20]. Once the 

Monte Carlo simulation is performed, an effective 𝑇∗(𝐸y) for 𝑁 barriers can be calculated using the 

simulation results, however this is expected to be approximately equal to 𝑇(𝐸y). 
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Barrier heights were determined for barriers from 1 to 50 monolayers (MLs) by calculating 𝑇(𝐸y) 

and 𝐽 and matching this to the values in table 1. Barrier heights (in eV) were found to approximately 

follow the form: height ≈ width−1.25 × 9.41, where width is measured in MLs. Subsequently, the 

MC simulation was run to determine a corresponding mobility. For the MC model it is assumed [21] 

that the left contact is a perfect source/emitter/reflector and the right contact is a perfect sink/acceptor. 

The electrons are non-interacting and travel at a constant velocity, 𝑣, between barriers, determined by 

their energy. As applied voltage is small compared to barrier heights, this is neglected. Each barrier is 

identical and separated by the mean feature size, 𝑙e. If a particle is transmitted, no collision occurs, 

whereas a refection is a scattering event. The mobility can then be calculated as an average over 

particles by using a simple Drude model, 

 𝜇 = 𝑒𝜏𝑚∗ = 𝑒𝑚∗ ( 𝑡𝑁c)̅̅ ̅̅ ̅̅
 = 𝑒𝑚∗ 𝑙e𝑣 × (𝑁s𝑁c)̅̅ ̅̅ ̅̅

 (4) 

where 𝜏 is the average time between collisions, 𝑡 the total time taken for a particle to travel from 

contact to contact, 𝑁c is the corresponding number of collisions and 𝑁s is the number of steps taken. 

At finite temperatures, conduction occurs over a spread of energies proportional to the rate of change 

of the Fermi distribution, 𝑓, and so an energy average of mobility must be performed, accounting for a 

temperature dependent band gap, Fermi energy and effective mass at each energy [22]. 

The resultant mobilities for barriers from 1 to 50 MLs are shown in figure 4. This is a replot of 

figure 3, replacing the surface feature scattering given by equation (1) with that from the MC model, 

and as before, the total mobility closely matches that experimentally measured. The inset shows 𝑇∗(𝐸y) at 3 K (solid lines) and Fermi distributions as a function of energy for 3 K and 300 K (dashed). 

The colour of the surface feature scattering and of 𝑇∗(𝐸y) represents the barrier width in monolayers. 

Figure 4 clearly shows the low temperature mobility is consistent for all barrier widths (due to the 

approximately constant value of 𝑇∗(𝐸y) at 𝐸 = 𝐸F). At higher temperatures the mobility trends for 

each barrier width begin to diverge (due to the relation between 𝑇∗(𝐸y) and the Fermi distribution), 

however the different barrier shapes dependencies’ do not diverge until 𝑇 is greater than ~70 K. At 

this temperature, transport modelling shows phonon scattering is dominant, and it is therefore not 

possible to precisely determine the shape of potential barrier due to surface features on this sample. 

These figures do show however that the low temperature limiting scattering due to surface features 

can be modelled as a series of potential barriers, with a range of widths, matching measured currents 

and Hall mobilities to those calculated through tunneling currents and Monte Carlo simulations. It can 

also be seen from the figure that above 50 ML the surface feature mobility begins to grow 

exponentially at higher temperatures. It is reasonable therefore that barrier thicknesses must be smaller 

than 50 ML, consistent with the possible cause of screw-like growth around a threading dislocation, 

with micro twin defects at the boundaries. 

 

 

Figure 4. Reproduction of figure 3 with the MC 

modelled mobility due to scattering from surface 

features for 1 ML (bottom) to 50 ML (top) width 

barriers. Inset:  Transmission 𝑇∗(𝐸y) at 3 K vs 

energy (solid lines) for barriers from 1 ML 

(bottom) to 50 ML (top) as well as Fermi 

distribution 𝑓 vs energy for 3 K and 300 K. For 

surface feature scattering and 𝑇∗(𝐸y), colours 

represent barrier widths (see online for colour 

version of figure). 
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5.  Conclusions 

We have studied InSb/AlInSb QW 2DEG material and have shown evidence for three characteristic 

regimes in the measured low temperature Hall mobility behaviour with carrier density. We have 

demonstrated the application of image analysis techniques to extract representative feature sizes and 

through use of a transport lifetime model, shown these to be the dominant low temperature mobility 

limiting scattering mechanism. We have subsequently used Monte-Carlo simulations to model the 

current, and the limiting mobility due to these features. Through use of a combination of Landauer-

Büttiker and Drude models, we have demonstrated the possible range of potential barrier heights and 

widths, from 1 ML to 50 ML, and shown these to be consistent with scattering corresponding to 

surface features as the dominant scattering mechanism. This work shows that with correct buffer 

redesign there is a clear potential for significant improvement in the mobility of such material. 
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