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Abstract—We present a biologically-inspired and scalable
model of the Basal Ganglia (BG) simulated on the SpiNNaker
machine, a biologically-inspired low-power hardware platform
allowing parallel, asynchronous computing. Our BG model con-
sists of six cell populations, where the neuro-computational unit
is a conductance-based Izhikevich spiking neuron; the number
of neurons in each population is proportional to that reported in
anatomical literature. This model is treated as a single-channel
of action-selection in the BG, and is scaled-up to three channels
with lateral cross-channel connections. When tested with two
competing inputs, this three-channel model demonstrates action-
selection behaviour. The SpiNNaker-based model is mapped
exactly on to SpineML running on a conventional computer; both
model responses show functional and qualitative similarity, thus
validating the usability of SpiNNaker for simulating biologically-
plausible networks. Furthermore, the SpiNNaker-based model
simulates in real time for time-steps > 1 ms; power dissipated
during model execution is ≈ 1.8 W.

I. INTRODUCTION

The aim of this work is to build a biologically-inspired,

scalable, spiking neural network model of the Basal Ganglia

on the SpiNNaker machine [1]. The Basal Ganglia (BG) are a

set of subcortical nuclei, which are evolutionarily very old and

appear in all vertebrates, enabling them to make decisions and

take subsequent actions [2]. The information on which the de-

cision needs to be made, i.e. the environmental circumstance,

constitutes the input to the BG, and is available via the Tha-

lamus and Cortex. Output from the BG is the specific action

that is decided upon, referred to as ‘action-selection’ [3], and is

relayed to the motor pathway for execution via the Thalamus,

Cortex and other sub-cortical structures. The objective of this

work is to build a computational framework that will provide

a ‘basic building block’ for further testing and development

of automated decision-making tools in low-power, real time

hardware such as the SpiNNaker machine [4], [5].

The neurotransmitter dopamine lies at the heart of the

decision-making/action-selection functions of the BG. Seminal

modelling work by Gurney et al [3], [6] introduces the concept

of ‘selection-control’ pathways in the BG, a deviation from

the more common nomenclature of ‘direct-indirect’ pathways

associated with how dopamine controls and executes the

action-selection mechanism. Subsequently, the model was also
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basab.sen.b@gmail.com)

demonstrated as a computational tool to study brain disor-

ders [7], [8], [9], as well as to form a conceptual understanding

of the action-selection mechanism adopted by the BG and

implementated in robots [10], [11].

The BG model presented in this work is based on the

‘selection-control’ BG model proposed by Gurney et al [3],

and its later extension by Humphries et al [9]. This cir-

cuitry consists of six cell populations viz. the Subthalamic

Nucleus (STN), Globus Pallidus externa (GPe), Substantia

Nigra pars reticulata (SNr), and the Striatal Medium Spiny

Neurons (Str-MSN). In addition, we have included the Striatal

Fast Spiking Interneurons (Str-FSI) along the lines presented

in [12] (sans the gap junction connections). Furthermore, our

BG network model comprises several recurrent connections

that are based on literature reporting anatomical data. The

basic computational unit in our model is implemented using

Izhikevich’s conductance-based spiking neurons, supported by

SpiNNaker’s underlying software toolchain sPyNNaker [13].

Our choice of the single spiking neuron model is inspired

by a similar implementation in the BG models presented by

Liu et al [14] and Thibeault et al [15]. Inputs to the model

are simulated with Poisson distributed spike trains generated

separately for each simulation run, and are provided to the

Str-MSN, Str-FSI, and STN cell populations. The response

of the SNr cell population is the model output. At first, we

built a macroscopic ‘channel’-like columnar model capturing

neural information pathways in the BG, and parameterised this

model to produce base firing rates as reported in [9], [15].

Next, to emulate arbitration by the BG of parallel macro-

scopic information channels representing competing sources,

the single-channel model is used as a basic building block to

scale up to three channels. Our results demonstrate selection

of a competing action by the three-channel BG model, and are

in agreement with previous model-based research [9], [15].

To compare and validate the SpiNNaker-based model out-

puts with those obtained using a conventional computer, we

have implemented the same BG circuit using SpineML [16],

an XML-based format for the specification of networks of

point-neuron models. To create the SpineML-based model, we

made use of SpineCreator, a graphical editor that is designed

to provide an easy-to-use and flexible interface for building

and visualising neuronal models [17], [18]. The model out-

put dynamics show functional and qualitative similarity on

both platforms i.e. SpiNNaker and SpineML, indicating the
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SpiNNaker machine as a viable platform for implementing

spiking neural networks. A stringent bootstrapped t-test [19]

(see Appendix) performed on the total number of spikes

generated by each population over a period of 6 s shows

that p < 0.05, implying statistically significant numerical

differences between the model spike counts. This difference

is due to the stochastic nature of the model inputs, replicating

the numerical differences between data recorded from different

animals for the same behavioural task, and is aligned with our

expectations.

The underlying SpiNNaker architecture is designed to run

in real time for time-steps > 1 ms. However, we solve the

Izhikevich neuron models with a time-step of 0.1 ms to ensure

solution accuracy. Thus, all simulations of the BG model on

SpiNNaker ran in 10 s real time for 1 s simulation time, i.e.

slowed down by a factor of 10. That said, a performance

analysis indicates that the model is guaranteed to execute in

this time, which lends a reliability factor e.g. for real time

implementations. In addition, the run time is unaffected by

scaling up the model, i.e. 10 s model simulation time is

guaranteed to execute in 100 s real time for both single- and

three-channel models. The power dissipation during model

execution, measured using equipment built in-house [20], is

≈ 0.8 W and 1.8 W for the single- and three-channel model

respectively.

In Sect. II, we present the model design and implementation

methods. In Sect. III, we present the model simulation methods

and results. A comparison study with simulation of the same

model on the SpineML platform running on a conventional

computer is presented in Sect. IV-A; a performance analysis in

terms of simulation time and power dissipation on SpiNNaker

is presented in Sect. IV-B. We discuss the results and conclude

the paper in Sect. V.

II. MODEL DESIGN AND IMPLEMENTATION

Fig. 1. Schematic diagram of the single-channel Basal Ganglia (BG) model.
An overview of the biological basis of the model layout is provided in
Sect. II-A. A pool of 25 Poisson distributed spike trains provide input to
the Str-MSN and Str-FSI populations, while a separate pool consisting of 2
Poisson spike trains provide input to the STN population. Model output is the
average firing rate of all neurons in the SNr population.

TABLE I
THE TOTAL NUMBER OF NEURONS IN EACH POPULATION OF THE BG

MODEL IS INFORMED BY ANATOMICAL STUDIES [21] AND SCALED DOWN

PROPORTIONALLY TO FORM A COLUMNAR STRUCTURE, REPRESENTING A

SINGLE-CHANNEL OF NEURAL INFORMATION FLOW IN THE BG,
CONSISTING OF A TOTAL OF 2681 CELLS.

Basal Ganglia Total number Total number

population of neurons (reported) of neurons (model)

STR (Str-MSN + Str-FSI) (Nstr ) 2790 × 103 2790

Str-MSN (Nmsn
str ) 90% × Nstr 2511

Str-MSN-D1/D2 50% × Nmsn
str 1255

Str-FSI 3% × Nstr 84

STN 13560 14

GPe 45960 46

SNr 26320 27

A. Biological background

The basic BG model circuitry simulated on SpiNNaker is

shown in Fig. 1. The Striatum forms the main input structure

of the BG and receives excitatory glutamatergic synapses from

both the cortex and the thalamus. Studies on the BG cells of

the rat brain [21] report that around 90 – 95% of the cells of

the Striatum are of the Str-MSN variety. The remaining 5 –

10% of the cells constitute the interneurons of the Striatum.

While there are three known varieties of interneurons, the

predominant inhibitory influence on the Str-MSN is thought to

be from the γ-aminobutyric acid (GABA)-ergic Str-FSI, which

constitute around 2 – 5% of the cells of the Striatum [22], [23].

In this work, we model the Str-FSI population constituting

around 3% of the cells of the Striatum.

A core feature of the BG is the modulation of population

behaviour by dopamine released by the Substantia Nigra pars

compacta (SNc; not modelled here). The Str-MSNs receive

major dopaminergic input from the SNc and are modulated

selectively by two types of dopamine receptors, classified

broadly as D1 and D2. The D1 receptors are known to fa-

cilitate N-methyl-D-aspartate (NMDA) and GABAA mediated

synapses [24], [25], [26], while the D2 receptor types sup-

press the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid (AMPA) and GABAA mediated synapses [27], [28].

The Str-MSN cells that are modulated by the D1 receptors

(Str-MSN-D1) make major inhibitory axonal projections to

the SNr. The Str-MSN cells that are modulated by the D2

receptors (Str-MSN-D2) project to the GPe. The GPe cells

project inhibitory efferents to the STN, SNr, Str-FSI [29], as

well as on themselves [30]. Both Str-MSN-D1 and Str-MSN-

D2 have recurrent inhibitory connections on themselves in

addition to laterally inhibiting one another [28]. The Str-FSIs

make feed-forward inhibitory synapses on both Str-MSN-D1

and Str-MSN-D2 [31], as well as within the population. We

note that the STN are the only excitatory cell population in

the BG; all other cells are inhibitory. The STN cells receive

major excitatory inputs from the thalamus and cortex [32], and

project excitatory efferents to the GPe and SNr populations.

The SNr forms the output structure of the BG and projects

inhibitory efferents to the ventral thalamus and the brainstem

reticular formation. In addition, the SNr cells make inhibitory

projections on other cells within the population [33].

Table I shows the total number of cells in each population
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of a rat BG as reported by Oorschot [21]. However, in this

preliminary endeavour to model the BG circuit on SpiNNaker,

our objective is to build a single-channel columnar architecture

that will serve as the basic building block towards building

multi-channel BG models; the justification towards such an

approach is to build a scalable framework. Towards this, we

scale down the number of neurons in each population by a

factor of 103. While there are a myriad chemical neurotrans-

missions in the BG, we have implemented only two types

of synapses in this work, viz. those mediated by the AMPA

and GABAA neuro-receptors corresponding to glutamatergic

(excitatory) and GABA-ergic (inhibitory) neurotransmitters.

Further details on synaptic layout and parameterisation of the

network are mentioned in the following sections.

B. Single neuron models and spiking patterns

Each computational unit in the BG network is a

conductance-based form of Izhikevich’s spiking neuron

model [34] implemented on the SpiNNaker software toolchain

sPyNNaker [13], and defined in Equations (1) – (3).

dv(t)

dt
= 0.04v2(t) + 5v(t) + 140

− u(t) + Idc + Isyn(t) (1)

du(t)

dt
= a(bv(t)− u(t)) (2)

If v(t) > 30 then

v(t)← c;u(t)← u(t) + d (3)

where, a, b, c, d are parameters that define the dynamic be-

haviour of the model and can be tuned to obtain various

spiking patterns as observed in biology; v(t) is the membrane

potential and u(t) is a membrane recovery variable; Idc is

the DC bias current that is built into the model definition in

sPyNNaker; Isyn(t) is the post-synaptic current corresponding

to the synaptic processes mediated by the neuro-receptors

syn ∈ {AMPA,GABAA} and is defined in Equations (4) –

(6):

Isyn(t) = gsyn(t) · (Esyn − v(t)), (4)

gsyn(t) = gsyn(t0) · e
−(t−t0)/τsyn , (5)

gsyn(t0) = gsyn(t0 −∆t) + nḡsyn, (6)

where Esyn and gsyn(t) are the membrane reversal potential

and membrane conductance respectively of the post-synaptic

neuron; τsyn is the decay time constant of the synapse;

gsyn(t0) is the instantaneous conductance after the most recent

afferent spike; n is the total number of spikes incident at

the synapse in the time-step (∆t) before t0 (implemented

on the ring buffer of sPyNNaker (see Sect. II-D); ḡsyn is

the conductance increment per afferent spike (the ‘synaptic

weight’).

Initially, each population of the BG is simulated on SpiN-

Naker with neither any inter- or intra-population connectivities

nor any extrinsic model input (Isyn(t) = 0). The DC bias

current Idc corresponding to a population X forms part of the

neuron definition on sPyNNaker, and is present as an intrinsic

input stimulus to all neurons in X from the start of simulation

Fig. 2. The spiking patterns of the Izhikevich neurons in each population of
the BG model when stimulated with Idc varying every 1 second over the total
simulation time of 5 seconds. There are no other stimuli in the circuit, and the
neurons are acting independently with no intra- or inter-network connectivity.
Each neuron is defined as in Equations (1) – (3) with model parameters set
as in Table II (A). The parameterisation of SNr, GPe, STN and Str-MSN
cell populations was made with the objective to match, qualitatively, those in
Figure 1 of [15]. We did not find any prior research demonstrating the spiking
patterns for Str-FSI cells and parameterised these populations as Fast Spiking
(FS) [35].

time. In this state, a single simulation run of the BG model

will generate spiking behaviour from all neurons in the model,

where each neuron is responding to Idc only, and is otherwise

acting independent of all other neurons in the model. Such a

set-up allows us to specify a ‘base state’ spiking pattern for

each population of the model; specifically, we aim to emulate

the spike patterns demonstrated by Thibeault et al [15] (see

Figure 1) generated on a conventional computer. The spiking

patterns generated on SpiNNaker are shown in Fig. 2. The total

duration of simulation is 5 s, where Idc is varied after every

1 s of simulation time; this demonstrates the spike response

characteristics of each population in terms of increasing or

decreasing frequency corresponding to changes in Idc. The

base (reference) state parameters of the single neuron models

(with the exception of Idc) for each cell population in our
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TABLE II
(A) THE BASE (REFERENCE) STATE PARAMETERS OF SINGLE NEURON

MODELS IN EACH POPULATION OF THE BG MODEL DEFINED IN

EQUATIONS (1) – (3) [15], [14], [35]. READERS MAY NOTE THAT THE

BASE VALUES FOR Idc ARE SET DURING THE SIMULATION OF THE WHOLE

NETWORK DISCUSSED IN SECT. III-A. (B) BASE STATE PARAMETER

VALUES FOR SYNAPTIC AND DOPAMINERGIC MODULATION ATTRIBUTES

DEFINED IN EQUATIONS (4) – (9).

(A) Izhikevich Neuron Parameters
Basal a b c d vinit uinit Idc
Ganglia (mV) (nA)

Str-MSN 0.02 0.2 -65 8 -80 -16 -30

Str-FSI 0.1 0.2 -65 8 -70 -14 -10

GPe 0.005 0.585 -65 4 -70 -40.95 2

STN 0.005 0.265 -65 2 -60 -15.9 5

SNr 0.005 0.32 -65 2 -70 -22.4 5
(B) Synaptic parameters

Neurotransmitter Parameters Values

AMPA

τampa 6 ms

ḡampa 0.5

Eampa 0 mV

φstr−msn−d2
dop

2.75

φstr−fsi

dop
3.75

φstn
dop 2

ǫd2ampa 0.2

GABA

τgaba 4 ms

ḡgaba 0.5 of ḡampa

Egaba -80 (mV)

φstr−msn−d1
dop

2.75

φstr−msn−d2
dop

2.75

ǫd1,d2
gaba

0.073

work are mentioned in Table II (A), and are informed by those

in [14], [15]. (Readers may note that the base values for Idc
mentioned in Table II (A) are set during simulation and testing

of the BG network as discussed in Sect. III-A).

C. Synaptic layout and dopaminergic modulation

In a recent review [32], all cell populations in the BG

are reported as expressing both AMPA and NMDA neu-

roreceptors corresponding to glutamatergic neurotransmitters,

and both GABAA and GABAB neuroreceptors corresponding

to GABA neurotransmitters. However, the GABAB neuro-

receptor mediated synapses are modulatory in nature, and they

do not participate actively in the synaptic transmission process.

Furthermore, the NMDA neuro-receptor based synapse is a

function of the membrane voltage. For simplicity, we ignore

the NMDA and GABAB based neuro-transmission in this

work, and consider synapses mediated by the AMPA and

GABAA neuro-receptors only.

The reversal potential for the GABAA neuro-receptor medi-

ated synapses depends on the flow of Cl−, and its value relative

to the resting potential of the cell affects the nature of the post-

synaptic membrane potential [36], [37], [38]. Here, we assume

the case where a GABAA mediated synapse would generate

an inhibitory post-synaptic potential (IPSP); thus we set the

value to -80 mV [15]. The base parameter values of τsyn,

and Esyn of the post-synaptic membrane corresponding to

syn ∈ {AMPA,GABAA} neuro-receptor mediated synapses

(defined in Equations (4) – (6)) are as in [9] and listed in

Table II(B).

A literature survey indicates extensive dopaminergic mod-

ulation of synaptic transmission in all cell populations of the

BG [39], [40], [41], [42], [43], [44], [45], [23], [32]. For sim-

plicity, we have constrained the dopaminergic modulation in

our BG model to only a few synaptic pathways as listed below.

The mathematical implementation of dopamine modulation is

applied to the peak membrane conductance corresponding to

a synapse, and is informed by prior works [9], [46].

1) Weakening of the AMPA mediated synapses:

The D2 receptors primarily target the AMPA neuro-

receptor mediated synapses, weakening their impact by

around 20% [24]. The D1 receptors primarily facilitate

the NMDA mediated synapses while the AMPA me-

diated synapses are left unaffected. The modulation of

the AMPA mediated excitatory afferents from extrinsic

sources (thalamus/cortex) to the Str-MSN-D2, Str-FSI

and STN are implemented using Eq. (7):

ḡP̄ampa−d2 = ḡampa · (1− ǫd2ampa · φ
P̄
dop), (7)

where P̄ ∈ {Str-MSN, Str-FSI, STN} represents the

afferent populations receiving extrinsic inputs; ǫd2ampa is

the modulation co-efficient and is set as 0.2 to emulate

the 20% modulation of the AMPA based synapses [24];

0 < φP̄
dop < 5 is the level of dopamine affecting

the afferent synapse to the population P̄ . Thus, for a

maximum value of φP̄
dop, ḡP̄ampa−d2 = 0; conversely,

for lack of dopaminergic modulation i.e. φP̄
dop = 0, the

maximal value of ḡP̄ampa−d2 is ḡampa.

2) Modulation of GABAA mediated synapses:

The GABA-ergic inhibition of the GPe by the Str-MSN-

D2 population is weakened by the D2 receptors [44],

while the GABA-ergic inhibition of SNr by the Str-

MSN-D1 population is facilitated by the D1 recep-

tors [25]; it is however unclear whether such facilitation

is via pre-synaptic or post-synaptic receptors. We have

implemented both these modulatory pathways as in

Equations (8) and (9).

ḡP̄gaba−d1=ḡgaba · (1− ǫd2gaba · φ
P̄
dop) (8)

ḡP̄gaba−d2=ḡgaba · (1 + ǫd1gaba · φ
P̄
dop) (9)

For simplicity in this work, we constrain the dopamin-

ergic modulation variability of GABA-ergic synapses

to the MSN population only, and assume dopamin-

ergic modulation of inhibitory afferents of both the

GPe and SNr from Str-MSN to be mediated by pre-

synaptic D2 and D1 receptors respectively. Thus, in

Eq. (8), P̄ ∈ {Str −MSN − D2}, while in Eq. (9),

P̄ ∈ {Str − MSN − D1}. Also, the co-efficient of

dopaminergic modulation of GABAA in both pathways

is set to a base value of 7.3% i.e. ǫd1,d2gaba = 0.073.

3) Modulation of AMPA efferents of the STN:

The STN sends out diffused excitatory projections to the

GPe and SNr populations of the same channel as well as

of neighbouring channels (see Sec II-D). Once again for

simplicity, we have assumed pre-synaptic dopaminergic

modulation of these AMPA mediated efferents, imple-

mented using Eq. (7).
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TABLE III
SYNAPTIC CONNECTIVITY PARAMETERS CORRESPONDING TO BASE STATE OF THE SINGLE-CHANNEL BG MODEL.

(A) Afferents from the Cortex
Synaptic connections Synaptic Weight (ḡsyn µS) Probability (pconn) Delay (dconn ms)

Ctx → Str-MSN-D1 (ḡampa) 0.5 0.15

9 – 12Ctx → Str-MSN-D2 (ḡstr−msn−d2
ampa−d2

) 0.225 0.15

Ctx → FSI (ḡstr−fsi

ampa−d2
) 0.125 0.15

Ctx → STN (ḡstn
ampa−d2) 0.3 0.2

(B) Efferents of the Striatum
Synaptic connections Synaptic Weight (ḡsyn µS) Probability (pconn) Delay (dconn ms)

Str-MSN-D1 → SNr (ḡstr−msn−d1
gaba−d1

) 0.3 0.15
5 – 7

Str-MSN-D2 → GPe (ḡstr−msn−d2
gaba−d2

) 0.2 0.15

Str-MSN-D1 → Str-MSN-D2

( 1

2.55
× ḡgaba ) 0.0982 0.1 2 – 3

Str-MSN-D1 → Str-MSN-D1

Str-MSN-D2 → Str-MSN-D1

Str-MSN-D2 → Str-MSN-D2

(C) Efferents of the Fast Spiking Interneurons
Synaptic connections Synaptic Weight (ḡsyn µS) Probability (pconn) Delay (dconn ms)

Str-FSI → Str-MSN-D1

( 1

2.55
× ḡgaba ) 0.0982 0.1 2 – 3Str-FSI → Str-MSN-D2

Str-FSI → Str-FSI

(D) Efferents of the Globus Pallidus external
Synaptic connections Synaptic Weight (ḡsyn µS) Probability (pconn) Delay (dconn ms)

GPe → STN

( 1

1.75
× ḡgaba ) 0.1429

0.25

5 – 7

GPe → SNr 5 – 7

GPe → GPe 2 – 3

GPe → Str-FSI 0.05 5 – 7

(E) Efferents of the Substantia Nigra pars reticulata
Synaptic connections Synaptic Weight (ḡsyn µS) Probability (pconn) Delay (dconn ms)

SNr → SNr ( 1

1.75
× ḡgaba ) 0.1429 0.25 2 – 3

(F) Efferents of the Sub-thalamic Nucleus
Synaptic connections Synaptic Weight (ḡsyn µS) Probability (pconn) Delay (dconn ms)

STN → GPe

(
ḡstn
ampa−d2

6
) 0.05 0.5

5 – 7 (intra-channel)

9 – 12 (cross-channel)

STN → SNr

In addition to the above, the dopaminergic weakening of

GABAA mediated synapses is modelled by reducing the

membrane conductance to a fraction of ḡgaba.

The base values of all the dopaminergic modulatory pa-

rameters are mentioned in Table II(B), while the values for

the modulated conductance, ḡsyn, are mentioned in Table III.

These values are based on [9], although the final values are set

by a ‘trial and error’ approach during model simulation so as to

obtain the target firing rate (see Sect. III-A). Readers may note

that we did not vary the dopamine levels (Φ, ǫ) for this work,

and all results are generated with the base parameter values

as mentioned in Table II (B). Thus, the dopamine modulation

parameters in this model serve to set its operating region.

D. Overview of SpiNNaker and its handling of a synapse

SpiNNaker (Spiking Neural Network Architecture) is a

System-on-Chip (SoC) consisting of very-low-power ARM968

processors. The on-chip communication architecture and pro-

tocols are biologically inspired, allowing asynchronous (event-

based), parallel processing of synaptic data during neural

network simulations on the ARM processors (referred to as

‘cores’). Each chip has 18 cores, of which around 15 – 16

are available for neural computation; the remaining cores are

used for system management on the chip. Each core has 64

kB (Data) Tightly Coupled Memory (DTCM: analogous to a

‘cache’ on a conventional computer, i.e. for quick data access

during neural computation) where the neuron and synapse

data pertaining to that core is stored to be accessed during

neural computation. In addition, each chip has a 128 MB

Synchronous Dynamic Random Access Memory (SDRAM)

that is shared by all the cores on the chip for storing simulation

data. For details of current state-of-the-art in SpiNNaker de-

velopment, we refer the reader to a recent topical review [47].

The model used in this work is implemented on a single 48-

chip SpiNNaker board (please refer to Sect. II-D for details).

The SpiNNaker software toolchain, sPyNNaker [13], pro-

vides an implementation of PyNN [48], which is used as a

standard interface for all neural simulations on SpiNNaker.

(PyNN is a python based library bespoke to building spiking

neural network models, and runs on other simulators (e.g.

NEST) besides SpiNNaker). Two essential criteria that form

the backbone of the sPyNNaker application interface are: the

neuron model, which we have discussed in Sect. II-B; and the

synaptic connections in the network, which we describe in the

following text.

The synaptic connectivity in the model is implemented via
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25 spike trains

3 Hz

2 spike trains

3 Hz

Fig. 3. The single-channel basal ganglia network, as exported from SpineCre-
ator. Rectangular boxes are neural populations. The population name, number
of elements and SpineML component are shown in the box. Grey circles
represent Poisson spike train sources. Green arrows are projections with
element to element connectivities that are parameterised as in the SpiNNaker
based model and reported in Tables I – III. Projections with arrow heads
are excitatory, those with circles for heads are inhibitory. The thinner, red
lines which connect populations to arrowheads connect the membrane voltage
variable v(t) (defined in Eq. (1)) in the efferent population to the synapse
component in each projection (on a one to one basis), allowing the synaptic
current to be computed.

sPyNNaker using the function ‘FixedProbabilityConnector’.

Each connection between two populations consists of three

attributes viz. (a) the probability of the synaptic connection

pconn ∈ (0, 1), which is a normalised representation of the

total ‘fan-in’ from the pre-synaptic population to the post-

synaptic population; (b) the delay of the synaptic connection

dconn, representing the latency of a pre-synaptic cell spike in

reaching the post-synaptic cell; (c) the synaptic (connectivity)

weight that scales the synaptic decay exponential, and is

the membrane conductance increment per spike of the post-

synaptic neuron ḡsyn in the current work (defined in Eq. (6)).

All of the above-mentioned synaptic attributes correspond-

ing to a certain projection are stored as a 32-bit ‘synaptic data

word’; the first 16 bits consist of the synaptic weight, while

the next 16 bits are distributed thus: 4 bits for synaptic delay;

1-bit for synapse nature (i.e. excitatory/inhibitory); 8 bits for

neuron index (therefore capped to 256 neurons per core); and

3 bits are unused. This is shown in Appendix, Fig. 10(b).

E. Mapping the BG model to SpineML

A neuronal model that has been specified in SpineML

consists of individual XML files, which define the behaviour

of model ‘components’ viz. neuron bodies, post-synapses and

weight-updates. In addition, there are separate XML files

that define how the components are built into a network of

neuronal populations that are connected with ‘projections’,

where each projection consists of one weight-update and one

post-synapse component. A set of ‘experiment files’ define

how the model should be executed; each experiment contains

a specification of the inputs for the network, the data that

should be logged from the simulation and any experiment-

specific network lesions or parameter modifications that should

be made. SpineML is thus a declarative format for specifying

a network model.

In order to execute a SpineML model, it is necessary to

use a SpineML back-end, which parses the SpineML input

files and generates executable code for the model. We used

SpineML 2 BRAHMS [49] that generates code suitable for

execution on a general purpose CPU and is the canonical

back-end for SpineML. The single-channel BG model on

SpiNNaker in Fig. 1 is mapped to SpineML and shown in

Fig. 3. Inspection of the figures indicates that the network

connectivity is the same, although there is an important dif-

ference in solving the synapse models. Fig. 3 shows a typical

SpineML model in which ‘spike events’ are transmitted along

projections via a weight-update component (a mechanism to

implement fan-in from multiple pre-synaptic neurons) and

then to the post-synapse component of the projection whose

conductivity is incremented by the synaptic weight ḡsyn.

This ḡsyn is a parameter of the post-synapse component,

which means that a spike afferent from population A and a

spike afferent from a different population B increment the

conductivity at the post synapse by the same amount. In

contrast, in SpiNNaker, each spike is transmitted in a data

packet which encodes ḡ (see the ring-buffer implementation in

Fig. 10, Appendix), meaning that the spike from population A

could increment the post synaptic conductivity by a different

amount than the spike from population B. Thus, there can

be a difference between SpineML and SpiNNaker networks

which have apparently been arranged in an identical manner.

It is possible to create a SpineML network which faithfully

reproduces the behaviour of the SpiNNaker network, but this

leads to a more complex, unwieldy network (see the SpineML

model bgbsb1 impt in the repository referenced below and

compare with bgbsb1, which is shown in Fig. 3). The more

complex, and more faithfully SpiNNaker-like SpineML model

produced results that were not statistically different from those

discussed in Sect. IV for the more natural SpineML models.

The SpineML model and associated results are available

publicly at https://github.com/ABRG-Models/GPR-BSB/

F. A scaled-up BG model with three channels

The basal ganglia has multiple parallel pathways that serve

different parts of the cortex [50], as well as segregated vol-

untary and automatic behaviour pathways [51]. Furthermore,

focussed inhibition and surround excitation are concepts that

were proposed by [2]. We have scaled up our BG model to

consist of three channels, where each channel is the single-

channel model of Fig. 1. Thus, the total number of neurons in

this three-channel BG model is 8043. The STN population

of each channel sends out excitatory efferents to the SNr

and GPe populations of the other two channels. These cross-

channel connections produce the desired surround effect on the

neighbouring channels by each channel Ψ, thus indirectly em-

phasising the focal inhibition within Ψ. The delay parameter

of the cross-channel efferents of the STN is higher than that of

the intra-channel pathway (see Table III (F)). The connectivity

parameters are mentioned in Table III. The method of initiating

competing sources and incorporating action-selection in the

model is discussed in Sect. III.
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Fig. 4. The schematic diagram of a scaled up model of the Basal Ganglia
where three channels are interconnected laterally. The STN population of
each channel projects to GPe and SNr populations of every other channel.
The connectivity parameters are mentioned in Table III (F), and referred to
as ‘cross-channel’. The model demonstrates action-selection when presented
with competing inputs (see Sect. III-B).

III. SIMULATION METHODS ON SPINNAKER AND

RESULTS

A. Base state dynamics of the single-channel model

(a)

(b)

Fig. 5. (a) The average firing rates, and (b) the average firing rate histogram
of SNr, GPe and STN populations with time bin widths of 100 ms, computed
over a simulation duration of 10 s, demonstrate similar ranges of mean firing
rate as reported in [9], [15].

Data collected from BG of awake resting rats suggest firing

rates of: STN at around 10 – 12 Hz; GPe at ≈ 30 Hz; SNr at

somewhere in the range 25 – 30 Hz, and generally less than

that of GPe [9]. Furthermore, the firing rate of the Str-MSN

cells are ≈ 3 Hz while that of the Str-FSI are . 10 Hz. We

tuned the parameters in Tables II (B) and III to emulate these

firing rates, which will define the base firing rates of the model

populations.

Simulation methods: To mimic extrinsic input to the BG,

a total of 25 Poisson distributed spike sources project to the

Str-MSN and Str-FSI populations, while 2 Poisson sources

feed the STN population. The Poisson number for all the

spike sources is maintained at 3 Hz. The total duration of

simulation is 10 s. The Poisson sources are applied stochas-

tically sometime between 500 – 700 ms from the start of

simulation, and for a total duration of 9.2 s. The individual

neuron model equations on sPyNNaker are solved using a 2nd

order Runge Kutta solver with a time-step 0.1 ms to achieve

solution accuracy.

The average firing rate of each population over r trials is

derived using Eq. (10):

SR =

∑R
r=1 S

r
m

tsim ·Nm ·R
, (10)

where Sr
m is the total number of spikes fired for each trial r by

all Nm neurons in the population M ∈ {SNr,GPe, STN},
and over the total simulation duration of tsim = 10 s; R = 10
is the total number of trial simulation runs. The spike count

histogram is derived by averaging the spike count for each

100 ms bin of SR.

Results: The average firing rates for the STN, GPe and

SNr populations are shown in Fig. 5(a), while the spike count

histogram with 100 ms bins is shown in Fig. 5(b). The firing

rate for: STN lies within the range 10 – 12 Hz; GPe lies within

the range 30 – 32 Hz; SNr lies within the range 20 – 25 Hz.

Thus, our results show a good similarity with those reported

in [9] (see Fig. 2) and [15] (see Fig. 6). We now treat this

model as the single ‘channel’ of decision-making and action-

selection in the BG.

B. Simulating action-selection on SpiNNaker

Next, we aim to simulate action-selection using the three-

channel BG model presented in Sect. II-F.

Simulation methods: Similar to the single channel model,

Poisson input at 3 Hz is provided to all the three channels

from around 500 – 700 ms and for a duration of 9.2 s. Total

simulation time is 10 s at a resolution of 0.1 ms. At ≈ t1 = 3 s

from the start of simulation, the first channel receives a request

for being ‘selected’, which is simulated by providing Poisson

spike trains at 15 Hz, drawn from two separate pools consisting

of 25 and 2 Poisson spike sources, and provided to the Striatum

and STN populations respectively in the channel. At ≈ t2 = 6
s, the second channel receives a request for being ‘selected’,

which is simulated by 25 Hz Poisson spike trains provided

to all the input pathway cells of the channel. Both 15 Hz

and 25 Hz spike train inputs are present until ≈ 9.9 s from

start of simulation. Thus, all Poisson sources are withdrawn

at ≈ 100 ms before the end of simulation; after this time

and until the end of simulation, all channels respond to Idc
only. The outputs of the model are the SNr firing rates of all

three channels. The results are averaged over 10 trials. The

average firing rate time histogram with time bin widths of 1

s is shown in Fig. 6. All dopamine levels were kept at base

values indicated in Table II (B).
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Fig. 6. The average firing rate histogram, with a bin width of 1 s, of SNr
populations in the (blue, dash-dot line) first, (pink, dash line) second, and
(yellow, dot line) third channels of the BG model shown in Fig. 4. The
model response demonstrates action-selection in the circuit. The third channel
(yellow) does not receive any competing input and is therefore the neutral
channel.

Results: Figure 6 demonstrates action selection in the three-

channel model simulated on the SpiNNaker machine. When a

channel receives a Poisson input with a higher frequency, the

focal inhibition of SNr within the channel increases. At the

same time, the STN cells of that channel provide increased

excitatory projections to the SNr cells of the neighbouring

channels, thus producing an ‘off-centre’ effect, and the firing

rate of the SNr population in the competing channel drops

relative to the other channels. We did not set a specific firing

rate threshold to demonstrate selection of action, and rather let

the inherent model dynamics take control. Thus, all parameters

in each channel of the model are the same as those of the

single-channel model.

IV. COMPARISON WITH SPINEML AND PERFORMANCE

ANALYSIS

The model implemented on SpineML is intended to be

topologically and parametrically identical to the one running

on SpiNNaker. All parameters and network connectivities are

configured the same in both systems. Figure 7(a) shows the

firing rate histogram of the SNr, STN and GPe populations of

the single-channel BG circuit simulated using the SpineML

model. The figure demonstrates similar mean spiking rates for

the STN and SNr as on the SpiNNaker-based model shown in

Fig. 5; the firing rate lower bound of GPe cells are lower than

that on SpiNNaker. The three-channel BG circuit on SpineML

also demonstrates action selection behaviour when simulated

with exactly the same parameter and input attributes. This is

shown in Fig. 7(b). The results demonstrate qualitative and

functional similarity between models simulated on the two

independent platforms.

A. Statistical comparison of the single-channel models

Although we did not expect the numerical results of simu-

lations to be identical, we tested whether the two implementa-

tions would generate statistically equivalent results. Table IV

gives the results of statistical tests on the spike counts in

each population of the single-channel model obtained from

30 repetitions of 10 s simulations run on both SpiNNaker

and SpineML 2 BRAHMS. The standard error of the mean

(a) Average firing rate histogram of single-channel model on SpineML

(b) Average firing rate histogram of three-channel model on SpineML

Fig. 7. (a) Average firing rate histogram of the SNr, GPe and STN populations
in the single-channel BG model simulated on SpineML 2 BRAHMS, with
time bin widths of 100 ms across 10 s simulation time. The results demonstrate
qualitative similarity with SpiNNaker-based simulation shown in Fig. 5. (b)
The average firing rate histogram, with a bin width of 1 s, of SNr populations
in the (blue, dash-dot line) first, (pink, dash line) second, and (yellow, dot
line) third channels of the BG model. Thus, the three-channel model response
demonstrates action-selection; also, firing rates of the ‘selected’ channels are
similar to those on SpiNNaker shown in Fig. 6.

number of spikes was computed by the bootstrap method

with 256 resamples. The difference of the means is also

given, along with a bootstrapped estimate of the difference

of the means from 256 resamples. Finally a bootstrapped

test of the difference of the mean number of spikes was

applied with 10000 resamples. The Achieved Significance

Level is a measure of ‘the probability that the means are

indistinguishable’ (see Appendix). The results indicate that

whilst the spike counts are similar, none of the results can be

said to be statistically equivalent according to this stringent test

that the spike counts be indistinguishable in all populations.

B. Performance analysis

The PyNN script describing the BG model is mapped

and executed on the SpiNNaker machine by the sPyNNaker

software toolchain [13], which itself runs on a host machine,

in three stages: pre-processing, execution and post-processing.

Pre-processing involves translation of the PyNN-defined net-

work into a form suitable for the SpiNNaker machine, and

includes partitioning, routing, and generation and loading

of data structures. In the context of performance testing,

execution is defined as the time taken, once all data has been

loaded, to run the simulation on the SpiNNaker machine. Post-

processing refers to extraction of resultant data, generated by

executing the model, from the SpiNNaker machine to the
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TABLE IV
(A) MEAN SPIKE COUNT AND (B) SPIKE COUNT DIFFERENCES BETWEEN

SINGLE-CHANNEL BG MODEL SIMULATED ON SPINNAKER AND

SPINEML. NUMBERS IN BRACKETS ARE BOOTSTRAP ESTIMATES OF

STANDARD ERROR IN THE RESPECTIVE MEASURES. (C) ACHIEVED

SIGNIFICANCE LEVEL (ASL): A BOOTSTRAPPED EQUALITY OF MEANS

TEST. ASL < 0.05, INDICATED IN BOLD, IMPLY MEANS ARE

SIGNIFICANTLY DIFFERENT.

(A) (B) (C)

Mean Spike count ASL

spike count difference

BG SpiNNaker SpineML SpiNNaker SpiNNaker

population - SpineML vs SpineML

Str-MSN-D1 3127 (4) 2869 (82) 258 (113) 0.016

Str-MSN-D2 0.33 (0.13) 0.5 (0.17) -0.17 (0.2) 0.22
Str-FSI 1.73 (0.38) 1.47 (0.31) 0.27 (0.49) 0.28

STN 1072 (6.2) 1158 (1.7) -86 (5.7) <0.0001

GPe 8207 (6.9) 8518 (4.3) -311 (7.6) <0.0001

SNr 3510 (10.3) 3705 (4.1) -195 (11.6) <0.0001

SpiNNaker SpineML SpiNNaker SpineML
Single Channel               Three Channel
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Fig. 8. Performance analysis of single- and three-channel BG models on
SpiNNaker and SpineML for 1 s simulation time.

host machine. Both uploading/extraction of data to/from the

SpiNNaker machine is currently done via ethernet [4].

The single-channel BG model consists of 2.68×103 neurons

and ≈ 0.68 × 106 synapses (estimated from projection prob-

abilities). While each processor within a SpiNNaker chip is

capable of simulating an upper limit of 256 neurons (discussed

in Sect. II-D), memory requirements of the neuron model and

synaptic connectivity for certain applications may cause this

number to be reduced. In the current work, sPyNNaker maps

the single-channel BG model on to 32 cores distributed across

2 SpiNNaker chips, residing on a single 48-chip SpiNNaker

board. In case of the three-channel model, the total number

of neurons and synapses are 8.043 × 103 and ≈ 2.05 × 106

respectively, and the model network is mapped by sPyNNaker

on to 96 cores, distributed across 7 SpiNNaker chips.

Pre-processing is done on a 4-core 8 GB RAM desktop host

machine, and takes 70.5 s for the single-channel BG model

(three-channel: 191.0 s). The SpiNNaker hardware is designed

to execute neuronal models in real time at a resolution > 1 ms.

Both single- and three-channel BG networks are configured

to simulate with a solver time-step of 0.1 ms in order to

maintain solution accuracy. Due to this constraint, 1 s of

model simulation time is executed in 10 s real (‘wall clock’)

time. However, both the single- and three-channel models

are guaranteed to execute within this 10 s. On execution

completion, a further 119.1 s is required to extract output

data for the single-channel model (three-channel: 574.7 s),

giving an average total simulation time of 199.8 s for the

single-channel model (three-channel: 776.0 s). The timing data

recorded from the SpiNNaker execution of both the single-

channel and three-channel models is shown in Fig. 8. Timing

values are averaged across 10 repeated runs; the standard

deviations across the 10 samples of each model were less than

1.3 s, 4 ms and 2.7 s for pre-processing, execution and post-

processing respectively.

The above-mentioned data for SpiNNaker-based model sim-

ulation is now compared to that using SpineML and executing

on a 4-core 8 GB RAM desktop host machine, extracting and

saving data and ‘logs’ (post-processing). The results are also

shown in Fig. 8, and indicate that the single-channel model

simulated on SpineML performs pre-processing in 0.036 s,

while 1 s of model simulation time is executed in 3.5 s real

time. For the three-channel model, pre-processing time is 0.1 s,

and the execution time equivalent of 1 s simulation time is

increased significantly to 26.7 s real time. The post-processing

time is insignificant in both cases and ≈ 0. Clearly, the time

of execution increases with scaling up of the model, and

emphasises the advantage of SpiNNaker-based computation

for larger models over conventional computers.

Power consumption on SpiNNaker: In a recent work, we

used in-house Arduino-based power measurement equipment

to measure power directly from a 48-node SpiNNaker board

during model execution (the reader may refer to [20] for

details). The main draw-back of this previous set-up was

the coarse resolution (8.9 ms) of recording power from the

SpiNNaker board. In this work, we have used an enhanced

(Raspberry-pi-based) version of this equipment, allowing a

resolution of up to 0.6 ms with cleaner recording, i.e. without

noise/glitches. Thus, the sampling rate of recording the power

is higher than 1 ms, the time-step of model simulation, and

minimises the potential for data loss due to delays during

communication with the SpiNNaker board via ethernet. Our

study shows that the single-channel model execution uses ≈
800 mW, while the three-channel model execution consumes

≈ 1.8 W shown in Fig. 9. The figure also confirms that the

model execution time is not affected by scaling up to three

channels, and is consistent at 100 s real time corresponding to

a simulation time of 10 s. As power consumed during pre- and

post-processing are negligible compared to that during model

execution, we kept the post-processing time to a minimum;

pre-processing times are handled by sPyNNaker and is not

accessible to the user.

V. DISCUSSION AND CONCLUSION

We have presented a biologically-plausible and scalable

model of the Basal Ganglia (BG) circuit, designed to run on

the SpiNNaker machine — a biologically-inspired architecture

built with low-power ARM processors, allowing inherent asyn-

chronous, parallel computation, and in real time for time-steps
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Fig. 9. The power consumptions of the three-channel model using an in-house Raspberry-pi-based measurement system connected to the SpiNNaker board
(see [20] for details). The duration of recording the power can be broken down into four regions: (i) booting the machine; (ii) pre-processing of data; (iii)
model execution; (iv) post-processing (i.e. data extraction); the delay of around 4 s after booting the machine is inserted for clarity. The peak-to-peak power
in region (iii) is 1800 mW. The measurement sampling interval is 0.6 ms in real time. This is shorter than the time-step of model simulation (1 ms real time)
in order to ensure that we do not lose data due to circuit delays between the Raspberry pi and the SpiNNaker board.

> 1 ms. A single neuro-computational unit in our BG model is

simulated with a conductance-based Izhikevich neuron model,

facilitated by the underlying SpiNNaker software toolchain,

sPyNNaker, which in turn is based on PyNN, a python-based

neural network application interface. A columnar structure of

the BG circuitry is first parameterised on SpiNNaker to set

the base firing rates for all model cell populations, informed

by existing literature. This forms the basic building block for

a scalable framework, and is thought to be a single-channel

for action-selection in the BG. To simulate action-selection

by competing inputs, we scaled up the model to consist of

three channels, and tested with two competing inputs in the

presence of background noisy stimulus. Our results show that

an input stimulus that is larger than the others is always

the ‘winner’, indicated by a relative drop in the firing rate

of the SNr population (representing the BG model output)

in the competing channel. The reduced firing rate of the

inhibitory SNr population implies a reduced inhibition of the

thalamic/brainstem cells, which are known to be the recipients

of the BG output. This in turn means that the ‘action’ that

is solicited by a relatively larger (‘competing’) input is now

‘decided’ by the BG circuit to be ‘selected, and acted upon’,

indicated by disinhibition of the target outputs. We have tested

our model with a competing input of 15 Hz in the presence of

a background noisy input of 3 Hz. This is further confirmed

by ‘selection’ of a larger input of 25 Hz provided in the

presence of both 15 Hz and 3 Hz inputs. On both occasions, the

largest input wins. It is worth mentioning here that dopamine

neurotransmitter-receptor levels are fundamental to facilitating

decision-making and action-selection by the BG. Here, we

tuned the base parameters simulating neutral dopamine levels;

studying model dynamics with varying levels of dopamine will

be carried out in future works.

To verify our model results simulated on SpiNNaker, we

mapped the model to SpineML, an XML-based platform

representing model attributes as ‘components’, and executing

the models with SpineML 2 BRAHMS, a bespoke simulator

which converts the SpineML model into machine code and

runs it on a conventional computer. We aimed for the BG

model implementation on SpineML to have the exact same

network topology and neuron attributes as the SpiNNaker

version, and therefore retained all model connectivities and

parameter values used in the latter. Model results on SpineML

show qualitative similarity with those on SpiNNaker in terms

of base firing rates of the single-channel BG model cell

populations. Implementation of the three-channel model on

SpineML, following exact same implementation procedures as

on SpiNNaker, demonstrates action-selection by a larger input.

Overall, the functional and qualitative behaviour of the models

are in agreement. A difference of means test (see Appendix)

indicates statistically significant numerical difference between

the two platforms. We speculate that such difference is due to

the stochastic nature of the model inputs, and simulates the

numerical differences in recorded data from different brains,

even when they are in the same state, or performing similar

behavioural tasks. We believe that our comparative study will

provide a basic framework for mapping SpiNNaker-based

models to SpineML, as well as for performance benchmarking

of SpiNNaker with conventional computers during neuronal

simulation.

The main drawback of our model is the inability to im-

plement parameters that are voltage dependent, and thus need

updating during run-time. Thus, we were unable to implement

the voltage dependent NMDA synapses, nor the gap-junction

(resistive) connections in the Str-FSI populations. This is due

to current computational constraints on SpiNNaker during run-

time, and work is ongoing to provide such implementations

in the future. Another drawback is the slow ethernet-based

data transfer rates between the host-machine and SpiNNaker.

This is indicated in the performance analysis where the post-

processing (data extraction) times are observed to increase

significantly with scaling up of the model. In comparison,

the pre-processing (mapping high-level model description to

simulator) and post-processing times for both single- and

three-channel models implemented on SpineML are negligible.

Model execution on SpiNNaker for this work is slowed down
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by a factor of 10 relative to real time. This is because, the

underlying Izhikevich equations need to be computed with a

time-step of 0.1 ms to achieve solution accuracy, while the

inherent SpiNNaker design is for real time operation with

time-steps > 1 ms. Thus, 10 s of model simulation time on

SpiNNaker runs in 100 s real time. However, this execution

time is guaranteed i.e. both single-channel and three-channel

BG models execute in 100 s real time corresponding to 10 s

simulation time — this consistency demonstrates the ability

of SpiNNaker to scale network size without compromising on

execution time. In contrast, although the single-channel model

execution time on SpineML is lower than that on SpiNNaker

(≈ 3 s real time for 1 s simulation time), that for the three-

channel model scales up significantly, and by an order of

10 (approximately). Continuing research on the BG model

implementation on SpiNNaker is looking into further scaling

up of the model, which will serve to test and challenge the

SpiNNaker machine on its real time computational capabili-

ties.

Continuing development of an in-house equipment is look-

ing into ways to measure power directly from a 48-node

SpiNNaker board during model execution [20]. To measure

power during execution of the BG model, we use a Raspberry-

pi based system (enhancement from the Arduino-based sys-

tem described in [20]), allowing the recording of power at

0.6 ms (real time) resolution. This is ≈ half the sampling

resolution at which the model is set to execute (1 ms real

time). The single-channel model uses 2 SpiNNaker chips

(32 cores) and dissipates ≈ 0.8 W; the three-channel model

runs on 7 SpiNNaker chips (96 cores) and dissipates ≈ 1.8
W; the corresponding energy costs are 80 Joules (J) and

180 J respectively. In comparison, the thermal design power

for the CPU (Core i7 2600, 3.4 GHz) used to simulate

the 3-channel model on SpineML 2 BRAHMS is 95 W;

considering 10 s simulation time is executed in 267 s real

time (see Sect. IV-B), the energy cost for running the model

on SpineML 2 BRAHMS is 25.36 KJ, which is ≫ 180 J

on SpiNNaker. That said, currently, uploading any neural-

network model to the SpiNNaker hardware is dependent on

a host-machine with a standard CPU running the software

toolchain sPyNNaker. Thus, a fair comparison between the

two platforms would have to consider the CPU energy costs

on the host-machine for SpiNNaker-based simulations, which

is expected to be in the order of Kilo-Joules for the pre-

processing times reported in Sect. IV-B. Furthermore, while

future robotic applications on SpiNNaker may not need post-

processing of data, all neuro-scientific investigations using

SpiNNaker would have to rely on the host-machine for post-

processing of simulation data. Suffice to say that implications

for power usage on SpiNNaker will need further testing and

validation by running larger models, and will be looked into

as future research.

In conclusion, our study demonstrates the SpiNNaker plat-

form as capable of simulating biologically-plausible decision-

making and action-selection circuitry that executes in a par-

allel and asynchronous manner, and within guaranteed time-

scales. Furthermore, the platform demonstrates the potential

for simulating large scale models without compromising on

(a) The first 16 bits of the 32-bit synaptic data word

(b) The trailing 16 bits of the 32-bit synaptic data word

Fig. 10. (a) The sPyNNaker ring buffer is at the heart of spike information
transfer on the SpiNNaker machine. The first 16 bits of the 32-bit synaptic
data word, corresponding to a spike event on the SpiNNaker machine, consists
of the synaptic weight data, while (b) the second 16 bits of the 32-bit synaptic
data word carry information that guide the placement of the synaptic weight
on the ring buffer. Readers may note that for simplicity, we have demonstrated
the case for simulation (i.e. solver) time-step of 1 ms.

execution times. In addition, prior research has shown the low

energy requirements of the SpiNNaker machine (e.g. compared

to NEST [52]). Not surprisingly, therefore, use of SpiNNaker

has been proposed in several robotic applications [53], [54].

Autonomous intelligent decision-making is a key desirable

attribute in robotic applications, which can benefit wide-

ranging societal requirements. We believe our work developing

the BG model on SpiNNaker will strengthen endeavours to

build intelligent decision-making machines.

APPENDIX

1) The Ring Buffer — implementing a synapse: Let us

assume an example case where a neuron-X, residing in core-X

of one SpiNNaker chip, initiates a spike transfer that is to be

delivered to the post-synaptic neuron-Y, residing in core-Y of

the same chip, at a delay dconn = 3 ms, and with pconn = 1,

thus guaranteeing a connection. After a series of activities

initiated by this spike event (the details of which can be found

elsewhere [1] and are outside the scope of this report), the first

16 bits of the synaptic data representing ḡsyn is now fetched

from the chip’s SDRAM and placed in a ring buffer of core-Y

to be used for the post-synaptic membrane current computation

for neuron-Y.

The ring buffer is a right circular shift-register structure

occupying 16 KB of DTCM of each core, and is the basic

algorithm that defines the post-synaptic behaviour in an af-

ferent neuron population. A depiction of the ring buffer is

shown in Fig. 10(a). Each neuron in a core will have two

rows in the ring buffer pre-booked and at its disposal —

one corresponding to an excitatory projection, and another

corresponding to an inhibitory projection. Furthermore, each
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row consists of sixteen ‘slots’, and each slot consists of 16

bits. To access the synaptic weight in the ring buffer at the

appropriate delay slot, there is a right circular shift ‘pointer’,

which forms the reference for the specific slot in which the

16-bit synaptic weight is placed.

In our above-mentioned example case (dconn = 3 ms),

therefore, if the pointer is pointing currently at the slot 14,

then our synaptic weight data will be placed in slot 1, i.e.

circular shifted 3rd position from slot 14. Furthermore, if we

assume there are ‘n’ excitatory synapses arriving to our single

afferent neuron-Y, and all synapses are to be activated after

3 ms, then the resultant synaptic weight that is placed in the

ring buffer at the 3 ms delay slot is a linear summation of

all the afferent weights (Eq. (6)). Note that for simplicity and

demonstration purposes, we have assumed a solver time-step

of 1 ms. (The solver time-step is 0.1 ms (afore-mentioned)

in the BG model, and there is an additional ‘delay extension’

mechanism implemented to handle delays over 16 ms time-

steps, which will be discussed in a future publication). The

pointer advances one slot to the right in each time-step and

the synaptic weight data in the pointed slot is passed on to

the neuronal equation solver. Thus, in our example case, 0 is

passed for the next two simulation time-steps, i.e. there is no

synaptic effect on the neuronal behaviour. In the third time-

step, the pointer now points to slot 1, the synaptic weight is

passed on to the neuronal computation, and the ring buffer

location is reset to 0.

Overall, the ring buffer forms the backbone for synapse

implementation on SpiNNaker. Moreover, it provides an effec-

tive algorithm to incorporate synaptic delays in real time, thus

alleviating the need for complex mathematical formulations to

achieve the same.

2) Bootstrap analyses of spike counts: To test whether two

models produced the same number of spikes, we applied a

Studentised, bootstrapped test of the equality of means of

two distributions of spike counts obtained by running our

simulations n = 30 times. The test follows Algorithm 16.2

of [19] and has the null hypothesis, H0: the means are the

same. Consider two samples, z and y (both of size n); which

are sample spike counts generated by (for example) the STN

in the SpiNNaker and SpineML models. The observed value

of this test, t(x), is a Studentised (meaning the variances are

accounted for) difference of the means of z and y, given by:

t(x) =
z̄ − ȳ

√

σ2
z/n+ σ2

y/n

where x is the combined sample formed by joining z and y,

σz & σy are the standard deviations of z & y and z̄ & ȳ are

the arithmetic means of z & y.

A set of re-samples is now made from z and y after applying

a transformation that assumes the null hypothesis is true. The

transformations are defined as:

z̃ = z− z̄ + x̄; ỹ = y− ȳ + x̄

where x̄ is the mean of x. This shifts z and y to force their

means to be equal. z∗ and y∗ are individual resamples from

z̃ and ỹ. The Studentised difference of the means of the

resamples is computed:

t(x∗) =
z̄∗ − ȳ∗

√

σ∗2
z /n+ σ∗2

y /n

If the original means of z and y were genuinely very close,

then z̃ and ỹ won’t have been shifted very much and it is

likely that t(x∗) will exceed t(x) with probability around

0.5. If they were not close, and the mean(z) ≫ mean(y),

then very few t(x∗) will exceed t(x). We made 10000 x∗

resamples; the proportion of those for which t(x∗) > t(x)
is the Achieved Significance Level (ASL). The smaller ASL

is, the less probable is H0, and the more significant is the

difference of the means.

The test makes no assumption about the shape of the

distributions which generated the samples, but it does assume

that z̄ > ȳ.
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