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Abstract

The arched field lines forming coronal arcades are often observed to undulate as magnetohydrodynamic waves
propagate both across and along the magnetic field. These waves are most likely a combination of resonantly
coupled fast magnetoacoustic waves and Alfvén waves. The coupling results in resonant absorption of the fast
waves, converting fast wave energy into Alfvén waves. The fast eigenmodes of the arcade have proven difficult to
compute or derive analytically, largely because of the mathematical complexity that the coupling introduces. When
a traditional spectral decomposition is employed, the discrete spectrum associated with the fast eigenmodes is often
subsumed into the continuous Alfvén spectrum. Thus fast eigenmodes become collective modes or quasi-modes.
Here we present a spectral decomposition that treats the eigenmodes as having real frequencies but complex
wavenumbers. Using this procedure we derive dispersion relations, spatial damping rates, and eigenfunctions for
the resonant, fast eigenmodes of the arcade. We demonstrate that resonant absorption introduces a fast mode that
would not exist otherwise. This new mode is heavily damped by resonant absorption, travelling only a few
wavelengths before losing most of its energy.

Key words: magnetohydrodynamics (MHD) – Sun: corona – Sun: magnetic fields – Sun: oscillations – waves

1. Introduction

Some of the most prominent features seen in images of the
solar corona by extreme ultraviolet telescopes are the elegant
arches of glowing plasma that trace magnetic field lines
through the corona. Typically, these loops are preferentially
illuminated segments of a larger magnetic structure comprised
of an arcade of arched field lines. Coronal loops and arcades are
full of waves. They are often observed to shimmer and undulate,
sometimes in clear response to nearby solar flares (e.g.,
Aschwanden et al. 1999; Nakariakov et al. 1999; Wills-Davey
& Thompson 1999) but also often without an obvious, visible
excitation event (e.g., Anfinogentov et al. 2013; Nisticò et al.
2013; Duckenfield et al. 2018). Typically, oscillations generated
by flares and other impulsive events have an amplitude that
suddenly rises and then decays rapidly over a handful of wave
periods (e.g., White & Verwichte 2012; Goddard et al. 2016).
Conversely, ambient oscillations that lack an obvious source
event (often called “decayless” oscillations) are usually of low
amplitude and oscillate for long durations without significant
attenuation of the signal.

The commonly accepted view is that coronal loops are long
tube-like magnetic structures and their oscillations are caused by
magnetohydrodynamic (MHD) kink waves that are confined to
the loop and trapped between the two footpoints where the loop
intersects the photosphere (see the review by Andries
et al. 2009). This model has the useful feature that the wave
propagation and trapping can be reduced to a 1D wave problem.
The rapid attenuation of the wave signal that is observed for
many loop oscillations has been explained using a variety of
mechanisms, with resonant absorption being the most prominent
(e.g., Goossens et al. 2002, 2011; Ruderman & Roberts 2002).
Resonant absorption is actually a mode conversion mechanism
instead of true dissipation. The fast kink wave resonantly
couples to a local Alfvén wave at locations where the two wave
modes share a common frequency (e.g., Goedbloed 1971;

Chen & Hasegawa 1974a, 1974b). In ideal MHD this energy

transformation occurs on infinitely thin critical surfaces where

the MHD equations formally become singular. The Alfvén

waves are thus highly localized and rapidly dissipate when
nonideal effects are included.
Hindman & Jain (2014) recently suggested that the rapid

diminuation of the loop-oscillation amplitude may naturally
result from the transit of a fast MHD wave packet propagating

down the arcade in which the loop is embedded. In this model,

the entire arcade participates in the oscillation but, since the

coronal loop is preferentially bright, the motion of those special

field lines is particularly obvious. If this suggestion is correct,

the rapid reduction in wave amplitude that is observed is not
due to dissipation or loss of fast wave energy. Instead, the

profile of the time series depends on the evolving shape of the

wave packet as it passes by the visible loop when propagating

down the axis of the arcade.
Magnetic arcades have long been known to form wave-

guides. Explicitly, for a coronal arcade, fast waves are trapped

from below by reflection from the photosphere’s large mass

density and from above by refraction by the ever-increasing

Alfvén speed with height. In the horizontal direction aligned
with the axis of the arcade, trapping is likely to be only partial

and, for much of the arcade, the waves can propagate freely in

the axial direction. Similar magnetic structures have been

explored in the context of the Earth’s magnetosphere (e.g.,

Southwood 1974; Kivelson & Southwood 1985, 1986) and in

fusion devices in the form of Z-pinches. From such considera-
tions, one would expect a discrete spectrum of fast wave

eigenmodes with eigenfrequencies that depend on one

continuous wavenumber and two quantized wavenumbers.

The continuous wavenumber corresponds to variation in the

direction binormal to the field lines, i.e., parallel to the arcade’s

axis. The two quantized wavenumbers are in the directions
parallel to the field and in the principal normal to the field lines.
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Numerical models of MHD wave propagation have
identified such fast wave resonances (e.g., Oliver et al. 1998;
Arregui et al. 2004; Rial et al. 2010, 2013) through the
enhanced response to a driver. Insufficient attention has
previously been paid to the analytic calculation of the
eigenspectrum of arcades for the simple reason that the
mathematics is suprisingly challenging. In such a magnetic
geometry the local Alfvén frequency is in general a function of
position. Thus, there is a continuous spectrum of allowed
Alfvén waves (e.g., Goossens et al. 1985; Poedts et al. 1985;
Poedts & Goossens 1988). The fast waves can resonantly
couple to the Alfvén waves, leading to resonant absorption. In
this case, for a given frequency the singularity corresponds to
one or more curved flux surfaces. Detailed ideal MHD
calculations of the eigenfrequencies demonstrate that the
expected discrete spectrum of fast modes is subsumed into
the continuous spectrum associated with the Alfvén continuum
(e.g., Goedbloed 1971; Lee & Roberts 1986; Goedbloed &
Poedts 2004). The fast wave eigenmodes are therefore quasi-
modes or collective modes. Calculations that include physical
dissipation (resistivity, viscosity, etc.) reveal that that these
quasi-modes correspond to true eigenmodes of the dissipative
spectrum (e.g., Kerner et al. 1985, 1986; Pao & Kerner 1985;
Poedts & Kerner 1991), albeit with eigenfunctions that do not
converge to the ideal eigenfunctions when the limit of zero
dissipation is considered.

Much of the theoretical work on waves within 3D models of
coronal arcades has avoided these critical layers by inserting
artificial boundaries that exclude the resonant field lines.
Further, the geometry has often been simplified by focusing on
Cartesian slabs of magnetized plasma and building on the
initial model of Edwin & Roberts (1982). A few studies have
explored the effects of field-line curvature by examining
warped slabs with either cylindrical (Smith et al. 1997; Brady
& Arber 2005; Selwa et al. 2005; Verwichte et al. 2009a,
2009b) or elliptical geometry (Diáz 2006). All of these studies
have assumed that the wave cavity is radially confined to the
shell formed by the visible bright loops and, as a result,
artificial radial boundaries are imposed. Despite these bound-
aries, all find that radial cross-field wave leakage couples the
shell or slab to the rest of the corona. Alternatively, Hindman &
Jain (2015) and Thackray & Jain (2017) explored analytic
solutions to waves propagating within semi-infinite atmo-
spheres. These two studies considered radial Alfvén speed
profiles that naturally trap waves without the need for artificial
boundaries or discontinuities. However, theyavoided the
critical layers by intentionally choosing piece-wise constant
profiles for the local Alfvén frequency.

Our goal here is to deal with the critical layers directly. We
will compute the eigenspectrum for a smooth but spatially
varying Alfvén speed profile, examining both the dispersion
relation for the fast wave eigenmodes and the damping
efficiency of the resonant absorption. The merger of the
discrete fast wave spectrum with the continuous Alfvén
spectrum will be avoided by assuming translational invariance
of the background magnetic field in the axial direction and
employing a nonstandard spectral decomposition. Traditionally,
the eigenvalues are considered to be eigenfrequencies but, when
the background magnetic field is axially invariant, we are
allowed to treat the axial wavenumber as the eigenvalue and the
frequency as a continuous parameter. This switch in what is
considered the eigenvalue results in a separation of the discrete

fast wave spectrum and the Alfvén continuum even though the
two wave modes remain resonantly coupled. Thus, the fast wave
eigenfunctions are well-defined and can be computed though
straightforward semi-analytic techniques. The calculation of
these eigenfunctions is a necessary first step toward constructing
wave packets of fast waves that can propagate down the arcade
and appear as loop oscillations as they pass by bright bundles of
field lines.
This paper has the following layout. In Section 2 we present

a cylindrical model of a coronal arcade. In Section 3 we derive
an ordinary differential equation (ODE) that describes the
radial behavior of the fast waves for our cylindrical arcade.
We solve for the discrete spectrum of fast wave eigenmodes
in Section 4, where we present dispersion relations and
eigenfunctions. Finally, in Section 5 we discuss the nature of
the modes that we have obtained and explore the implications
for observations of coronal loop oscillations.

2. A Cylindrical Model of a Coronal Arcade

We adopt a simple model of a coronal arcade that remains
tractable while still including the important effects of
inhomogeneity and field-line curvature. We assume that the
corona is magnetically dominated (i.e., the ratio of gas pressure
to magnetic pressure is small, β= 1) and consider a potential
magnetic field generated by a line current of strength I
embedded in the solar photosphere. We employ a cylindrical
coordinate system (r, θ, y), where the coordinate axis, ŷ, is
collinear with the line current. The photosphere is a flat plane
and the line current is a straight line that lies within that plane.
Each field line is a semi-circle with the magnetic field pointing

purely in the azimuthal direction, q̂. The two ends of each field
line (located at θ= 0 and θ= π) are anchored in the
photosphere. The field strength, B, is a function of only the
cylindrical radius, r,

q q= =( ) ˆ ˆ ( )B B r
I

r

2
. 1

The field is therefore axisymmetric, with spatial dependence on

radius, r, and invariant along its axis, y. We will generate MHD

wave solutions in the half-space lying above the photosphere,

i.e., q pÎ [ ]0, , Î ¥[ )r 0, , and Î -¥ ¥( )y , .
In order to ensure that separable solutions exist, we assume

that the mass density is a function of cylindrical radius alone,
ρ= ρ(r). Given the geometry of the magnetic field, this

assumption dictates that the Alfvén speed, pr=( )V r B 4A ,
is also solely a function of radius. This density variation is
consistent with hydrostatic balance along field lines as long as
the corona is exceedingly hot such that the density scale height
due to gravitation is much larger than the height of the
oscillating loops in the arcade.
When choosing an Alfvén speed profile, we must place two

restrictions: (1) the Alfvén speed approaches a nonzero value,
V0, near the axis (r= 0) and (2) the Alfvén speed increases
monotonically with radius beyond a fiducial distance from the
coordinate axis. The first of these conditions ensures that the
solution is not recessive at the axis—i.e., the solutions have a
nonzero radial wavelength (see Hindman & Jain 2015). The
second condition guarantees that a cylindrical waveguide exists
(e.g., Terradas et al. 1999) by arranging that outward
propagating waves are refracted back inward at an outer
turning point. We adopt the following Alfvén speed profile
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which satisfies both of these conditions in a simple manner:

= +-
⎛

⎝
⎜

⎞

⎠
⎟( ) ( )V r V e

r

r
. 2r r

A
2

0
2

2

0
2

2
0
2

In this profile, r0 and V0, are arbitrary constants that represent a

characteristic scale length and the minimum speed achieved at

the coordinate axis. When needed, these two constants will be

used to nondimensionalize all variables. Figure 1(a) shows this

Alfvén speed profile as a function of cylindrical radius. The

functional form of this profile is monotonic with radius and as

the radius becomes large, r? r0, it rapidly approaches a linear

function of radius. These properties allow the analytic solutions

of Hindman & Jain (2015) to be used as numerical boundary

conditions for large radius.

3. Governing Wave Equation

Since the plasma is magnetically dominated, we can safely
ignore gas pressure and buoyancy in the equation of motion.
Under this “cold-plasma” approximation, the wave motions
become purely transverse to the magnetic field because the only
remaining force, the Lorentz force, is itself transverse. There-
fore, the azimuthal component of the fluid’s velocity vector, uθ,
is identically zero, and only the radial and axial components
need be considered, = +ˆ ˆu r yu ur y . For such transverse
motions, the linearized MHD induction equation dictates that
the fluctuating magnetic field b is as follows:

q
q q

¶
¶
=

¶
¶

+ F +
¶

¶
ˆ ˆ ˆ ( )

b
r y

t

B

r

u
B

B

r

u
, 3

r y

 F º - = -^ ^⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

· · ( )
u ur

B

B

r
r

r
, 42

2

where ̂ is the component of the gradient operator that is

transverse to the background magnetic field,

 º
¶
¶
+

¶
¶

^ ˆ ˆ ( )r y
r y

. 5

The variable Φ is proportional to the temporal derivative of the

fractional magnetic-pressure fluctuation,

p p
¶
¶

= F⎜ ⎟
⎛

⎝

⎞

⎠
·

( )
B b

t

B

4 4
. 6

2

For the magnetically dominated plasma discussed pre-
viously, the linearized MHD momentum equation takes on
the relatively simple form,

q q
¶

¶
=

¶
¶

+
¶

¶
- F^

⎛

⎝
⎜

⎞

⎠
⎟ˆ ˆ ( )

u
r y

t

V

r

u u
V . 7

r y
2

2

A
2

2

2

2

2

2 A
2

In Equation (7) the term involving  F^ represents the

transverse components of the magnetic-pressure force and the

two terms in parentheses comprise the transverse components

of the force generated by the magnetic tension. Equation (7) is

a coupled set of partial differential equations (PDEs) that

describes both Alfvén waves and fast magnetoacoustic waves.

The slow waves have been removed by our low-β approx-

imation. Since the fast waves are magnetic-pressure waves, we

can derive an equation for them by seeking an equation with Φ

as the sole independent variable.
We reduce the PDEs to ODEs by exploiting the symmetries

of the arcade. We remind the reader that the arcade is invariant
in the axial and azimuthal directions. We assume that the
arcade is sufficiently long in the axial y-direction that we can
ignore boundary effects. Further, we enforce a line-tying
boundary condition (i.e., stationary field lines) at the photo-
sphere. With these assumptions, it is convenient to perform
Fourier transforms in time t and in the axial spatial coordinate y

Figure 1. (a) Alfvén speed, VA, given by Equation (2), shown as a function of cylindrical radius. Near the axis, r=r0, the profile approaches a constant value, V0

(shown as the blue dotted–dashed line). At large radii, r?r0, the Alfvén speed becomes a linear function of radius (shown as the red dotted line). (b) Alfvén
frequency, w º mV rA A , displayed as a function of cylindrical radius for unit azimuthal order, m=1. As the radius becomes large the dimensionless Alfvén
frequency approaches m.
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and to perform a sine series expansion in azimuth θ. We choose
our Fourier conventions such that each wave component with a
unique combination of temporal frequency ω, axial wavenum-
ber k, and azimuthal order m has the following functional form:

q w qF  F w-( ) ( ∣ ) ( ) ( )( )r y t r k m e, , , , sin . 8m
i ky t

After transformation, Equation (7) becomes

w w


-
= F^

⎛

⎝
⎜

⎞

⎠
⎟ ( )u

V
, 9m m

2
A
2

A
2

where we define the local Alfvén frequency ωA,

w º( )
( )

( )r
m V r

r
. 10A

A

Figure 1(b) presents the Alfvén frequency as a function of

radius for the Alfvén speed profile(2) used in our numerical

calculations. For display purposes, the frequency is shown for

an azimuthal order of unity, m=1.
For compactness of notation we henceforth drop the

subscript m whenever doing so would not result in confusion.
Further, we use the same symbol for a variable in physical
space and in spectral space; only the arguments (and context)
distinguish one from the other. A single second-order ODE can
be obtained in the variable Φ by taking the transverse
divergence of Equation (9) and using the definition of the
fractional magnetic-pressure fluctuation, Equation (4), to
eliminate the velocity,

wF
+ - - F =⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟ ( )rK

d

dr rK

d

dr V

m

r
k

1
0. 112

2

2

A
2

2

2
2

In this equation, K is a local wavenumber,

w w
º

-
( )

( )

( )
( )K r

r

V r
, 122

2
A
2

A
2

which vanishes at the Alfvén resonances. Equation (11) has the

same essential singularities as the generalized Hain–Lüst

equation (Hain & Lüst 1958; Goedbloed 1971) when that

equation is considered in the limits of low-β and vanishing

axial field ( =· ˆB y 0). Our equation is, however, rather

simpler in form since it lacks the “apparent” singularities that

arise from fast-mode turning points (see Appert et al. 1974;

Goedbloed & Poedts 2004). The Hain–Lüst equation is

inherently more complicated since it describes the radial

variation of the radial velocity component ur, which contains

direct contributions from all three MHD wave modes (fast,

slow, and Alfvén). Our equation for the fractional magnetic-

pressure fluctuation has a direct contribution from only the

fast mode.
For a general Alfvén speed profile, VA(r), Equation (11) has

internal critical surfaces located at the Alfvén resonances, i.e.,
at the radii r=rA such that w w=( )rA

2
A

2 or equivalently
K2

(rA)=0. For the monotonic Alfvén speed profile given by
Equation (2), there is only one resonant radius for any given
frequency and that resonant radius can be expressed in terms of
Lambert W-functions,

n
= -

⎛

⎝
⎜

⎞

⎠
⎟ ( )r r W

m
, 13A

2
0
2

2

2

with W(x) being the solution to Lambert’s transcendental

equation We
W=x (Corless et al. 1996) and ν being a

frequency-dependent parameter defined by n º2 w- -m r V2 2
0
2

0
2.

Mathematically, these critical surfaces correspond to loga-

rithmic regular singular points of the ODE(11) (e.g.,

Goedbloed 1971, 1975; Uberoi 1972; Appert et al. 1974).

Such singularities result in the resonant absorption of fast

waves through coupling to the continuum of possible Alfvén

waves (e.g., Hollweg 1990; Wright 1992; Goedbloed &

Poedts 2004). In Hindman & Jain (2015) these critical

cylindrical surfaces were circumvented by choosing an Alfvén

frequency profile that was piecewise constant with radius. Here

we will examine a more general profile and therefore we must

deal with the singularity explicitly.

3.1. Structure of the Wave Cavity

A WKB analysis of Equation (11) reveals that waves of all

frequencies are trapped as long as the wave is obliquely

propagating, i.e., ¹k 0. By making the transformation

Φ=r1/2KΨ, our ODE(11) is converted into a standard

Helmholtz equation,

w wY
+

-
- - Y =

⎡

⎣
⎢

⎤

⎦
⎥ ( )

d

dr V

m

r
k 0 14s

2

2

2 2

A
2

2

2
2

with a “cut-off” frequency,

w º ⎜ ⎟
⎛

⎝

⎞

⎠
( )r KV

d

dr r K

1
, 15s

2 1 2
A
2

2

2 1 2

that arises from the Alfvén singularity and is itself a function of

frequency (through K ). Assuming real frequencies and axial

wavenumbers, the wave cavity spans those radii

where w w> + +-( )m r k Vs
2 2 2 2 2

A
2.

Figure 2 illustrates the special frequencies that define the

wave cavity. All frequencies are nondimensionalized by -V r0 0
1

and plotted in the form of their squares. The red curve

corresponds to the quantity k V2 A
2 for an axial wavenumber of

kr0=2. The blue curve shows the square of the local Alfvén

frequency w = m V rA
2 2

A
2 2, which in these equations arises

from the azimuthal wavenumber m/r (and not from the Alfvén

singularity). The three green curves represent the singular cut-

off frequency for three different dimensionless frequencies,

w =- [ ]r V 5, 10, 150 0
1 . The lowest frequency is shown by the

dotted curve, the intermediate frequency by the dashed curve,

and the highest frequency by the dotted–dashed curve. The

squares of the three wave frequencies are indicated with the

horizontal violet lines using the same line styles. Finally,

the critical frequency given by the sum of all three special

frequencies, w w+ + k Vs
2

A
2 2

A
2, is shown using black curves.

The cavity exists wherever the wave frequency (violet) exceeds

the critical frequency (black).
From Figure 2 one can easily deduce that there is a single

fast-wave cavity, bracketed by an inner and outer turning point.

The outer turning point, r2, is refractive and occurs where

ω=kVA. For the relatively high frequencies shown, the Alfvén

speed is nearly a linear function of radius at the outer point and

that point is therefore proportional to the axial phase speed of

4
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the wave

w
 ( )r

r

V k
. 162

0

0

From this expression, we obtain the expected result that only

waves that propagate at least partially in the axial direction are

trapped. Purely radially propagating waves (k= 0) are not

refracted and therefore travel off to infinity.
The behavior of the inner turning point is more complicated.

In the absence of the singularity, the fast wave would be

excluded from the cylindrical origin by the geometrical effect

of the azimuthal wavenumber, m/r (the blue curve). However,
in the presence of the singularity, the singular term dominates,

w  m V rs
2 2

A
2 2, and the inner turning point is moved outward

and is largely dependent on the singularity. This means that the

singularity occurs outside the fast-wave cavity, within the inner

evanescence zone. Therefore, we should expect that the fast

modes are inefficiently coupled to the Alfvén waves and only

undergo weak damping. We will find that this expectation

holds except for one noted exception.
An estimate for the inner turning point, r1, can be obtained in

the high-frequency limit by examining the behavior of the

singular cut-off near resonance. For high frequencies, the

Alfvén singularity approaches the origin. This can be verified

by keeping only the first term in the power series expansion of

the Lambert W-function, W(x)=x−x2+(3/2)x3+L to

show that the Alfvén radius approaches

w
 ( )r m

V
. 17A

0

In this limit, near the singularity, the square of the cut-off

frequency is divergent and positive,

w 
-( )

( )
V

r r

1

4
. 18s

2 0
2

A
2

By combining the previous two equations and setting ω=ωs,

we find that the inner turning point is inversely proportional to

frequency for high frequencies,

w
 +( ) ( )r m

V
2 . 191

0

4. Eigenspectrum

The eigenfunctions of Equation (11) are those solutions that
satisfy boundary conditions of regularity at the coordinate axis
(r= 0) and at infinity (  ¥r ). Appendix A provides a
detailed discussion of the nature of the solutions at both
boundaries. In short, the inner solution Φ0, i.e., the solution that
is regular at the origin, behaves like a power law near the axis,
Φ0∼rm. The outer solution, which is regular at infinity,
behaves asymptotically like a modified Bessel function of the
second kind, F ~ n¥ ( )K kr , with a frequency-dependent order,

n wº - -m r V2 2 2
0
2

0
2. The eigenfunctions are the solutions that

satisfy both regularity conditions and correspond to those
frequencies and wavenumbers where the inner and outer
solutions become linearly dependent (i.e., their Wronskian
vanishes). After satisfying both boundary conditions, the
eigenfunctions lack the necessary free parameters to also
satisfy a regularity condition at the internal singularity
associated with the Alfvén resonance r=rA. Hence, the
solution is perforce irregular on the resonant field line.

Figure 2. Propagation diagram illustrating the radial cavity for the fast modes. The wave cavity exists wherever the waves are radially propagating, which corresponds
to the range of radii where the wave frequency exceeds a critical frequency constructed by adding three special frequencies in quadrature

w w> + +-k V m V r s
2 2

A
2 2

A
2 2 2. The red curve corresponds to k V2 A

2 and the blue curve indicates -m V r2
A
2 2. The green curves show the square of the singular cut-

off frequency, ws
2, for the three dimensionless frequencies, w =-r V 50 0

1 , 10, and 15. See Equation (15) for a definition of the cut-off frequency. The line style used for
each frequency is indicated in the upper-right of the figure. The black curves indicate the critical frequencies obtained by adding the red, blue, and green curves
together. The squares of the three frequencies used to generate the cut-offs are indicated with the horizontal violet lines. All frequencies are generated for unit
azimuthal order, m=1.

5

The Astrophysical Journal, 858:6 (17pp), 2018 May 1 Hindman & Jain



In Appendix A.3, we present detailed derivations of the two
solutions valid near the Alfvén resonances. Here we simply
point out that one of the solutions is irregular and possesses a
logarithmic singularity. A careful analysis of the irregular
solution reveals that Φ itself is finite at the singularity, but the
corresponding velocity field—obtained through Equation (9)—
is discontinuous and singular in both the radial and axial
components. This poor behavior should be expected. A fast
wave with a purely monochromatic frequency can be treated as
if the wave has been resonantly transferring energy to the
resonant field line for an infinite duration of time.

The eigenmodes correspond to the subset of frequencies and
wavenumbers for which the Wronskian of the inner and outer
solution vanishes,

 F F = F
F

- F
F
=¥

¥
¥{ }( ) ( )r

d

dr

d

dr
, 0. 200 0

0

Since our ODE has Sturm–Liouville form (albeit with a

singular weight function), a more convenient description of the

modal condition involves the dispersion function D which is

proportional to the Wronskian,


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The dispersion function, D(k, ω), has the useful property that it

is independent of radius. This can be verified through direct

differentiation, dD/dr=0, and use of the ODE(11).
In systems without damping, the modal condition D(k, ω)=0

is rather straightforward. There is often a countable infinity of
real zeros and one can consider either the frequency ω or the
axial wavenumber k as a real free parameter. Traditionally, one
usually treats the wavenumber k as the free parameter and the
eigenvalues are discrete eigenfrequencies ωmn(k) where the radial
order n is an integer that describes the number of nodes in the
radial eigenfunction. Note, however, that it is equally valid to
consider the frequency as the free parameter and the eigenvalues
as eigenwavenumbers, kmn(ω).

When the modes are damped, the eigenvalues becomes
complex. Once again, it is traditional to think in terms of a
continuous real wavenumber with a complex eigenfrequency
ωn(k)=ϖn(k)+iγn(k), where the dependence on the azimuthal
order m has been dropped from the notation. The real part of the
eigenfrequency is inversely proportional to the wave period
Pn=2π/ϖn, and the imaginary part defines the temporal
damping rate γn. But, as before, it is equally valid to consider
real frequencies and complex eigenwavenumbers, kn(ω)=
κn(ω)+iηn(ω). Here, the real part of the complex wavenumber
is related to the wavelength λn=2π/κn and the imaginary part is
the spatial decay rate, ηn. Usually it does not matter which
viewpoint one adopts; however, in this case the perverse nature of
the internal singularity actually makes the latter view more
fruitful. We discuss this issue in more detail in Appendix B.

4.1. Numerical Solutions

We numerically solve for the inner and outer solutions (and
hence the dispersion function) by using a somewhat compli-
cated shooting technique. For the inner solution Φ0 we start our
numerical integrations at a small radius,  ( )r r rinf ,in 0 A , and
obtain Φ0(rin) and its derivative using a power-series expansion
that is valid near the origin (see Appendix A.1). Then, using a
fifth-order, adaptive-stepsize, Runge–Kutta algorithm, we

numerically integrate Equation (11) from rin to any chosen
radius r=R. When evaluating the dispersion function the
actual value of R that is chosen is immaterial since the
dispersion function is independent of radius. If R<rA, this
desired radius lies inside the Alfvén resonance and we do not
need to explicitly worry about the interior singularity.
However, if R>rA we need to integrate through the
singularity and this, of course, requires some care.
When the singularity lies between the origin and the desired

radius R, we match the inner solution to a linear combination of
the solutions that are regular Φreg and irregular Φirr at the
Alfvén singularity,

F = F + F ( )A A . 22reg reg irr irr

This is accomplished by exploiting power-series expansions for

Φreg and Φirr that are valid near the interior singular point (see

Appendix A.3). Each expansion is evaluated just inside the

singularity, i.e., at r=rA−δ where δ is positive and small.

This provides a starting point for the numerical integrations.

Then using the same Runge–Kutta integrator, we numerically

integrate both solutions from r=rA−δ to a point half-way

between the origin and the Alfvén singularity, r=rA/2. The
inner solution Φ0 is then integrated from rin near the origin to

the same point. The connection coefficients, Areg and Airr, are

chosen to ensure that the inner solution Φ0 and the solution

initially generated near the singularity match cleanly (their

functions and their derivatives match). Once computed, these

connection coefficients can subsequently be used to generate

the inner solution on the far side of the singularity by using the

power-series expansions to evaluate Φreg and Φirr at

r=rA+δ. This solution (comprised of the linear combination

of regular and irregular solutions) is then numerically

integrated to the desired radius R. We use a similar procedure

to numerically evaluate the outer solution. The only difference

is that the starting radius is large,  ( )r r rsup ,out 0 A , and an

asymptotic solution that is valid for large radius is used to

initiate the numerical integrations (see Appendix A.2).

4.2. Dispersion Function

Figure 3 illustrates the numerically computed dispersion
function and its variation with the spectral parameters k and ω
for the fundamental azimuthal order m=1. The frequency and
wavenumber dependence are characterized with a dimension-
less frequency w -r V0 0

1 and a dimensionless wavenumber kr0.
A smooth gradient in frequency has been removed from the
image for purely illustrative purposes. This has been
accomplished by multiplying the reciprocal of the dispersion
function by a pure function of frequency, w =( )f

w- -( )r Vexp 0.2 0 0
1 . One can clearly recognize the presence

of strong fast-mode resonances which appear as bright “ridges”
of high power. As we will soon see, each ridge corresponds to
resonant fast waves with differing numbers of peaks in the
modulus of their eigenfunctions as a function of radius. The
lowest-frequency ridge has one peak in its eigenfunction and
we designate its radial order as n=0. Each ridge of
sequentially higher frequency has one additional peak and a
corresponding radial order of one higher, i.e., n=1, 2, 3, and
so forth. Traditionally, the radial order of a mode (or ridge)
specifies the number of radial nodes in its eigenfunction.
However, because of resonant absorption, our eigenfunctions
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are complex and lack nodes where both the real and imaginary
part vanish. Therefore, we use the number of maxima in the
modulus of the eigenfunction instead. The radial order n is
defined to be one less than the number of peaks.

These radial resonances arise from waves trapped between two
radial turning points. The outer turning point is caused by

refraction from the increasing Alfvén speed with height. The inner
turning point is due to the combined effect of reflection from the
Alfvén singularity and the geometrical increase in the azimuthal
wavenumber m/r for small radii. For a given radial order, the
frequency approaches a nonzero value as the axial wavenumber
approaches zero. This is due to the asymptotic form of our Alfvén
speed profile for large radius. Refraction requires oblique
propagation and waves that propagate purely radially k=0 are
unrefracted and untrapped. Hence as the axial wavenumber k

approaches zero, the outer turning point approaches infinity and
the radial wavelength becomes infinity large. Since the cavity
extends to large radii, the Alfvén speed is nearly a linear function

throughout most of the wave cavity, VA≈V0 r/r0. Using this
asymptotic form, Equation (14) reveals that the wave’s frequency

must approach a finite value as k vanishes, w  -mV r0 0
1.

All of the modes are damped due to resonant absorption by
the Alfvén waves and hence have complex eigenfrequencies or
wavenumbers. Thus, for real frequency and real wavenumber
(as shown in the figure), the dispersion function is never truly
zero. Instead, as the frequency and wavenumber pass near a
complex zero in the dispersion function, the power peaks with a

Lorentzian profile. The width of the profile is a direct measure
of the damping rate. Figure 4 shows cuts through the reciprocal
of the dispersion function at three representative values of the
axial wavenumber. Each ridge appears as a large-amplitude
Lorentzian spike. This profile shape is revealed in the inset
where the mode marked with the blue arrow is shown over a
narrow range of frequency.
The lowest radial-order ridge in the power spectrum illustrated

in Figure 3 spans only a short range of wavenumbers before it
fades into the background. This ridge appears near a nondimen-

sional frequency of w = =-r V m 10 0
1 in the lower-left corner of

the power spectra. This short feature of high power corresponds to
the fundamental radial order n=0. As we will see, this mode is
strongly damped by resonant absorption and, at higher wave-
numbers (kr0> 1), the ridge widens so much in spectral space that
it becomes indistinguishable from the background. When we
examine eigenfunctions in detail in the next section, we will find
that the energy density of the fundamental radial mode has a
single extremum located at the Alfvén singularity. Each ridge of
successively higher frequency and radial order (n= 1, n= 2,
n= 3, and so forth) adds an additional peak to the energy density
as a function of radius. These radial overtones are only weakly
damped and thus have narrow ridges, and the power varies by
orders of magnitude between the inter-ridge background and the
ridge peaks (see Figure 4).
Due to the fact that we solve the ODEs by Runge–Kutta

integration, we expect that numerical inaccuracies should arise
when we must integrate over very long distances. The region of
spectral space near the low-wavenumber base of the lowest-
frequency ridge is a region where such long integrations become
necessary. This numerical difficulty arises for two compounding
reasons. As the dimensionless frequency approaches m the
resonant field line moves infinitely far away in radius. Similarly,
the outer refraction point or turning point, r2, of the fast wave
moves farther and farther away from the axis as the wavenumber
becomes small, w» -r r V k2 0 0

1 . For both reasons, as the axial
wavenumber vanishes and the dimensionless frequency
approaches m, we must move the outer boundary of our
computational domain, rout, further and further away. This means
that our numerical integrations must cross longer and longer
distances and, as numerical errors accumulate, these long-distance
integrations become increasingly inaccurate. In the very small
spectral region at the base of the n=0 ridge where this inaccuracy
becomes unacceptable, we saturate the image with pure white.

4.3. Eigenwavenumbers

We find the complex eigenwavenumbers using a complex root
finder that utilizes a numerical routine to calculate the dispersion
function for any requested frequency and wavenumber. At a
given frequency, the root finder starts from an initial guess for the
eigenwavenumber and iterates until it converges to a complex
zero in the dispersion function. Figure 5 shows the real and
imaginary parts of the resulting axial wavenumber as a function
of position along each ridge. The black curve corresponds to the
fundamental radial mode (n= 0) and the sequence of colored
curves is a sequence of radial order n (red: n= 1, green: n= 2,
blue: n= 3, etc.). Figure 5(a) shows the dispersion relation, i.e.,
the frequency as a function of the real part of the wavenumber,
while Figure 5(b) shows the spatial damping rate (the imaginary
part of the wavenumber) as a function of frequency. Since the
eigenwavenumber, kn(ω), only appears as its square kn

2 in the
ODE(11), for each eigenvalue there are a pair of solutions

Figure 3. Reciprocal of the modulus of the dispersion function multiplied by a

function of frequency, w w -( ) ∣ ( )∣f D k, 1, displayed as a function of real

dimensionless wavenumber kr0 and frequency w -r V0 0
1. The azimuthal order is

unity, m=1. The function of frequency was chosen solely to remove a strong

gradient in frequency from the image, w w= - -( ) ( )f r Vexp 0.2 0 0
1 . The

eigenmodes correspond to the bright ridges where the dispersion function is
nearly zero. The dark horizontal band lies at a frequency ω=mV0/r0, which
corresponds to the frequency where the Alfvén resonance has moved to an
infinite radius. All eigenmodes exist above this frequency bound. The lowest-
frequency mode (i.e., the ridge with the lowest radial order) is heavily damped
and visible only at low wavenumbers (kr0 < 1). At higher wavenumbers, this
mode’s line profile becomes sufficiently wide that the mode disappears into the

background. The sharp-edged, bright feature near w =-r V m0 0
1 at very low

wavenumber (kr0 < 0.1) is a numerical artifact caused by the necessity of
solving the equations in a finite radial domain.
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 kn
2 , one corresponding to forward-propagating waves (i.e.,

phase moves in the positive y-direction) and the other to
backward-propagating waves. Since the two solutions have the
same radial eigenfunction, we only show the forward-propagating
wave with a positive real part of its eigenwavenumber.

The radial overtones (n> 0) all have dispersion relations and
spatial damping rates with similar behavior. As the frequency
increases, the real part of the wavenumber increases, initially
quite quickly, and then approaches a slope common to all
overtones. The spatial damping rate of all overtones is quite
small and peaks at a frequency that depends on the radial order.
Interestingly, the dimensionless damping rate for all radial
orders peaks at roughly the same value, ∼4×10−2. The radial
fundamental mode (n= 0) behaves discordantly. The disper-
sion relation is convex instead of concave and asymptotically
approaches a steeper slope than the overtones. More impor-
tantly, the fundamental mode is heavily damped. Resonant
absorption produces a spatial decay rate that is orders of
magnitude larger than that evinced by the overtones.

Figure 6(a) shows the axial group speed, vgrp, of each radial
order as a function of frequency,

w
º

¶
¶{ } ( )

v
Re

k1
. 23

n

grp

The overtones (n> 0) behave as one would expect. Waves with

low axial wavenumber propagate outward nearly radially and

refract back toward the axis at a turning point located at large

radius. Such waves sample regions with high Alfvén speed and

thus have a high axial group speed. As the frequency and

wavenumber increase, the turning point moves inward, confining

the mode to the region of low Alfvén speed near the axis. Hence,

the group speed asymptotically approaches a value of V0 as the

frequency increases. The radial fundamental mode defies this

trend. Its group speed increases with frequency and approaches a

constant value that is larger than V0.

The magnitude of the spatial damping rate can be put into
context by considering the quality factor, Q, which is defined as
the ratio of the real and imaginary parts of the eigenvalue,

º
{ }

{ }
( )Q

Re k

Im k
. 24

n

n

The quality factor is a measure of the number of wavelengths that

the wave travels before it suffers significant attenuation. The

quality factor for each radial order is shown in Figure 6(b).

The overtones are all weakly damped and travel hundreds of

wavelengths before significant amplitude decay occurs. As such,

the quality factor for these modes exceeds 100 for all frequencies.

On the other hand, the radial fundamental mode has a quality

factor of nearly 2 at almost all frequencies. This wave travels only

a single wavelength before losing most of its energy through

resonant coupling with the Alfvén waves.

4.4. Eigenfunctions

The eigenfunctions can be generated by evaluating the outer
solution at the eigenwavenumber,

w w wF = F¥( ∣ ) ( ∣ ( ) ) ( )r r k , . 25mn n

Figures 7(a) and (c) illustrate the fractional magnetic-pressure

fluctuation for eigenfunctions with radial orders n�3 for two

different frequencies. The color of the curves indicates the

eigenmode’s radial order (see the caption). As the radial order

increases, the axial wavelength of the mode increases (see

Figure 5) and the wave refracts at a larger radius where the

Alfvén speed is larger. Thus, the higher-order overtones have

eigenfunctions with larger wave cavities that extend higher in

radius. To capture this increase in size of the wave cavity in a

common figure, we have plotted the eigenfunctions using a

logarithmically scaled radius axis. A linear scaling is also

provided in a small inset. All eigenfunctions are complex

Figure 4. Three cuts at constant wavenumber through the reciprocal of the modulus of the dispersion function shown in Figure 3. The black solid curve illlustrates the
dispersion function for a low wavenumber, kr0=0.5 and the dashed red and dotted–dashed green curves show successively higher wavenumbers, kr0=2.5 and 5.0
respectively. The n=1 mode, indicated with the blue arrow, is shown in a zoom-in view in the inset.
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quantities because of the damping caused by resonant

absorption. However, the damping is exceedingly weak for

all modes other than the radial fundamental mode. Thus, only

the n=0 mode has a significant imaginary component. The

real part of each eigenfunction is displayed using solid curves

and the imaginary part of the fundamental is shown with a

dashed curve. Since the eigenfunctions are complex, it is not

obvious that the radial order indicates the number of nodes in

the eigenfunction. However, if we examine the modulus of the

eigenfunctions, as illustrated in Figures 7(b) and (d), the trend

becomes clear. The modulus of each complex eigenfunction has a

number of peaks in radius equal to n+1. Thus, even though the

radial fundamental mode has an eigenfunction with significant

real and imaginary parts, and those parts may separately have

nodes, the modulus is singly lobed with one extremum.
From the power series expansions of the two solutions valid at

the singularity (see Appendix A.3), one can easily determine that
the pressure fluctuation, Φ, remains finite and has vanishing
derivative. The regular solution and its derivative both vanish, so
the solution is dominated by the irregular solution

F µ F = + - - + ( ) ( ) ( )
k r

r r r r1
2

ln 1, 26irr

2
0
2

A
2

A

F
µ

F
= - - + ( ) ( ) ( )

d

dr

d

dr
k r r r r rln 0. 27

irr 2
0
2

A A

From these two expansions, we immediately deduce that the

Alfvén radius must be a local peak in the eigenfunction. This

prediction is borne out in an examination of the numerically

calculated eigenfunctions presented in Figure 7. The influence

of the Alfvén singularity essentially adds an additional peak to

all of the eigenfunctions of the fast modes. This suggests that

the n=0 mode (with only a single peak at the Alfvén

singularity) only exists because of the presence of the

singularity. The radial fundamental mode has a different

physical origin than the higher radial orders.
While the magnetic-pressure fluctuation remains finite at the

singularity, the velocity components of the eigenfunction do
not. From the leading-order behavior at the singularity,
Equation (9) indicates that both the axial and radial velocity
are singular:

w w
=

-
F ~

-
+ ( )u

V
ik

r r

1
, 28y

A
2

2
A
2

A

w w
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A
2

2
A
2

2
0
2

A

Figure 8 illustrates both of these velocity components. When

the fractional magnetic-pressure fluctuation, Φ, is purely real,

the axial velocity is purely imaginary and the radial velocity is

purely real. Hence, in Figure 8 we display the imaginary part of

the axial velocity and real part of the radial velocity.

5. Discussion

The dispersion relation and spatial damping rate (see
Figures 6(a), (b)) clearly demonstrate that the radial funda-
mental mode (n= 0) has a very different physical nature than
all of the higher-order radial modes. We reiterate that the radial
fundamental only exists because of the singularity. If we were
to slowly perturb the Alfvén speed profile to one where the
singularity vanished (for example VA∝r), the radial funda-
mental mode would also disappear, while the overtones would
remain.

Figure 5. (a) Real and (b) imaginary parts of the eigenwavenumber displayed as a function of frequency for m=1. Each color curve corresponds to a different radial
order, with black indicating the fundamental radial order, n=0. Higher radial orders are illustrated with red (n = 1), green (n = 2), blue (n = 3), and so on. The
fundamental radial order has a different asymptotic slope for large wavenumber than the higher radial orders. Further, the spatial damping rate for the fundamental
radial order is much larger. Note that, even though the dispersion relation (panel (a)) for the fundamental mode crosses those of higher order, this is not an avoided
crossing because the eigenwavenumbers are complex and the modes have distinct imaginary parts. The dotted horizontal line indicates where the dimensionless
frequency equals m.
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5.1. Wave Cavities

The disparate behavior between the fundamental radial mode
and the radial overtones is primarily due to the fact that the
overtones reside in a fast wave cavity whereas the fundamental
is a surface wave that resides on the singularity. All of the
overtones (n> 0) have frequencies that are sufficiently high
that they possess a cavity where the wave is propagating as
indicated in Figure 2. Thus, the overtones are all primarily fast
body waves. Further, the Alfvén singularity lies just inside the
inner turning point and thus lies outside of the fast wave cavity.
This explains why the the resonant coupling between the
overtones and the Alfvén waves is inefficient and the overtones
are weakly damped. The singularity lies in the evanescent tail
of the overtones where the mode’s amplitude is relatively low.
The radial fundamental n=0, on the other hand, is nowhere
propagating and lacks a fast wave cavity. Figure 9 provides a
propagation diagram for two modes, n=0 and n=2. Both
have eigenvalues k2 with identical real parts, ={ }Re k 4.02 . Of
course, they have different frequencies and different imaginary
parts of their eigenvalues. Nowhere does the fundamental have
a frequency that exceeds the critical frequency. Thus, this mode
is a surface wave that lives on the only available discontinuity,
the Alfvén singularity. Since this mode’s energy density is
concentrated at the singularity, resonant absorption is efficient.

5.2. Restoring Forces

Fast waves have two potential restoring forces that usually
act in concert: magnetic pressure and magnetic tension.
Figure 10 illustrates the magnitudes of these two forces for
three modes of different radial order but the same frequency. A
careful examination of the restoring forces in both the axial and
radial directions reveals that the magnetic pressure dominates
everywhere except at the Alfvén singularity and near the origin.

At the singularity, magnetic tension becomes the most
important force. Near the origin, the tension and pressure are
of equal magnitude but nearly 180° out of phase such that they
nearly cancel each other. Since the overtones have radial
cavities that extend well above the Alfvén singularity, over
most of the region where the mode has significant amplitude,
the magnetic pressure is the primary restoring force. Hence,
the overtones are primarily fast pressure waves with weak
contributions from the tension. The radial fundamental mode,
on the other hand, has an eigenfunction that is confined to
the immediate vicinity of the singularity. Thus, not only is the
fundamental primarily a fast tension wave with weak pressure
contributions, it suffers extensive resonant absorption because
it is confined to a region of strong coupling.

5.3. Observational Implications

Our assumption that the axial direction is infinite and
ignorable is not trivial. The primary effect is that all axial
wavenumbers are allowed because of the infinite domain. This
allows us to consider the axial wavenumber as a “radial
eigenvalue” and the frequency as a free parameter. On the other
hand, if there were boundaries placed along the axial
coordinate, the wavenumber would be quantitized and fixed
in order to satisfy the axial boundary conditions. This would
require that the frequency represent the radial eigenvalue.
For most of the fast modes this is a serious constraint. They

have such low damping rates arising from resonant absorption
that they can travel very far before having their signal attenuated.
For example, if we consider a model arcade with a typical length
scale of r0=100 Mm, the smallest spatial decay length for the
overtones is roughly r0/(4× 10−2

)=2500 Mm. Assuming a
typical arcade whose length is on the order of a solar radius,
these waves would sense both boundaries. Thus, they would

Figure 6. (a) Axial group speed and (b) quality factor for the eigenmodes as a function of dimensionless frequency and radial order. The azimuthal order is unity, m=1. The
colors have the same meaning as in Figure 5. The group velocity is defined as the slope of the curves in Figure 5(a). Asymptotically for high frequency, the group speed
approaches a constant. For the radial overtones (n> 0), this asymptotic value is equal to the Alfvén speed at the axis, V0. For the fundamental mode, the asymptotic value is
somewhat higher. The quality factor, Q, is the ratio of the real to imaginary parts of the eigenwavenumber and signifies the number of wavelengths the wave travels before it
is significantly diminished in amplitude. The fundamental mode is heavily damped and travels only a few wavelengths before being absorbed (Q ∼ 2). The radial overtones
are all weakly damped (Q> 100) and the quality factor achieves a minimum at a frequency that increases as the order increases.
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bounce back and forth multiple times before being dissipated.
The low-amplitude “decayless oscillations” may be the result of
such fast wave oscillations. One or more excitation events
generate a set of radial overtones that interfere with each other
and with themselves as they criss-cross the axial cavity.

The radial fundamental mode is different. This mode travels
only a few wavelengths before significant decay occurs. Thus,
this mode would die before reaching the edges of a long arcade
and its axial wavenumber would not be quantitized to an
obvious degree. Once excited, these waves would dissipate
rather quickly into Alfvén waves and would never travel far
from where they were generated. Thus, the radial fundamental
mode can only be observed as coronal loop oscillations if those
oscillations are excited locally.

Loop oscillations have to date only been observed by their
motion on the plane of the sky. Thus, what is observed is a linear
combination of the two transverse velocity components, and the
observed polarization depends on the angle between the line of
sight and the arcade’s axis. The eigenfunction for either velocity
component is singular at the Alfvén radius. Note, however, that
this singularity should never be observed, as a pure eigenmode is
never excited. Instead, all physically realizable wave fields are
composed of a linear combination of eigenfunctions represented
by an integral over frequency. Each frequency component in the
integration has a singularity at a different radius. So, even though
the integrand has singularities the integral must remain finite at all
radii. For wave packets comprised of a narrow band of frequencies
we expect a large, but finite, radial response at the Alfvén radius
concomitant with the central frequency of the band. But the wave
packet may also have a significant response at higher radii
corresponding to peaks in the amplitude of the velocity

eigenfunctions if the packet possesses radial overtones in its
makeup. The motion of a single coronal loop, however, will only
reveal the motion at a single shell or magnetic surface. It could
very well be that the largest field line displacements remain
invisible if the radius of the observed loop does not coincide with
the Alfvén radius for the dominant frequency of the excited waves.
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Appendix A
Solutions near the Singular Points

The governing ODE(11) has three (or more) singular points
in radius: the origin (r= 0), infinity (  ¥r ), and one or more
Alfvén resonances (r= rA). For monotonic Alfvén frequency
profiles, like that arising from Equation (2) and illustrated in
Figure 1, there is at most a single Alfvén radius for any
particular frequency. The solutions that are regular at the origin
and at infinity can be obtained through standard expansions and
asymptotic analyses. As such, they will be discussed here only
briefly. The interior singularity at the Alfvén radius is more
unusual and warrants a more detailed examination.

A.1. Solution Near the Origin

A power-series solution to Equation (11) that is valid near
the origin can be found by expanding the square of the local

Figure 7. Fractional magnetic-pressure fluctuation, wF ( ∣ )rmn , as a function of radius, for the eigenfunctions of the first four radial orders and for m=1. The different
colors of the curves indicate the radial order (black: n = 0, red: n = 1, green: n = 2, and blue: n = 3). In all panels the vertical dotted line indicates the radius at which

the Alfvén singularity occurs for the given frequency. (a) Pressure eigenfunctions for a dimensionless frequency of w =-r V 50 0
1 . The solid curves display the real part

of the complex eigenfunction and the dashed curve shows the imaginary part for the radial fundamental (n = 0). The imaginary parts of the other orders have been
omitted since their eigenfunctions are nearly real due to weak damping. The inset shows the real part of the eigenfunctions on a linear radius scale. (b) Modulus of the
complex eigenfunctions. From this figure one can easily recognize that the radial order indicates the number of peaks appearing in the modulus (e.g., n = 0 has 1 peak,

n = 1 has 2 peaks, and so forth). (c) Pressure fluctuation for eigenfunctions with a dimensionless frequency of w =-r V 150 0
1 . The eigenfunctions all have the same

structure as those at lower frequency, but are compressed toward the origin. (d) Modulus of the eigenfunctions for the higher frequency.
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wavenumber, K2, in an expansion for small radius,
- ( )r r kinf ,0
1 , and using the method of Frobenius to build

the series solution term by term. To lowest order, the two
solutions to Equation (11) behave like r m. We present the first
few terms in the power series for the regular, well-behaved
solution:

wF = + + + ( ∣ ) ( ) [ ( ) ( ) ]
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A.2. Asymptotic Solution for Large Radius

In the limit of large radius, - ( )r r ksup ,0
1 , the outer

solution F¥ behaves like a modified Bessel function. This can
be verified by recognizing that VA→V0(r/r0) and the
ODE(11) becomes Bessel’s equation (Hindman & Jain 2015):

nF
+

F
- + F =¥ ¥

¥
⎛

⎝
⎜

⎞

⎠
⎟ ( )

d

dr r

d

dr r
k

1
0, 34

2

2

2

2
2

where we define the constant ν2≡m2−Ω2. The solution that

is well-behaved for large radius is the K function (modified

Bessel function of the second kind):

wF  n¥( ∣ ) ( ) ( )r k K kr, , 35

where the sign of the argument is chosen to ensure that the real

part is positive (otherwise the solution diverges exponentially

for large r).
In order to use the asymptotic solution to initialize the

numerical integrations in our analysis (and hence satisfy the
radial boundary condition at infinity), we need to be able to
evaluate the K Bessel function for complex frequencies and
wavenumbers. Complex frequencies impose complex azi-
muthal orders, ν, and complex wavenumbers impose complex
arguments. Most standard Bessel function algorithms are
incapable of dealing with these complications. Hence, we use
an asymptotic expansion that is valid for large values of the
argument

åw
p

F =¥
-

=

-

( ∣ )
!( )

( )r k
kr

e
b

n kr
,

2 8
, 36kr

n

N
n
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0

1

with coefficients given by

º ( )b 1, 370

nº - - >-[ ( ) ] ( )b n b n4 2 1 for 0. 38n n
2 2

1

The number of terms N is chosen to optimize the accuracy of

the expansion, and the radius at which to initiate the integration

is chosen to ensure a minimal degree of accuracy.

A.3. Solution Near the Alfvén Singularity

The Alfvén resonances (r= rA) are interior singularities that
are logarithmic regular singular points (e.g., Goedbloed 1971;
Uberoi 1972; Appert et al. 1974), much like the origin in
Bessel’s equation. The two solutions are therefore a regular,

Figure 8. Velocity eigenfunctions for the same modes illustrated in Figure 7. The colors have the same meaning as in that figure. The left-hand panels (a) and (c)
display the imaginary part of the axial velocity component and the right-hand panels (b) and (d) present the real part of the radial velocity component. The upper
panels show a small frequency and the lower panels show a large frequency. Both velocity components are complex quantities, but for the radial overtones (which
have weak damping), the axial component is almost purely imaginary and the radial component is nearly real. All velocity components are singular at the Alfvén
radius (which is indicated by the vertical dotted line). The axial velocity component has a hyperbolic divergence, ∼1/(r − rA) while the radial component has a
logarithmic divergence ~ -( )r rlog A .
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well-behaved solution Φreg and an irregular solution Φirr with a
logarithmic singularity. Both will be needed. Through a
Frobenius expansion around the singularity, one can obtain
expansion coefficients. The series are written in terms of a
nondimensional local coordinate ε=(r− rA)/r0. The first
handful of terms are as follows:

w e e e
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where the primes denote differentiation with respect to ε and

the following definitions have been made,
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In developing these series expansions, we have assumed that

the derivative of the local Alfvén frequency is nonzero at the

singularity such that, to lowest order, w w e- ~2
A
2 (or,

equivalently, L¢ ¹( )0 0).
The regular solution, as well as its radial derivative, vanishes

at the singularity. From this condition and from a slight

rearrangement of Equation (9):

w w
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-
F^ ( )u

V
, 44A

2

2
A
2

we can deduce that all physical variables (i.e., the magnetic

pressure and both velocity components) vanish at the singularity.

On the other hand the irregular solution possesses a “buried”

logarithmic singularity. By buried we mean that the pressure

variable and its first derivative remain continuous and finite,

whereas its second derivative is singular (i.e., Φirr is a C
1

function). In terms of the physical variables, the magnetic pressure

is well-behaved, but both velocity components are divergent,

e eF = + + ( )
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The presence of the logarithm in the irregular solution is a
clear indication that there are branch cuts in complex radius
space. Often clever placement of the branch cut allows one to
essentially ignore their existence. That is not the case here. The
location of the branch points is a function of the frequency and
since the frequency can be complex—the resonant absorption
naturally leads to a loss of energy from the fast modes through
coupling with the Alfvén waves—the branch points can pass
through the real radius axis as the imaginary part of the
frequency changes sign. This leads to a branch cut that lies on
the real frequency axis and spans all frequencies for which a
resonant Alfvén radius exists; see chapter 7 of Goedbloed &

Figure 9. Propagation diagram illustrating that the fundamental radial mode is a fast surface wave, whereas the radial overtones are fast body waves. Two particular
modes with m=1 are presented. The solid curves are those for an n=0 mode with a dimensionless frequency of 2.55 and a complex wavenumber of

kr0=1.76+i 0.94. The dashed curves are for an n=2 mode with a frequency of 5.1 and wavenumber of kr0=1.99+i 0.01. Both modes have ={ }Re k 4.02 .
Thus the solid red and blue curves show common values for the frequencies kVA and mr−1VA. The two horizontal violet curves indicate the two mode frequencies. For
the n=2 mode, it is clear that there exists a range of radii for which the frequency exceeds the critical frequency and there exists a cavity where the wave propagates.
The overtone is therefore primarily a body wave. The fundamental radial mode (n = 0) has a frequency that nowhere exceeds the critical frequency. Hence it must be a
surface wave that exists on the only discontinuity present, the Alfvén singularity.
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Poedts (2004). For our specific Alfvén speed profile(2), this
Alfvén continuum consists of all frequencies, w > -∣ ∣ mV r0 0

1.

Appendix B
Continuous and Discrete Spectra

The Green function in spectral space for our ODE(11) can
be written in terms of the inner and outer solutions and the
dispersion function,

w
w w
w

¢ ¢ =
F F< > - ¢( ∣ )

( ∣ ) ( ∣ )

( )
( )G r r y k

r k r k

D k
e; , ,

, ,

,
. 48iky

To obtain the solution in physical space, one needs to invert both

the spatial and temporal transforms. Traditionally, one inverts the

temporal transform first. In this case, the eigenvalues are complex

eigenfrequencies and the axial wavenumber is a real continuous

parameter. However, this choice leads to difficulties. Here we

make the opposite choice, inverting the spatial transform first.

Thus, the eigenvalues are complex eigenwavenumbers and

frequency is a real continuous parameter.
By analytic contour deformation and the use of the residue

theorem, one can verify that two types of eigenmode are possible.
The poles of the Green function (arising from the complex zeros
of the dispersion function) correspond to a discrete set of fast-
wave eigenmodes. Any branch points in spectral space, with their
associated branch cuts, lead to continuous spectra. In MHD wave
problems with transverse variation in the Alfvén frequency, it is
well-known that the continuum of possible Alfvén wave
solutions are represented by such a branch cut (i.e., Uberoi 1972;
Lee & Roberts 1986; Goedbloed & Poedts 2004).

In our specific problem, the Alfvén continuum appears as two
branch cuts in complex frequency space that lie along the real
frequency axis for w > -∣ ∣ mr V0 0

1. These lines of discontinuity

appear because the irregular solution has a logarithmic singularity
and hence there is a countable infinity of potential branches or
Riemann sheets. For real frequencies the logarithmic branch point
lies on the real radius axis (rA is real). But if the frequency is
complex, the radius of the singularity and branch point is also
complex. Further, as the frequency passes across the real axis in
the complex frequency plane, the radial branch point also moves
across the real radius axis. The inner and outer solutions can be
viewed as contour integrals along the real radius axis originating
either at the origin or at infinity. Thus, as the radial branch point
moves across the integration contour, there is a discontinuity in
either the inner or outer solution. A careful consideration of the
response of the dispersion function to these discontinuities
reveals that there are two branch points on the real frequency axis
at ω=±mV0/r0 and branch cuts that connect these points to
¥ along the real axis. Figure 11 shows contours of the
dispersion function D(k, ω) as a function of complex frequency
for a real wavenumber kr0=2. The red curves indicate where
the real part of the dispersion function is zero and the blue curves
are the isocontours where the imaginary part vanishes. The teal
dots indicate the two branch points and the teal lines display the
branch cuts. Note that nowhere do the red and blue curves cross.
Thus, there are no discrete fast eigenmodes that lie on the
principal Riemann sheet. Thus, the expected set of fast modes are
in this case absorbed into the continuous spectrum.
The poles associated with the discrete modes do exist, but

they appear on nearby Riemann sheets connected through the
branch cuts. It is possible to analytically continue the solutions
through the branch cuts to find these poles. Doing so requires
that one calculate the inner and outer solutions by integrating
off the real radius axis in such a way that the logarithmic
singularity never crosses the integration contour. Unfortu-
nately, this requires that the branch cut in radius space cross the
real radius axis for frequencies with a negative imaginary part.

Figure 10. Magnitudes of the two restoring forces, magnetic pressure and magnetic tension, in (a) the axial direction and (b) the radial direction. The black curves
indicate the forces for the radial fundamental mode, n=0, while the red and green curves indicate the first two overtones, n=1 and n=2 respectively. All forces are
for modes with the same nondimensional frequency, w =-r V 50 0

1 , and azimuthal order, m=1. The modulus of the magnetic pressure force is illustrated with the
dashed curves and the modulus of the tension with the dotted–dashed curves. The modulus of the total restoring force (pressure plus tension) is shown with solid
curves. Clearly, the magnetic pressure dominates over most of the wave cavity. The only exceptions are at the Alfvén singularity (indicated with the vertical dotted
line) and near the origin. Near the singularity, the magnetic tension dominates. Near the origin, the two forces have the same magnitude but are almost 180° out of
phase such that they nearly cancel when summed.
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Thus, one gains continuity in frequency space at the expense of
continuity in radius. Of course, for most applications, this is not
a useful trade-off.

A significantly simpler solution is to invert the spatial
transform first and hence consider complex eigenwavenumbers
and real frequencies. Since the location of the Alfvén
singularity does not depend on the axial wavenumber, the
Alfvén continuum does not insert branch points or other
singularities in the complex wavenumber plane. Figure 12
illustrates the zero contours of the real and imaginary parts of

the dispersion function for a real frequency of w =-r V 50 0
1 and

for complex wavenumbers. There is a branch cut along the
imaginary wavenumber axis, but it does not arise from the
Alfvén continuum. Instead it corresponds to a continuous
spectrum of axially evanescent and radially propagating waves
akin to the acoustic jacket modes of helioseismology (see
Bogdan & Cally 1995). Mathematically, this branch cut arises
from the behavior of the solution for large radius. In this limit,
the solution behaves like a K-modified Bessel function,

F µ n ( )K k r2 —see Appendix A.2. In order to remain finite
at infinite radius, the sign of the square root (i.e., the branch)
must change across the imaginary axis, hence introducing a
branch cut. This type of continuous spectrum is well-known
and appears in a host of simple problems including the solution
in cylindrical coordinates to Poisson’s equation for the electric
field generated by a point charge. Note that the red and blue
curves cross each other in this case, indicating discrete modes.
There are two families of modes, those that propagate in the
positive y-direction (green diamonds) and those that propagate
in the opposite direction (aqua squares). Both families have an
accumulation point of modes at the origin (only a finite number
of modes have been indicated in the figure). The wavenumbers
of the two families are antisymmetric, with the counter-
propagating modes having a wavenumber that is just the
negative of the forward-propagating modes. The weakly
damped radial overtones (n> 0) correspond to the countable
infinity of poles that lie very near the real wavenumber axis.
The strongly damped fundamental mode (n= 0) appears as two
poles (one forward- and one backward-propagating) in a region

of complex wavenumber space well away from the real
wavenumber axis (near ={ }Im k 2.3).

Appendix C
Energy Flux

The rate at which any given mode loses energy through
resonant absorption can be obtained by considering the flux of
wave energy. For a magnetically dominated fluid, the energy
flux F has two components (Bray & Loughhead 1974),

p p
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· ·

( )F
B b

u
b u

B
4 4

. 49

The component of the flux aligned with the background

magnetic field arises from the magnetic tension. While this

component is in general a nonzero function of azimuth, when

integrated over azimuth the term vanishes. This occurs because

the transverse components of the perturbed magnetic field b are

proportional to q( )mcos whereas the velocity components are

proportional to q( )msin —see Equations (3) and (8). Thus, no

net energy is lost or gained by fast waves through the action of

this flux component. The components of the energy flux that

are transverse to the background field (and result from the

magnetic pressure) lack this property.
To ascertain how the energy flux manifests for a single

eigenmode, in Equation (49) we must consider only the real
parts of the solution and average in time over a wave period.
The magnetic pressure fluctuation is directly proportional to Φ

(see Equation (6)),

p w p
P = = F

·
( )

B b i B

4 4
. 50

2

Therefore denoting the time average by angular brackets, we

obtain

*
pw

qá ñ = F -{ ( ) ( )} ( ) ( ){ }F u
B

Im r r e m
8

sin , 51Im k y
2

2 2

Figure 11. Contours in the complex frequency plane where the real part of the dispersion function D(k, ω) is zero (red curves) and the imaginary part is zero (blue
curves). The wavenumber used in the illustration is purely real, kr0=2. The azimuthal order is unity, m=1. Wherever a red curve and blue curve cross indicates a
complex zero of the dispersion function, and hence the location of an eigenmode. Note that no such crossings occur. The teal lines mark branch cuts, locations where

the dispersion function is discontinuous. The teal dots indicate the branch points at w =  -mV r0 0
1. These branch cuts are associated with the continuous spectrum of

allowed Alfvén waves. The picture illustrates the dispersion function on only the principal Riemann sheet. The expected fast mode resonances (i.e., zeros of the
dispersion function) lie on nearby Riemann sheets that are reached by analytic continuation of the dispersion function through the branch cuts.
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where we have explicitly included the azimuthal and axial spatial

dependences. Note that, because of the time averaging (and the

real frequencies), the energy flux is independent of time. Further,

since the eigenwavenumber is complex, the amplitude of the flux

decays in the direction of wave propagation.
The time rate of change of the Alfvén wave energy density is

given by the divergence of this energy flux,

¶
¶
= - á ñ· ( )F

E

t
. 52

It can be demonstrated that the divergence of the energy flux

vanishes everywhere except at the Alfvén singularity. To do so,

apply the chain rule to the product *F u and use Equations (4)

and (9) to obtain
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The expression inside the braces is purely real and thus the

energy flux is divergenceless.
This is not a surprising result; the waves are ideal MHD

waves. The damping of the fast modes occurs purely at the
singularity due to a transferral of energy to Alfvén waves.
Alfvén waves are not directly described by our ODE(11) for a
variety of reasons: (1) the Alfvén waves are pure tension waves
and thus produce no magnetic-pressure fluctuation, i.e., Φ=0,
and (2) the coupled Alfvén waves experience secular growth and
therefore do not have exponential time dependence. This latter
point can be deduced by carefully examining the rate at which
the fast mode pumps energy into the singularity.

As previously stated, the energy flux is divergenceless
except at the singularity itself. However, the energy flux can be
shown to have a jump discontinuity across the singularity.
Hence, the divergence of the flux has a delta function at the
singularity. The jump discontinuity arises from the logarithmic

singularity in the irregular solution. As shown in Appendix A.3,
the irregular solution has the following leading-order behavior at
the singularity
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Remember that the analytic continuation of the logarithm to
negative arguments involves an imaginary component with a
Heaviside step function, H,

p- = - + -( ) ∣ ∣ ( ) ( )r r r r i H r rlog log . 57A A A

This step function leads to a discontinuous jump in the energy

flux across the singularity and energy is continually injected

into the singularity. The divergence of the flux has only one

term that does not cancel,
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The radial dependence has been made obvious by using

Equation (1) to replace the magnetic field strength with the

constant line-current strength, =B I r2 . The amplitude of the

irregular solution, Airr, has units of frequency and its amplitude

relative to the regular solution, Airr/Areg, is fixed by the radial

boundary conditions. The energy transfer rate has a delta

function for its radial dependence (i.e., arising from the radial

Figure 12. Zero contours of the real part (red) and imaginary part (blue) of the dispersion function in complex wavenumber space. The dispersion function is

illustrated for a real dimensionless frequency, w =-r V 5.00 0
1 , and for a unit azimuthal order, m=1. There are many locations where a red curve crosses a blue curve,

indicating a fast wave eigenmode of the arcade. There are two families of eigenmodes; those indicated with green diamonds are forward-propagating waves (phase
propagates in the positive axial direction), while the aqua squares indicate the antisymmetric set of counter-propagating waves. There is a countable infinity of each
type of mode with an accumulation point at the origin. Only a finite number of modes from each family are indicated in the figure. The imaginary wavenumber axis is
a branch cut associated with the behavior of the eigenfunctions at infinite radius. This Riemann sheet, the principal sheet, represents only those solutions that vanish at
large radius.
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derivative of the step function),
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For an Alfvén frequency that is monotonically decreasing
with radius (as we have here) the derivative of Λ is positive,
Λ′(0)>0 (see Figure 1). Thus, the eigensolution injects wave
energy into the singularity at a rate that is independent of time.
The azimuthally and radially integrated energy in the Alfvén
waves grows at a linear rate, t= +( )E E t10 , with E0 being
the energy at time t=0 and τ−1 given by integrating the right-
hand side of Equation (59) and divided by E0,

t
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This linear growth of the Alfvén wave energy density can be
viewed as the root necessity for the Alfvén continuum. The
temporal behavior of the Alfvén waves cannot be expressed
with a discrete set of exponentials, hence they must be
represented as an integral that adds up the contribution of a
continuum of exponential forms. This linear combination has
the relative phase relations required to build a polynomial in
time. This procedure is exactly what continuous spectra from a
branch cut often represent.

ORCID iDs

Bradley W. Hindman https://orcid.org/0000-0001-
7612-6628

References

Andries, J., Van Doorsselaere, T., Roberts, B., et al. 2009, SSRv, 149, 3
Anfinogentov, A., Nisticò, G., & Nakariakov, V. M. 2013, A&A, 560, 107
Appert, K., Gruber, R., & Vaclivik, J. 1974, PhFl, 17, 1471
Arregui, I., Oliver, R., & Ballester, J. L. 2004, A&A, 425, 727
Aschwanden, M. J., Fletcher, L., Schrijver, C. J., & Alexander, D. 1999, ApJ,

520, 880
Bogdan, T. J., & Cally, P. S. 1995, ApJ, 453, 919
Brady, C. S., & Arber, T. D. 2005, A&A, 438, 733
Bray, R. J., & Loughhead, R. E. 1974, The Solar Chromosphere (London:

Chapman and Hall)

Chen, L., & Hasegawa, A. 1974a, PhFl, 17, 1399
Chen, L., & Hasegawa, A. 1974b, JGR, 79, 1033
Corless, R. M., Gonnet, G. H., Hare, D. E. G., Jeffrey, D. J., & Knuth, D. E.

1996, Adv. Comput. Math., 5, 329
Diáz, A. J. 2006, A&A, 456, 737
Duckenfield, T., Anfinogentov, S. A., PAscoe, D. J., & Narkariakov, V. M.

2018, ApJL, 854, L5
Edwin, P. M., & Roberts, B. 1982, SoPh, 76, 239
Goddard, C. R., Nisticò, G., Nakariakov, V. M., & Zimovets, I. V. 2016, A&A,

585, A137
Goedbloed, J. P. 1971, Phy, 53, 501
Goedbloed, J. P. 1975, PhFl, 18, 1258
Goedbloed, J. P., & Poedts, S. 2004, Principles of Magnetohydrodynamics

(Cambridge: Cambridge Univ. Press)
Goossens, M., Andries, J., & Aschwanden, M. J. 2002, A&A, 394, L39
Goossens, M., Erdélyi, R., & Ruderman, M. S. 2011, SSRv, 158, 289
Goossens, M., Poedts, S., & Hermans, D. 1985, SoPh, 102, 51
Hain, K., & Lüst, R. 1958, ZNatA, 13, 936
Hindman, B. W., & Jain, R. 2014, ApJ, 784, 103
Hindman, B. W., & Jain, R. 2015, ApJ, 814, 105
Hollweg, J. V. 1990, JGR, 95, 2319
Kerner, W., Lerbinger, K., Gruber, R., & Tsunematsu, T. 1985, CoPhC,

36, 225
Kerner, W., Lerbinger, K., & Riedel, K. 1986, PhFl, 29, 2975
Kivelson, M. G., & Southwood, D. J. 1985, GeoRL, 12, 49
Kivelson, M. G., & Southwood, D. J. 1986, JGR, 91, 4345
Lee, M. A., & Roberts, B. 1986, ApJ, 301, 430
Nakariakov, V., Ofman, L., DeLuca, E., Roberts, B., & Davila, J. M. 1999, Sci,

285, 862
Nisticò, G., Nakariakov, V. M., & Verwichte, E. 2013, A&A, 552, 57
Oliver, R., Murawski, K., & Ballester, J. L. 1998, A&A, 330, 726
Pao, Y. P., & Kerner, W. 1985, PhFl, 28, 287
Poedts, S., & Goossens, M. 1988, A&A, 198, 331
Poedts, S., Hermans, D., & Goossens, M. 1985, A&A, 151, 16
Poedts, S., & Kerner, W. 1991, PhRvL, 66, 2871
Rial, S., Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2010, ApJ,

713, 651
Rial, S., Arregui, I., Terradas, J., Oliver, R., & Ballester, J. L. 2013, ApJ, 763, 16
Ruderman, M. S., & Roberts, B. 2002, ApJ, 577, 475
Selwa, M., Murawski, K., Solanki, S. K., Wang, T. J., & Tóth, G. 2005, A&A,

440, 385
Smith, J. M., Roberts, B., & Oliver, R. 1997, A&A, 317, 752
Southwood, D. J. 1974, P&SS, 12, 483
Terradas, J., Oliver, R., & Ballester, J. L. 1999, ApJ, 517, 488
Thackray, H., & Jain, R. 2017, A&A, 608, A108
Uberoi, C. 1972, PhFl, 15, 1673
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2009a, A&A, 446, 1139
Verwichte, E., Foullon, C., & Nakariakov, V. M. 2009b, A&A, 449, 769
White, R. S., & Verwichte, E. 2012, A&A, 537, A49
Wills-Davey, M. J., & Thompson, B. J. 1999, SoPh, 190, 467
Wright, A. N. 1992, JGR, 97, 6429

17

The Astrophysical Journal, 858:6 (17pp), 2018 May 1 Hindman & Jain

https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://orcid.org/0000-0001-7612-6628
https://doi.org/10.1007/s11214-009-9561-2
http://adsabs.harvard.edu/abs/2009SSRv..149....3A
https://doi.org/10.1051/0004-6361/201322094
http://adsabs.harvard.edu/abs/2013A&amp;A...560A.107A
https://doi.org/10.1063/1.1694918
http://adsabs.harvard.edu/abs/1974PhFl...17.1471A
https://doi.org/10.1051/0004-6361:20040563
http://adsabs.harvard.edu/abs/2004A&amp;A...425..729A
https://doi.org/10.1086/307502
http://adsabs.harvard.edu/abs/1999ApJ...520..880A
http://adsabs.harvard.edu/abs/1999ApJ...520..880A
https://doi.org/10.1086/176452
http://adsabs.harvard.edu/abs/1995ApJ...453..919B
https://doi.org/10.1051/0004-6361:20042527
http://adsabs.harvard.edu/abs/2005A&amp;A...438..733B
https://doi.org/10.1063/1.1694904
http://adsabs.harvard.edu/abs/1974PhFl...17.1399C
https://doi.org/10.1029/JA079i007p01033
http://adsabs.harvard.edu/abs/1974JGR....79.1033C
https://doi.org/10.1007/BF02124750
https://doi.org/10.1051/0004-6361:20065184
http://adsabs.harvard.edu/abs/2006A&amp;A...456..737D
https://doi.org/10.3847/2041-8213/aaaaeb
http://adsabs.harvard.edu/abs/2018ApJ...854L...5D
https://doi.org/10.1007/BF00170986
http://adsabs.harvard.edu/abs/1982SoPh...76..239E
https://doi.org/10.1051/0004-6361/201527341
http://adsabs.harvard.edu/abs/2016A&amp;A...585A.137G
http://adsabs.harvard.edu/abs/2016A&amp;A...585A.137G
https://doi.org/10.1016/0031-8914(71)90113-3
http://adsabs.harvard.edu/abs/1971Phy....53..501G
https://doi.org/10.1063/1.861012
http://adsabs.harvard.edu/abs/1975PhFl...18.1258G
https://doi.org/10.1051/0004-6361:20021378
http://adsabs.harvard.edu/abs/2002A&amp;A...394L..39G
https://doi.org/10.1007/s11214-010-9702-7
http://adsabs.harvard.edu/abs/2011SSRv..158..289G
https://doi.org/10.1007/BF00154037
http://adsabs.harvard.edu/abs/1985SoPh..102...51G
https://doi.org/10.1515/zna-1958-1103
http://adsabs.harvard.edu/abs/1958ZNatA..13..936H
https://doi.org/10.1088/0004-637X/784/2/103
http://adsabs.harvard.edu/abs/2014ApJ...784..103H
https://doi.org/10.1088/0004-637X/814/2/105
http://adsabs.harvard.edu/abs/2015ApJ...814..105H
https://doi.org/10.1029/JA095iA03p02319
http://adsabs.harvard.edu/abs/1990JGR....95.2319H
https://doi.org/10.1016/0010-4655(85)90053-0
http://adsabs.harvard.edu/abs/1985CoPhC..36..225K
http://adsabs.harvard.edu/abs/1985CoPhC..36..225K
https://doi.org/10.1063/1.866002
http://adsabs.harvard.edu/abs/1986PhFl...29.2975K
https://doi.org/10.1029/GL012i001p00049
http://adsabs.harvard.edu/abs/1985GeoRL..12...49K
https://doi.org/10.1029/JA091iA04p04345
http://adsabs.harvard.edu/abs/1986JGR....91.4345K
https://doi.org/10.1086/163911
http://adsabs.harvard.edu/abs/1986ApJ...301..430L
https://doi.org/10.1126/science.285.5429.862
http://adsabs.harvard.edu/abs/1999Sci...285..862N
http://adsabs.harvard.edu/abs/1999Sci...285..862N
https://doi.org/10.1051/0004-6361/201220676
http://adsabs.harvard.edu/abs/2013A&amp;A...552A..57N
http://adsabs.harvard.edu/abs/1998A&amp;A...330..726O
https://doi.org/10.1063/1.865199
http://adsabs.harvard.edu/abs/1985PhFl...28..287P
http://adsabs.harvard.edu/abs/1988A&amp;A...198..331P
http://adsabs.harvard.edu/abs/1985A&amp;A...151...16P
https://doi.org/10.1103/PhysRevLett.66.2871
http://adsabs.harvard.edu/abs/1991PhRvL..66.2871P
https://doi.org/10.1088/0004-637X/713/1/651
http://adsabs.harvard.edu/abs/2010ApJ...713..651R
http://adsabs.harvard.edu/abs/2010ApJ...713..651R
https://doi.org/10.1088/0004-637X/763/1/16
http://adsabs.harvard.edu/abs/2013ApJ...763...16R
https://doi.org/10.1086/342130
http://adsabs.harvard.edu/abs/2002ApJ...577..475R
https://doi.org/10.1051/0004-6361:20053121
http://adsabs.harvard.edu/abs/2005A&amp;A...440..385S
http://adsabs.harvard.edu/abs/2005A&amp;A...440..385S
http://adsabs.harvard.edu/abs/1997A&amp;A...317..752S
https://doi.org/10.1016/0032-0633(74)90078-6
http://adsabs.harvard.edu/abs/1974P&amp;SS...22..483S
https://doi.org/10.1086/307179
http://adsabs.harvard.edu/abs/1999ApJ...517..488T
https://doi.org/10.1051/0004-6361/201731193
http://adsabs.harvard.edu/abs/2017A&amp;A...608A.108T
https://doi.org/10.1063/1.1694148
http://adsabs.harvard.edu/abs/1972PhFl...15.1673U
https://doi.org/10.1051/0004-6361:20053955
http://adsabs.harvard.edu/abs/2006A&amp;A...446.1139V
https://doi.org/10.1051/0004-6361:20054398
http://adsabs.harvard.edu/abs/2006A&amp;A...449..769V
https://doi.org/10.1051/0004-6361/201118093
http://adsabs.harvard.edu/abs/2012A&amp;A...537A..49W
https://doi.org/10.1023/A:1005201500675
http://adsabs.harvard.edu/abs/1999SoPh..190..467W
https://doi.org/10.1029/91JA02655
http://adsabs.harvard.edu/abs/1992JGR....97.6429W

	1. Introduction
	2. A Cylindrical Model of a Coronal Arcade
	3. Governing Wave Equation
	3.1. Structure of the Wave Cavity

	4. Eigenspectrum
	4.1. Numerical Solutions
	4.2. Dispersion Function
	4.3. Eigenwavenumbers
	4.4. Eigenfunctions

	5. Discussion
	5.1. Wave Cavities
	5.2. Restoring Forces
	5.3. Observational Implications

	Appendix ASolutions near the Singular Points
	A.1. Solution Near the Origin
	A.2. Asymptotic Solution for Large Radius
	A.3. Solution Near the Alfvén Singularity

	Appendix BContinuous and Discrete Spectra
	Appendix CEnergy Flux
	References

