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Abstract

The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on

the inner surface of the cornea. CECs are critical in maintaining corneal transparency

through their barrier and pump functions. CECs in vivo have a limited capacity in prolifera-

tion, and loss of a significant number of CECs results in corneal edema called bullous kera-

topathy which can lead to severe visual loss. Corneal transplantation is the most effective

method to treat corneal endothelial dysfunction, where it suffers from donor shortage.

Therefore, regeneration of CECs from other cell types attracts increasing interests, and spe-

cific markers of CECs are crucial to identify actual CECs. However, the currently used mark-

ers are far from satisfactory because of their non-specific expression in other cell types.

Here, we explored molecular markers to discriminate CECs from other cell types in the

human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas

representing diverse range of cell types based on expression patterns. We identified five

genes, CLRN1,MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the

specificities of these genes were successfully confirmed by independent experiments at

both the RNA and protein levels. Notably none of them have been documented in the con-

text of CEC function. These markers could be useful for the purification of actual CECs, and

also available for the evaluation of the products derived from other cell types. Our results

demonstrate an effective approach to identify molecular markers for CECs and open the

door for the regeneration of CECs in vitro.
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Introduction

Cornea is a transparent tissue located at the front of the eye and it serves as the main refractive

element of the eye. It consists of three layers; epithelium, stroma, and endothelium. The corneal

epithelium covers the front of cornea and acts as a barrier. The stroma is the thickest layer of

the cornea and provides the cornea structural strength. Finally, the corneal endothelium is a

monolayer of hexagonal cells on the inner surface of the cornea, attached to its basement mem-

brane termed Descemet’s membrane. Cells consisting of endothelial layers (corneal endothelial

cells, CECs) play an essential role in maintaining the corneal transparency by their barrier and

pump function through Na+-K+-ATPase and bicarbonate-dependent pump that regulates the

hydration between the stroma and the anterior chamber[1,2].

CECs in vivo have a limited capacity in proliferation since they are arrested at the G1-phase

of the cell cycle[3,4]. Loss of a small number of CECs in vivo can be compensated by migration

and enlargement of remaining CECs. However, loss of a significant number of CECs caused by

injury[5,6] or inherited diseases[7] cannot be compensated. The loss of CECs decreases func-

tion of the pump[8], which results in serious edema of cornea called bullous keratopathy and

severe visual loss.

The most effective way to treat these serious disorders in clinical settings at this moment is

corneal transplantation, where endothelial failure is one of the most common indications[9].

However, corneal transplantation suffers from global shortage of donation with healthy condi-

tions[10]. To overcome the shortage, a large number of studies are being made in the field of

tissue bioengineering to generate alternative CECs from different kind of sources – ex vivo ex-

panded CECs[11], or multipotent cells such as neural crest-derived stem cells from iris[12] or

corneal stroma[13] and embryonic stem cells[14].

Because cultured CECs have a limited proliferative and passaging ability[15], induction of

CECs from stem cells seems to be more feasible. These induced CECs are a mixture of different

cell types, which may include poorly characterized or unknown cellular states. It is therefore

crucial to discriminate actual CECs from other undesired cells. At present, a few proteins such

as ZO-1[16], Na+-K+-ATPase[17] and N-cadherin[18], are used as CEC markers, however,

they are also expressed in other cell types[19–21] (S1 Table). Isolation of CECs based on these

markers is far from satisfactory, considering that original stem cells have the ability to differen-

tiate into a variety of cell types. Although substantial efforts to find specific markers of CECs

have been made so far, it remains incomplete for a long time because of the limited proliferative

ability of CECs both in vivo and in vitro and the small number of cells existing in vivo.

Recent developments in next-generation sequencing technology has made it possible to

identify and quantify expressed RNA species across the genome even from small amount of

samples[22]. A few studies tackled genome-wide RNA profiling of CECs[23–25], however,

their expression analyses compared only a limited number of tissue types including CECs.

Given heterogeneity of cellular states induced to CECs in vitro, a broader survey of different

cell types is crucial to identify molecular markers specific only to CECs.

In this study, we tackled a problem to identify molecular markers to discriminate CECs in

the human body. Given approximately 400 human cell types reported so far[26], identification

of specific transcripts requires examination of their expressions in a large panel of samples. We

approached this step by using the Functional Annotation of Mammalian Genome 5 (FAN-

TOM5) expression atlas[27], consisting of 975 human samples including primary cells, tissues

and cancer cell lines. We started the computational screening from a set of published transcrip-

tome data on CECs[23] since the FANTOM5 expression atlas does not include CEC profiles,

and we subsequently excluded transcripts expressed in a broad range of samples. We followed

up the resulting marker candidates by experimental validation at the level of RNA by using
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quantitative reverse transcription PCR (qRT-PCR) as well as protein by immunofluorescence

staining. This work is part of the FANTOM5 project. Data downloads, genomic tools and co-

published manuscripts are summarized here http://fantom.gsc.riken.jp/5/.

Materials and Methods

1. Bioinformatics analysis

1–1. RNA-seq data obtained from CECs. RNA-seq is a method to obtain transcriptome

profiles by sequencing random fragment of long RNAs[28], and Chen et al. studied CECs with

RNA-seq[23]. This dataset GSE41616, downloaded from the Gene Expression Omnibus

(GEO) database[29], consists of three donations obtained from adult CECs (31, 56 and

64 years old) and two donations obtained from fetal CECs (16–18 weeks of gestation). The

RNA-seq reads were aligned to the human reference genome (hg19) by using TopHat (version

1.4.1), and the results were used to assemble transcript models by Cufflinks package (version

2.1.1)[30] where Gencode v14 was used as reference transcripts. Cuffmerge was used to merge

the transcripts of each of the adult and fetal datasets. Cufflinks was used to quantify gene ex-

pression values as Fragments Per Kilobase of exon per Million mapped fragments (FPKM).

The resulting transcripts were associated with genes based on the gencode transcripts.

1–2. CAGE data, obtained from samples across the human body. CAGE (Cap Analysis

Gene Expression) is a method to obtain transcriptome profiles by sequencing 5’-ends of capped

RNAs, which identifies transcription starting sites (TSSs) and quantifies their activities. The

FANTOM5 project surveyed TSSs in a large collection of primary cells, tissues, and cell lines,

which consists of 975 human samples including more than 180 cell types[27]. On the human

reference genome,*180,000 regions are identified as peaks of the TSS signals and associated

with transcripts and genes based on their genomic coordinates. Activities (or expressions) of

the TSS peaks are quantified as TPM (tags per million) across the 975 samples based on the

CAGE reads obtained. We downloaded the data set from the web site (http://fantom.gsc.riken.

jp/5/) and used in the following analyses.

1–3. Selection of the candidate markers specific to CECs from the RNA-seq and the

FANTOM5 CAGE data. As shown in Fig. 1, we started the analysis from selection of genes

that express more than 10 FPKM in either the adult or the fetal CEC RNA-seq data. We nar-

rowed down the list of genes by selecting only annotated as cell membrane protein by using

GO terms[31] (Table 1). We further narrowed down the gene list by discarding ones that ex-

pressed more than 10 TPM in over 5 normal tissues or primary cells based on the FANTOM5

CAGE data (Fig. 1).

2. Human Ocular Tissue Preparation

All human samples were handled according to the tenets of the Declaration of Helsinki. Re-

search-grade corneoscleral rims and whole eyeballs from cadaver human donors considered

unsuitable for transplantation were procured from Sight Life (Seattle, WA).

2–1. RNA preparation from human corneal endothelium. A donor cornea was pre-

served and transported in Optisol-GS (Bausch & Lomb, Rochester, NY) at 4°C, and was used

within four days from preservation. The age of donor was 58 years old.

The corneoscleral rim was washed with phosphate-buffered saline (PBS) three times, then it

was placed under the dissecting microscope (SZ61; Olympus, Tokyo, Japan) with the endothe-

lium side up in a Petri dish, and the endothelium and Descemet's membrane were carefully dis-

sected from the cornea along Schwalbe's line. The Descemet's membrane with its attached

corneal endothelium was rapidly transferred into RNA later RNA Stabilization Reagent

Discovery of Specific Markers of Corneal Endothelial Cells
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(QIAGEN Inc., Valencia, CA). Total RNA was extracted by Qiagen miRNeasy Mini Kit (QIA-

GEN Inc.) according to the manufacturer's protocol.

2–2. RNA preparation from human ocular and non-ocular tissues. To prepare RNA ex-

tracts from human ocular tissues, four whole eyeballs from two donors were preserved and

transported in moist chamber at 4°C, and were used within five days from preservation. The

ages of donors were 75 and 79 years old.

The whole globes were first divided into the anterior segments and the posterior cups. Each

tissue was carefully isolated using sterile forceps. After the endothelium and Descemet's mem-

brane were peeled, the corneoscleral rims were punched out by using an 8.0-mm diameter tre-

phine. Central corneal parts and limbal parts were treated with Dispase I (Godo Shusei, Tokyo)

overnight at 4°C, and corneal epithelium and limbal epithelium were separated from stroma.

All the isolated tissues were rapidly transferred into Isogen RNA extraction reagent (Nippon

Gene, Tokyo). Total RNA was extracted using the Isogen RNA extraction kit according to the

manufacturer's protocol.

The RNA samples from non-ocular primary tissues were purchased (Human total RNA

master panel II #636643; Clontech, Mountain View, CA). In addition to this panel, Human Kid-

ney Total RNA (#AM7976; Ambion, Austin, TX) and Human Pancreas Total RNA (#AM7954;

Ambion) were also purchased.

2–3. RNA preparation from human cultured CECs. To prepare samples for CEC culture,

four donor corneas were preserved and transported in Optisol-GS at 4°C, and were used within

6 days from preservation. The ages of donors ranged from 14–25 years. Descemet's membrane

with corneal endothelium was isolated as mentioned above. The isolated tissue was incubated

Fig 1. Bioinformatics analysis flow chart. FPKM: Fragments Per Kilobase of exon per Million
mapped fragments.

doi:10.1371/journal.pone.0117581.g001
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for 1 hour at 37°C in a medium containing Dulbecco’s modified Eagle’s medium (DMEM;

Invitrogen), 1.2 U/mL dispase II (Godo Shusei) and 1% Antibiotic-Antimycotic (Anti-Anti;

Invitrogen/Gibco). Hereby, CECs were separated from Descemet’s membrane. After gentle

centrifugation, the cells were suspended in culture medium containing DMEM, 50 U/mL peni-

cillin, 50 μg/mL streptomycin, 10% fetal bovine serum (ICN Biomedicals, Inc., Aurora, OH),

and 2 ng/mL basic fibroblast growth factor (bFGF; invitrogen). The cells were incubated on

dishes coated with cell attachment reagent (FNC coating mix; Athena ES, Baltimore, MD) in

an incubator at 37°C with humidified atmosphere of 10% CO2. Total RNA was extracted using

the Isogen RNA extraction kit. All the cells used for RNA extraction were harvested at full con-

fluence during the first passage.

2–4. Quantitative reverse transcription polymerase chain reaction (qRT-PCR). Total

RNAs were inputted into reverse transcription-polymerase chain reaction with the SuperScript

III First-Strand Synthesis System (Invitrogen, Carlsbad, CA), and cDNA was used as a template

for quantitative PCR. Quantitative PCR was performed using the ABI Prism 7500 Fast Se-

quence Detection System (Applied Biosystems, Foster City, CA). SYBR Pre-mix Dimer Eraser

(Takara, Shiga, Japan) was used, and expression values were normalized to the housekeeping

gene β-actin (ACTB) as an internal control. The thermocycling program was performed as fol-

lows: an initial cycle at 95°C for 30 sec, followed by 45 cycles of 95°C for 5 sec, 60°C for 30 sec

and 72°C for 30 sec. Data were obtained from duplicate experiments, and Ct values above

40=were regarded as not expressed.

The list of primers used in this study is indicated in Table 2.

Table 1. Cell membrane protein coding genes which expressmore than 10 FPKM in either or both of adult and fetal corneal endothelial cells.

GO term GO ID Both Adult Fetal

plasma membrane GO:0005886 762 155 124

integral to plasma membrane GO:0005887 215 49 57

cell surface GO:0009986 111 20 28

apical plasma membrane GO:0016324 59 18 9

basolateral plasma membrane GO:0016323 50 12 8

external side of plasma membrane GO:0009897 31 9 9

lateral plasma membrane GO:0016328 10 0 4

basal plasma membrane GO:0009925 8 2 2

extrinsic to plasma membrane GO:0019897 8 2 0

apicolateral plasma membrane GO:0016327 5 0 1

anchored to external side of plasma membrane GO:0031362 4 0 0

anchored to plasma membrane GO:0046658 2 2 0

extrinsic to external side of plasma membrane GO:0031232 2 0 0

intrinsic to external side of plasma membrane GO:0031233 1 1 0

intrinsic to plasma membrane GO:0031226 1 1 0

cell outer membrane GO:0009279 1 0 0

external side of cell outer membrane GO:0031240 0 0 0

integral to cell outer membrane GO:0045203 0 0 0

Total 1,075 225 194

Both: genes substantially expressed both in adult and fetal corneal endothelial cells.

Adult: genes substantially expressed only in adult corneal endothelial cells.

Fetal: genes substantially expressed only in fetal corneal endothelial cells.

doi:10.1371/journal.pone.0117581.t001
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2–5. Immunofluorescence staining. A donor cornea was preserved and transported in

Optisol-GS at 4°C, and was used within 11 days from preservation. The age of donor was

27 years old.

Fresh corneal tissues were embedded in optimal cutting temperature (OCT) compound and

frozen sections were cut using a microtome-cryostat (HM560, Thermo Fisher Scientific Inc.,

Walldorf, Germany) in 10 μm. After drying for 30 minutes at room temperature, tissue sections

were washed with Tris-buffered saline (TBS; Takara) 3 times, and incubated with TBS contain-

ing 5% donkey serum and 0.3% Triton X-100 for 1 hour to block non-specific reactions. Each

section was then incubated with primary antibodies listed in Table 3 at 4°C overnight. Subse-

quently, slides were again washed with TBS 3 times, and incubated with a 1: 200 dilution of

their respective Alexa Fluor 488-conjugated secondary antibodies (Life Technologies) and

2μg/mL Hoechst 33342 (#B2261, Sigma-Aldrich) for 2 hours at room temperature. The slides

were mounted with a drop of Permafluor mountant (Thermo Scientific) to reduce photo-

bleaching and observed by fluorescent microscopy (Axio Observer D1; Carl Zeiss Jena Gmbh,

Jena Germany). For each of the primary antibodies, isotype specific rabbit IgG and goat IgG

(#AB-105-C, #AB-108-C; R&D Systems, Minneapolis, MN) were used as negative controls at

the same dilution as the primary antibodies.

Table 2. The sequences of the primers used in the study.

Gene Primer Sequence Product Size (bp) Accession Number

ACTB Forward 5’-ACAGAGCCTCGCCTTTGC-3’ 75 NM_001101

Reverse 5’-GCGGCGATATCATCATCC-3’

NSF Forward 5’-CCTATTGGCCCTCGATTTTC-3’ 106 NM_006178

Reverse 5’-GGCTAGTGGTCCCAATGATAAG-3’

PKD1 Forward 5’-AAGACACCCACATGGAAACG-3’ 72 NM_001009944

Reverse 5’-CCAGCGTCTCTGTCTTCTCC-3’

SCNN1D Forward 5’-TGGAGCTGCTACACAACACC-3’ 82 NM_001130413

Reverse 5’-GAGCAGGTCTCCACCATCAG-3’

CNTN3 Forward 5’-CCATGGAAACAGTTGATCCTG-3’ 96 NM_020872

Reverse 5’-GCTGTTGCTGGGTTCTTTG-3’

CNTN6 Forward 5’-TTCTGAGTCGGAAGGCAAAG-3’ 79 NM_014461

Reverse 5’-CGGACAGATACTGTGCTTCTTG-3’

PCDHB7 Forward 5’-ATTTTGTGCGGTCGCTCTAC-3’ 106 NM_018940

Reverse 5’-TCCCCATTACTTCCGGTATC-3’

PPIP5K1 Forward 5’-CTTTCCCTACGTCAAGTGAGTG-3’ 105 NM_014659

Reverse 5’-GCTGCTGTGCATGGAATC-3’

CLRN1 Forward 5’-AATGCAGTACGGGCTTTTCC-3’ 109 NM_174878

Reverse 5’-GCTCACTGGGATTGCTTTG-3’

MRGPRX3 Forward 5’-GGAGGTCTTCACCACTGGAC-3’ 90 NM_054031

Reverse 5’-ACCCAAGACTGGGATGGTTG-3’

GLP1R Forward 5’-GCAGAAATGGCGAGAATACC-3’ 97 NM_002062

Reverse 5’-TTCATCGAAGGTCCGGTTG-3’

HTR1D Forward 5’-CATGCGTTTCTTCCACTGAG-3’ 85 NM_000864

Reverse 5’-CATCGGCACTGCAAATACTG-3’

GRIP1 Forward 5’-ATGTGGACAAGAAGCAGCAC-3’ 102 NM_021150

Reverse 5’-GGAGTTTTGGCAACTTCGAC-3’

ZP4 Forward 5’-AAACAGGCCCTCAGGGGA-3’ 88 NM_021186

Reverse 5’-GACAGGTCACCACACAGGAT-3’

doi:10.1371/journal.pone.0117581.t002
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Results

CEC specific marker candidates identified by bioinformatic analysis

We started our analyses from a collection of publicly available transcriptome data. As a re-

source of expressed genes in CECs in vivo, we obtained RNA-seq data produced by Chen et al.

[23], which includes three adult CECs (31, 56 and 64 years old) and two fetal CECs (16–

18 weeks of gestation). We examined two corneal epithelial cell specific markers, KRT3 and

KRT12[32,33] to confirm the data integrity as CECs, and we found that the corneal epithelial

cell markers are abundant in one adult profile (the 56 year old donor) of the five CEC profiles.

Since epithelial cells are likely contaminated within the profile, only the remaining four tran-

scriptome profiles were used in the following analyses. The fetal profiles were included to re-

cover genes expressed in CECs even if they were weakly expressed in the adult samples. As a

resource of gene expressions representing a wide coverage of the human body, we used the

FANTOM5 expression atlas[27] that consists of TSS activities across the genome in 975 sam-

ples, quantified by using a single molecule sequencer[34,35]. The atlas includes more than five

hundred samples obtained from human primary cells, representing almost two hundred

unique cell types, but it does not contain any samples from CECs. We used the atlas as a back-

ground set, i.e. to exclude genes expressing in other cell types or tissues.

We performed computational screening of candidate markers as shown in Fig. 1, which

consists of the following three steps: 1) Selection of substantially expressed genes in CECs, 2)

selection of membrane proteins, and 3) exclusion of genes expressed in other cells or tissues.

We selected only genes annotated as membrane proteins in the step 2) so that we could use the

marker genes to isolate cells by cell sorter in future. As a result of 1), we obtained 10,627 genes

substantially expressed in CECs. We found that 1,495 genes are present only in adult CECs,

982 genes only in fetal CECs, and 8,150 genes in both of the adult and fetal CECs. Next we nar-

rowed them down by selection of membrane protein and found 225, 194, 1,075 genes respec-

tively (Fig. 1). Finally we excluded genes if their TSSs are active in more than 5 normal tissues

or primary cells. As a result, we found 13 candidate markers consisting of four genes

(PPIP5K1, CLRN1,MRGPRX3, GLP1R) in adult CECs, three genes (CNTN3, PCDHB7,

HTR1D) in fetal CECs, and six genes (GRIP1, NSF, PKD1, SCNN1D, ZP4, CNTN6) in both of

the adult and fetal CECs (Table 4).

Expression specificities across the whole body and ocular tissues at the
level of RNA

To validate the 13 candidate markers at the level of RNA, we designed experiments indepen-

dently to the computational screening. At first, we performed qRT-PCR to examine their ex-

pression levels between adult human CECs in vivo and other non-ocular 22 primary tissues (S1

Table 3. List of primary antibodies.

Name Company Species and
Type

Dilution
Used

CLRN1 clarin 1 Cat No. sc-69073 Santa Cruz Biotechnology, Inc. Santa Cruz,
CA.

Goat pAb 1:50

MRGPRX3 MAS-related GPR, member X3 Cat No. ab140863 Abcam, Cambridge, MA Rabbit pAb 1:25

HTR1D 5-hydroxytryptamine receptor 1DCat No. ab140486 Abcam, Cambridge, MA Rabbit pAb 1:150

GRIP1 glutamate receptor interacting protein 1 Cat No.
ab122514

Abcam, Cambridge, MA Rabbit pAb 1:100

ZP4 zona pellucida glycoprotein 4 Cat No. LS-C160968 LifeSpan BioSciences, Inc. Seattle,WA Rabbit pAb 1:50

doi:10.1371/journal.pone.0117581.t003
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Fig). We found that expressions of all the examined genes are regulated tissue-dependent man-

ner, which is consistent with the computational screening above. We also found that all of the

examined genes do not show ideal expression patterns as CEC markers necessarily. For exam-

ple, the expression levels of NSF, PKD1, SCNN1D, CNTN3, CNTN6, and PCDHB7 in CECs

were lower than their expression in some of the other samples examined. PPIP5K1 and GLP1R

exhibited the highest expression level in CECs across the samples but were detected in some of

the other examined samples. By exclusion of these eight genes, we narrowed down the candi-

date genes into five genes, CLRN1,MRGPRX3, HTR1D, GRIP1, and ZP4.

Next, we examined expression levels of the five candidates in the ocular tissues and cultured

CECs by qRT-PCR analysis, where four eyes from two independent donors were used for the

ocular tissue analysis (Fig. 2). We successfully confirmed the presence of these five genes in

CECs and their tissue-specific expressions, while they were also found in a few ocular tissues

mostly at lower levels. For example, CLRN1 was present in ciliary body, lens and retina,

HTR1D in retina, ZP4 in conjunctiva and iris pigment epithelial cells. Considering that corneal

stroma is adjacent to CECs and it originates from cranial neural crest as CECs, absence or

lower expression at corneal stroma is one of the important features to be useful as CEC marker.

CLRN1 was expressed at quite lower level in corneal stroma than in CECs, and the remaining

four genes were not expressed in corneal stroma. Our results demonstrated their specific ex-

pression patterns across the human body and their absence or limited amount of expression

levels in corneal stroma, suggesting that monitoring RNA expression levels of all the five genes

is effective to discriminate CECs from the other cells.

Exclusive staining of CECs within corneal tissue

Finally, to confirm the expression of these five markers in protein level, we examined their ex-

pressions by immunofluorescence staining of human donor corneal tissue sections (Fig. 3)

using the antibodies listed in Table 3. Remarkably all these staining indicate corneal endotheli-

um. Interestingly, the staining patterns were different depending on the antibody. Anti-

Table 4. The expression levels of 13 CECmarker candidates in the RNA-seq data and the FANTOM5 database.

Gene RNA-seq FPKM value FANTOM5 CAGE

adult CEC fetal CEC Primary sample expresses highest (tpm) Primary samples express >10tpm

Substantially expressed only in adult CECs

PPIP5K1 17.39 6.17 None 0

CLRN1 14.15 0.56 lens epithelial cells(22.91) 2

MRGPRX3 11.16 0.26 Malassez-derived cells(26.14) 1

GLP1R 10.85 2.64 fetal heart (10.51) 1

Substantially expressed only in fetal CECs

CNTN3 5.36 19.86 None 0

PCDHB7 1.11 11.14 dura mater(9.37) 0

HTR1D 7.41 10.48 small intestine(12) 2

Substantially expressed both in adult and fetal CECs

GRIP1 39.33 22.70 fetal temporal lobe(6.46) 0

NSF 31.58 14.09 pineal gland(7.84) 0

PKD1 24.99 38.47 aorta(8.45) 0

SCNN1D 21.72 28.05 granulocyte macrophage progenitor(22.21) 4

ZP4 12.22 56.52 None 0

CNTN6 11.48 22.09 cerebellum(24.20) 4

doi:10.1371/journal.pone.0117581.t004
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HTR1D and -ZP4 antibodies stained corneal endothelium exclusively. Although the expression

level of ZP4 in CECs was very low in qRT-PCR analysis, its antibody intensely stained corneal

endothelium. It may suggest rapid degradation of mRNAs in contrast to sustained proteins on

the cell surface. Anti-CLRN1 antibody staining showed slight signal from corneal stroma,

which is consistent with the qRT-PCR experiments above, however, we could still discriminate

CECs from stroma only by this staining pattern. Anti-MRGPRX3 antibody stained corneal en-

dothelium and stroma, but did not stain Descemet’s membrane, and anti-GRIP1 antibody

stained not only corneal endothelium but also Descemet’s membrane. We confirmed the utili-

ties of the five genes as CEC markers at protein level, as well as the RNA level. Any single

Fig 2. qRT-PCR analysis of 6 corneal endothelial cell marker candidate genes within ocular tissues. CECs: corneal endothelial cells, cCECs: cultured
corneal endothelial cells, C.stroma: corneal stroma, C.epi.: corneal epithelial cells, iris pig. epi.: iris pigment epithelial cells, TM: trabecular meshwork, CB:
ciliary body, RPE: Retinal pigment epithelial cells, ON: optic nerve. Y axis indicates % ACTB, and error bars represent standard deviation of four replicates.

doi:10.1371/journal.pone.0117581.g002
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Fig 3. Immunofluorescence staining of human donor corneal tissue sections. (A) Green signals represent the expression of each protein detected by
the specific antibody. (B) Negative control by using isotype specific rabbit IgG (green signal) and goat IgG (red signal) as primary antibodies. Hoechst
33342-stained nuclei are shown in blue. A white arrow indicates the corneal endothelium. All scale bars indicate 50 μm.

doi:10.1371/journal.pone.0117581.g003
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protein of the five markers would be useful to specify CECs in vivo, and their combinatorial use

should be quite strict in discriminating CECs from a variety of cells.

Discussion

In this study, we discovered novel CEC specific markers, CLRN1, MRGPRX3, HTR1D, GRIP1

and ZP4, that enabled us to discriminate CECs from other cells in the human body. We started the

marker exploration from computational screening. Of the thirteen candidates identified, five genes

were confirmed by the subsequent experiments (5/13; 38% success rate). Our approach based on

careful curation of CEC transcriptome data and the use of wide coverage of expression atlas gener-

ated by FANTOM5 as a background set enabled us to identify novel CECmarker candidates which

rarely express other than CECs. Although the set of FANTOM5 transcriptome profiles represent

the largest number of cell types assayed in a single project, there remain missing cell types and we

cannot reject possibilities that the identified candidates may be active in those cells. Our follow-up

experiments based on qRT-PCR for CECs and several tissues enabled us to select five markers by

excluding eight genes active in the tissues, which demonstrate both of the power and the limitation

in our approach using computational screening. Since the qRT-PCR experiments in S1 Fig took tis-

sues consisting of a variety of cell types, we performed additional qRT-PCR experiments for ocular

tissues, each of which consists of limited types of cells. We also performed immunofluorescence

staining for corneal tissue, and confirmed precise patterns of the five marker expressions. The series

of analyses demonstrated the utilities of the selected genes as CECmolecular markers.

To our knowledge, this is the first report of the presence of these proteins in CECs in vivo.

CLRN1 is known as the causative gene product of Usher syndrome type IIIa which causes deaf-

ness and visual impairment phenotypically similar to retinitis pigmentosa[36]. Its expression

has been reported in glial cells in the retina and cochlear hair cells of the inner ear, but its mo-

lecular function remains unknown[37]. MRGPRX3 is considered to be involved in sensory

neuron regulation and in the modulation of pain[38,39], HTR1D is a subtype of serotonin re-

ceptors, and distributed in nerve fibers[40], GRIP1 is a member of the glutamine receptor in-

teracting protein family and enriched in synaptic plasma membrane [41], and ZP4 is an

extracellular matrix surrounding the oocyte[42] in which it plays an important role in inducing

acrosome reaction[43]. Most of them have been reported to be expressed in nervous tissues,

which supports that CECs are derived from neural crest cells. However, their functions and

roles in CECs remain to be elucidated.

Based on the qRT-PCR results shown in S1 Fig and Fig. 2,MRGPRX3 is highly and exclusively

expressed in CECs, and this gene should be the first choice as a molecular marker to discriminate

CECs from other cell types. It is noteworthy thatMRGPRX3 is completely absent in corneal stro-

ma which is adjacent to CECs and important to be discriminated because corneal stroma also

originates from cranial neural crest as is the case for CECs. Interestingly, it is expressed at quite

low level in heart, salivary gland and thymus that are all derived from neural crests.

The FANTOM5 expression atlas and our qRT-PCR analysis indicate that ZP4 is evidently

expressed only in CECs and not expressed in any other non-ocular tissues. Notably, the expres-

sion level of ZP4 in cultured CECs is higher than CECs in vivo. Similarly, expression level of

HTR1D was also higher in cultured CECs than CECs in vivo. Cultured CECs are essential for

the investigation of physiology and pathology of CECs, and these two markers should be more

useful as markers of cultured CECs than other candidates. Intriguingly, furthermore, the RNA-

seq data showed that these two are expressed more in fetal CECs than in adult CECs, which

suggests that they are more highly expressed in undifferentiated state of CECs. These data indi-

cate that ZP4 andHTR1D should be ideal markers for the discrimination of actual CECs during

differentiation induced from multipotent stem cells.
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Our analysis also indicated that CLRN1 was rarely expressed in other non-ocular tissues. Al-

though CLRN1 was expressed in some other ocular tissues at RNA level, immunofluorescence

staining analysis demonstrated its distinct expression pattern to CECs which enabled us to dis-

tinguish CECs from corneal stroma by itself. On the other hand, the remaining four genes were

completely absent in corneal stroma according to the qRT-PCR analysis.

Previously, several marker candidates of CECs have been reported. Recently, Chng et al.[24]

reported that SLC4A11, COL8A2 and CYYR1 could be useful to identify CECs. Cheong et al.

[25] aimed to discover cell surface markers of CECs and identified GPC4 and CD200. They an-

alyzed the gene expression of CECs and corneal stroma by using RNA-seq, and identified

genes that were highly expressed in CECs but lowly or not expressed in corneal stroma. Indeed,

these markers could be useful to distinguish CECs from corneal stroma, but they were express-

ed in many other tissues according to the FANTOM5 expression atlas as shown in S1 Table. In

our study, therefore, these markers were excluded at the stage of computational analysis. Com-

pared with these previously reported markers, our five markers presented here show more

strict specificity to CECs and might be more useful for the discrimination of CECs.

In conclusion, we identified five genes, CLRN1,MRGPRX3, HTR1D, GRIP1 and ZP4 as

novel markers to discriminate CECs at the RNA and protein levels. Our results demonstrated

their expression specificities, which would be applicable as CEC marker in particular for cell

cultures consisting of unknown or mixtures of cell types. This is also the first report to examine

the expression of these genes in vivo ocular tissues in depth, which may provide a clue to novel

aspects of CEC functions and its transcriptional states. Given that the approach taken here is

not very specific to CECs necessarily, our study sheds possibilities to explore novel molecular

markers specific in other cell types, which is becoming highly important in clinical research.
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S1 Fig. qRT-PCR analysis of 13 corneal endothelial cell marker candidate genes across the

whole body. CECs: corneal endothelial cells, A-brain: adult brain, F-brain: fetal brain, SC: spi-

nal cord, SG: salivary gland, BM: bone marrow, SM: skeletal muscle, A-liver: adult liver, F-liver:

fetal liver, SI: small intestine. Y axis indicates % ACTB, and error bars represent standard devi-

ation of technical duplicates.
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