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Amplitude analysis of B−
→ D

þ
π
−
π
− decays

R. Aaij et al.
*

(LHCb Collaboration)
(Received 4 August 2016; published 5 October 2016)

The Dalitz plot analysis technique is used to study the resonant substructures of B−
→ Dþπ−π− decays

in a data sample corresponding to 3.0 fb−1 of pp collision data recorded by the LHCb experiment during

2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of

resonances with spins 1, 2 and 3 at highDþπ− mass. The data are fitted with an amplitude model composed

of a quasi-model-independent function to describe the Dþπ− S wave together with virtual contributions

from the D�ð2007Þ0 and B�0 states, and components corresponding to the D�
2
ð2460Þ0, D�

1
ð2680Þ0,

D�
3
ð2760Þ0 andD�

2
ð3000Þ0 resonances. The masses and widths of these resonances are determined together

with the branching fractions for their production in B−
→ Dþπ−π− decays. The Dþπ− S wave has phase

motion consistent with that expected due to the presence of theD�
0
ð2400Þ0 state. These results constitute the

first observations of the D�
3
ð2760Þ0 and D�

2
ð3000Þ0 resonances, with significances of 10σ and 6.6σ,

respectively.

DOI: 10.1103/PhysRevD.94.072001

I. INTRODUCTION

There is strong theoretical and experimental interest in

charm meson spectroscopy because it provides opportu-

nities to study QCD predictions within the context of

different models [1–5]. Experimental knowledge of the

masses, widths and spins of the charged and neutral

orbitally excited (1P) charm meson states has been gained

through analyses of both prompt production [6,7] and

three-body decays of B mesons [8–13]. Progress has been

equally strong for excited charm-strange (cs̄) mesons

[14–18]. These studies have in addition revealed several

new states at higher masses, most of which have not yet

been confirmed by analyses of independent data samples.

Moreover, quantum numbers are only known for states

studied in amplitude analyses of multibody B meson

decays, since analyses of promptly produced excited charm

states only determine whether the spin-parity is natural

(i.e. JP ¼ 0þ; 1−; 2þ;…) or unnatural (i.e. JP ¼ 0−; 1þ;
2−;…), not the resonance spin. The experimental status

of the neutral excited charm states is summarized in

Table I (here and throughout the paper, natural units

with ℏ ¼ c ¼ 1 are used). The D�
0
ð2400Þ0, D1ð2420Þ0,

D0
1
ð2430Þ0 and D�

2
ð2460Þ0 mesons are generally under-

stood to be the four 1P states. The spectroscopic identi-

fication for heavier states is not clear.

The B−
→ Dþπ−π− decay mode has been previously

studied in Refs. [8,9]. The inclusion of charge-conjugate

processes is implied throughout the paper. The Dalitz plot

(DP) models that were used contained components for

two excited charm states, the D�
0
ð2400Þ0 and D�

2
ð2460Þ0

resonances, together with nonresonant amplitudes. More

recently, a DP analysis of B−
→ DþK−π− decays [12]

included, in addition, a contribution from the D�
1
ð2760Þ0

state. The properties of this state indicate that it belongs to

the 1D family [20,21]. The D�
1
ð2760Þ0 width is found to be

larger than in previous measurements based on prompt

production, which may be due to a contribution from an

additional resonance, as would be expected if both 2S and

1D states with spin-parity JP ¼ 1− are present in this

TABLE I. Measured properties of neutral excited charm states.

World averages are given for the 1P resonances (top part), while

all measurements are listed for the heavier states (bottom part).

Where two uncertainties are given, the first is statistical and

second systematic; where a third is given, it is due to model

uncertainty. The uncertainties on the averages for the D�
0
ð2400Þ0

mass and the D1ð2420Þ0 and D�
2
ð2460Þ0 masses and widths are

inflated by scale factors to account for inconsistencies between

measurements. The quoted D�
2
ð2460Þ0 averages do not include

the recent result from Ref. [12].

Resonance Mass (MeV) Width (MeV) JP Ref.

D�
0
ð2400Þ0 2318� 29 267� 40 0þ [19]

D1ð2420Þ0 2421.4� 0.6 27.4� 2.5 1þ [19]

D0
1
ð2430Þ0 2427� 40 384

þ130

−110
1þ [19]

D�
2
ð2460Þ0 2462.6� 0.6 49.0� 1.3 2þ [19]

D�ð2600Þ 2608.7� 2.4� 2.5 93� 6� 13 Natural [6]

D�ð2650Þ 2649.2� 3.5� 3.5 140� 17� 19 Natural [7]

D�ð2760Þ 2763.3� 2.3� 2.3 60.9� 5.1� 3.6 Natural [6]

D�ð2760Þ 2760.1� 1.1� 3.7 74.4� 3.4� 19.1 Natural [7]

D�
1
ð2760Þ0 2781� 18� 11� 6 177� 32� 20� 7 1− [12]

*
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region. There should also be a 1D state with JP ¼ 3− at

similar mass, as seen in the charm-strange system [15,16].

As yet there is no evidence for such a neutral charm state,

but a DP analysis of B̄0
→ D0πþπ− decays [11] led to the

first observation of the D�
3
ð2760Þþ state.

One challenge for DP analyses with large data samples is

the modeling of broad resonances that interfere with

nonresonant amplitudes in the same partial wave.

Inclusion of both contributions in an amplitude fit can

violate unitarity in the decay matrix element, and also gives

results that are difficult to interpret due to large interference

effects. In the case of B−
→ Dþπ−π− decays this is

particularly relevant for the Dþπ− S wave, where both

theD�
0
ð2400Þ0 resonance and a nonresonant contribution are

expected. In the πþπ− andKþπ− systems such effects can be

handledwith aK-matrix approach or specificmodels such as

the LASS function [22] inspired by low-energy scattering

data, respectively. In the absence of any Dþπ− scattering

data, a viable alternative approach is to use a quasi-model-

independent description, in which the partial wave is fitted

using splines to describe the magnitude and phase as a

function of mðDþπ−Þ. Determination of the phase depends

on interference of the S wave with another partial wave, so

that some model dependence remains due to the description

of the other amplitudes in the decay. This approach was

first applied to the Kπ S wave using Dþ
→ K−πþπþ

decays [23]. Subsequent uses include further studies of

the Kπ S wave [24–27] as well as the KþK− [28] and πþπ−

[29] S waves, in various processes. Similar methods

have been used to determine the phase motion of exotic

hadron candidates [30,31]. Quasi-model-independent infor-

mation on theDþπ− S wave could be used to develop better

models of the dynamics in the Dþπ− system [32–35].

In this paper, the DP analysis technique is employed

to study the contributing amplitudes in B−
→ Dþπ−π−

decays, where the charm meson is reconstructed

through Dþ
→ K−πþπþ decays. The analysis is based

on a data sample corresponding to an integrated

luminosity of 3.0 fb−1 of data collected with the LHCb

detector during 2011 when the pp collision center-

of-mass energy was
ffiffiffi

s
p ¼ 7 TeV, and 2012 with

ffiffiffi

s
p ¼ 8 TeV.

The paper is organized as follows. Section II provides

a brief description of the LHCb detector and the event

reconstruction and simulation software. The selection of

signal candidates is described in Sec. III and the

determination of signal and background yields is presented

in Sec. IV. The angular moments of B−
→ Dþπ−π−

decays are studied in Sec. V and are used to guide the

amplitude analysis. The DP analysis formalism is reviewed

briefly in Sec. VI, and implementation of the amplitude

fit is given in Sec. VII. Experimental and model-

dependent systematic uncertainties are evaluated in

Sec. VIII, and the results and a summary are presented in

Sec. IX.

II. LHCb DETECTOR

The LHCb detector [36,37] is a single-arm forward

spectrometer covering the pseudorapidity range 2 < η < 5,

designed for the study of particles containing b or c quarks.
The detector includes a high-precision tracking system

consisting of a silicon-strip vertex detector surrounding the

pp interaction region, a large-area silicon-strip detector

located upstream of a dipole magnet with a bending power

of about 4 Tm, and three stations of silicon-strip detectors

and straw drift tubes placed downstream of the magnet. The

polarity of the dipole magnet is reversed periodically

throughout data taking. The tracking system provides a

measurement of momentum, p, of charged particles with

relative uncertainty that varies from 0.5% at low momen-

tum to 1.0% at 200 GeV. The minimum distance of a track

to a primary vertex, the impact parameter, is measured with

a resolution of ð15þ 29=pTÞ μm, where pT is the compo-

nent of the momentum transverse to the beam, in GeV.

Different types of charged hadrons are distinguished using

information from two ring-imaging Cherenkov detectors.

Photon, electron and hadron candidates are identified by a

calorimeter system consisting of scintillating-pad and

preshower detectors, an electromagnetic calorimeter and

a hadronic calorimeter. Muons are identified by a system

composed of alternating layers of iron and multiwire

proportional chambers.

The trigger consists of a hardware stage based on

information from the calorimeter and muon systems

followed by a software stage, in which all tracks with

pT > 500ð300Þ MeV are reconstructed for data collected

in 2011 (2012). The software trigger line used in the

analysis reported in this paper requires a two-, three-

or four-track secondary vertex with significant displace-

ment from the primary pp interaction vertices (PVs). At

least one charged particle must have pT > 1.7 GeV

and be inconsistent with originating from the PV. A

multivariate algorithm [38] is used for the identification

of secondary vertices consistent with the decay of a b
hadron.

In the off-line selection, the objects that fired the

trigger are associated with reconstructed particles.

Selection requirements can therefore be made not only

on the trigger line that fired, but on whether the decision

was due to the signal candidate, other particles produced

in the pp collision, or a combination of both. Signal

candidates are accepted off-line if one of the final state

particles created a cluster in the hadronic calorimeter

with sufficient transverse energy to fire the hardware

trigger.

Simulated events are used to characterize the detector

response to signal and certain types of background events.

In the simulation, pp collisions are generated using PYTHIA

[39] with a specific LHCb configuration [40]. Decays of

hadronic particles are described by EVTGEN [41], in which

final state radiation is generated using PHOTOS [42]. The
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interaction of the generated particles with the detector

and its response are implemented using the GEANT4 toolkit

[43] as described in Ref. [44].

III. SELECTION REQUIREMENTS

The selection criteria are the same as those used in

Ref. [12], where a detailed description is given, with the

exception that only candidates that are triggered by at least

one of the signal tracks are retained in order to minimize the

uncertainty on the efficiency. First, loose requirements are

applied in order to obtain a visible peak in the B candidate

invariant mass distribution. These criteria are found to be

91% efficient on simulated signal decays. The remaining

data are then used to train two artificial neural networks

[45] that separate signal from different categories of

background. The first is designed to distinguish candidates

that contain real Dþ
→ K−πþπþ decays from those that do

not; the second separates signal B−
→ Dþπ−π− decays

from background combinations. The SPLOT technique [46]

is used to statistically separate signal decays from back-

ground combinations using theD (B) candidate mass as the

discriminating variable for the first (second) network. The

first network takes as input properties of the D candidate

and its decay product tracks, including information about

kinematics, track and vertex quality. The second uses a total

of 27 input variables, including the output of the first

network, as described in Ref. [12]. The neural network

input quantities depend only weakly on the position in the

DP, so that training the networks with the same data sample

used for the analysis does not bias the results. A require-

ment that reduces the combinatorial background by an

order of magnitude, while retaining about 75% of the

signal, is imposed on the second neural network output.

Particle identification (PID) requirements are applied to

all five final state tracks to select pions or kaons as

necessary. Background from Dþ
s → K−Kþπþ decays,

where the Kþ is misidentified as a πþ meson, are sup-

pressed using a tight PID criterion on the higher momentum

πþ from theDþ decay. The combined efficiency of the PID

requirements on the five final state tracks is determined

using D�þ
→ D0πþ, D0

→ K−πþ calibration data [47] and

found to be around 70%.

Potential background from Λþ
c → pK−πþ decays, mis-

reconstructed as Dþ candidates, is removed if the invariant

mass lies in the range 2280–2300 MeV when the proton

mass hypothesis is applied to the low momentum pion

track. Decays of B− mesons to the K−πþπþπ−π− final state

that do not proceed via an intermediate charm state are

removed by requiring that the D and B candidate decay

vertices are separated by at least 1 mm. The signal

efficiency of this requirement is approximately 85%.

To improve mass resolution, the momenta of the final

state tracks are rescaled [48,49] using weights obtained

from a sample of J=ψ → μþμ− decays where the measured

mass peak is matched to the known value [19].

Additionally, a kinematic fit [50] is performed to candidates

in which the invariant mass of the D decay products is

constrained to equal the world average D mass [19]. A B
mass constraint is added in the calculation of the variables

that are used in the DP fit.

Candidate B mesons with invariant mass in the range

5100–5800 MeV are retained for further analysis.

Following all selection requirements, multiple candidates

are found in approximately 0.4% of events. All candidates

are retained and treated in the same way.

IV. DETERMINATION OF SIGNAL AND

BACKGROUND YIELDS

The signal and background yields are measured

using an extended unbinned maximum likelihood fit to

the Dþ π− π− invariant mass distribution. The candidates

are comprised of true signal decays and several sources

of background. Partially reconstructed backgrounds come

from b hadron decays where one or more final state

particles are not reconstructed. Combinatorial background

originates from random combinations of tracks, potentially

including a realDþ
→ K−πþπþ decay. Misidentified back-

ground arises from b hadron decays in which one of the

final state particles is not correctly identified. Potential

residual background from charmless B decays is reduced to

a negligible level by the requirement that the flight distance

of the D candidate be greater than 1 mm.

Signal candidates are modeled by the sum of two Crystal

Ball (CB) functions [51] with a common peak position of

the Gaussian core and tails on opposite sides. The relative

normalization of the narrower CB shape and the ratio of

widths of the CB functions are constrained, by including a

Gaussian penalty term in the likelihood, to the values found

in fits to simulated samples. The tail parameters of the CB

shapes are fixed to those found in simulation.

The main source of partially reconstructed background is

the B−
→ D�þπ−π− channel with subsequent D�þ

→ Dþγ
or D�þ

→ Dþπ0 decay, where the neutral particle is not

reconstructed. A nonparametric shape derived from simu-

lation is used to model this contribution. The shape is

characterized by an edge around 100 MeV below the B
peak, where the exact position of the edge depends on

properties of the decay, including the D�þ polarization. As

in previous studies of similar processes [12,52], the fit

quality improves when the shape is allowed to be offset by a

small shift (≈3.5 MeV) that is determined from the data.

The combinatorial background is modeled with a linear

function, where the slope is free to vary. Many sources of

misidentified background have broad Dþπ−π− invariant

mass distributions that can be absorbed into the combina-

torial background component. The exceptions are B−
→

Dð�ÞþK−π− decays that produce distinctive shapes in the B
candidate invariant mass distribution. These backgrounds

are combined into a single nonparametric shape determined
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from simulated samples that are weighted to account for

the known DP distribution for B−
→ DþK−π− decays [12].

The ratio of Dþ and D�þ components in the B−
→

Dð�ÞþK−π− background shape is fixed from the measured

values of the B−
→ Dþπ−π− and B−

→ D�þπ−π−

branching fractions [8,19] since BðB−
→ D�þK−π−Þ is

unknown.

There are ten parameters in the fit that are free to vary:

the yields for signal and combinatorial B−
→ Dð�ÞþK−π−

and B−
→ D�þπ−π− backgrounds, the combinatorial back-

ground slope, the shared mean of the double CB shape, the

width and relative normalization of the narrower CB and

the ratio of CB widths, and the shift parameter of the

B−
→ D�þπ−π− shape. The result of the fit is shown in

Fig. 1 and gives a signal yield of approximately 29 000

decays. The χ2 per degree of freedom for this projection of

the fit is 1.16 calculated with statistical uncertainties only.

Component yields are shown in Table II for both the full fit

range and the signal region defined as �2.5σ around the B
peak, where σ is the width parameter of the dominant CB

function in the signal shape; this corresponds to

5235.3 < mðDþπ−π−Þ < 5320.8 MeV.

A Dalitz plot [53] is a two-dimensional representation of

the phase space for a three-body decay in terms of two of

the three possible two-body invariant mass squared combi-

nations. In B−
→ Dþπ−π− decays there are two indistin-

guishable pions in the final state, so the two m2ðDþπ−Þ
combinations are ordered by value and the DP axes are

defined as m2ðDþπ−Þmin and m2ðDþπ−Þmax. The ordering

causes a “folding” of the DP from the minimum value of

m2ðDþπ−Þmax, which is mB−mDþ þm2
π− , to the maximum

value of m2ðDþπ−Þmin at ðm2
B− þm2

Dþ − 2m2
π−Þ=2. The DP

distribution of the candidates in the signal region that are

used in the DP fit is shown in Fig. 2 (left). The same data

are shown in the square Dalitz plot (SDP) in Fig. 2 (right).

The SDP is defined by the variables m0 and θ0, which are

given by

m0 ≡
1

π
arccos

�

2
mðπ−π−Þ −mmin

π−π−

mmax
π−π− −mmin

π−π−
− 1

�

and

θ0 ≡
1

π
θðπ−π−Þ; ð1Þ

where mmax
π−π− ¼ mB− −mDþ and mmin

π−π− ¼ 2mπ− are the

kinematic boundaries of mðπ−π−Þ and θðπ−π−Þ is

the helicity angle of the π−π− system (the angle between

themomenta of theDmeson and one of the pions, evaluated

in the π−π− rest frame). With m0 and θ0 defined in terms

of the π−π− mass and helicity angle in this way, only the

region of the SDP with θ0 ≤ 0.5 is populated due to the

symmetry of the two pions in the final state. The SDP is used

to describe the signal efficiency variation and distribution

of background candidates, as described in Sec. VII.

V. STUDY OF ANGULAR MOMENTS

The angular moments of the B−
→ Dþπ−π− decays are

studied to investigate which amplitudes to include in the DP

fit model. Angular moments are determined by weighting

the data by the Legendre polynomial PLðcos θðDþπ−ÞÞ,
where θðDþπ−Þ is the helicity angle of the Dþπ− system,

i.e. the angle between the momenta of the pion in theDþπ−

system and the other pion from the B− decay, evaluated in

the Dþπ− rest frame. The moment hPLi is the sum of the

weighted data in a bin of Dþπ− mass with background

contributions subtracted using sideband data and efficiency

corrections, determined as in Sec. VII A, applied. Each of
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FIG. 1. Results of the fit to the B candidate invariant mass distribution shown with (left) linear and (right) logarithmic y-axis scales.
Contributions are as described in the legend.

TABLE II. Yields of the various components in the fit to

B−
→ Dþπ−π− candidate invariant mass distribution. Note that

the yields in the signal region are scaled from the full mass range.

Component Full mass range Signal region

NðB−
→ Dþπ−π−Þ 29 190� 204 27 956� 195

NðB−
→ Dð�ÞþK−π−Þ 807� 123 243� 37

NðB−
→ D�þπ−π−Þ 12 120� 115 70� 1

N (combinatorial background) 784� 54 103� 7
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the moments contains contributions from certain partial

waves and interference terms. For the S-, P-, D- and F-wave

amplitudes denoted by hje
iδj (j ¼ 0, 1, 2, 3 respectively),

hP0i ∝ jh0j2 þ jh1j2 þ jh2j2 þ jh3j2; ð2Þ

hP1i∝
2
ffiffiffi

3
p jh0jjh1jcosðδ0−δ1Þþ

4
ffiffiffiffiffi

15
p jh1jjh2jcosðδ1−δ2Þ

þ 6
ffiffiffiffiffi

35
p jh2jjh3jcosðδ2−δ3Þ; ð3Þ

hP2i ∝
6

5

ffiffiffi

3

7

r

jh1jjh3j cos ðδ1 − δ3Þ þ
2jh0jjh2j cos ðδ0 − δ2Þ

ffiffiffi

5
p

þ 2jh1j2
5

þ 2jh2j2
7

þ 4jh3j2
15

; ð4Þ

hP3i ∝
6

7

ffiffiffi

3

5

r

jh1jjh2j cos ðδ1 − δ2Þ þ
2jh0jjh3j cos ðδ0 − δ3Þ

ffiffiffi

7
p

þ 8jh2jjh3j cos ðδ2 − δ3Þ
3

ffiffiffiffiffi

35
p ; ð5Þ

hP4i ∝
8jh1jjh3j cos ðδ1 − δ3Þ

3
ffiffiffiffiffi

21
p þ 2jh2j2

7
þ 2jh3j2

11
; ð6Þ

hP5i ∝
20

33

ffiffiffi

5

7

r

jh2jjh3j cos ðδ2 − δ3Þ; ð7Þ

hP6i ∝
100jh3j2
429

: ð8Þ

These expressions assume that there are no contributions

from partial waves higher than F wave. Thus, they are valid

only in regions of the DP unaffected by the folding, i.e. for

mðDþπ−Þ≲ 3.2 GeV, where the full range of the Dþπ−

helicity angle distribution is available. Above this mass, the

orthogonality of the Legendre polynomials does not

hold and a straightforward interpretation of the angular

moments in terms of the contributing partial waves is not

possible. Nevertheless, the angular moments provide a

useful way to judge the agreement of the fit result with

the data, complementary to the projections onto the invariant

masses.

The unnormalized angular moments hP0i–hP6i are

shown in Fig. 3 for the Dþπ− invariant mass range

2.0–4.0 GeV. The D�
2
ð2460Þ0 resonance is clearly seen in

the hP4i distribution of Fig. 3(e). FromEqs. (3) and (5) it can

be inferred that the structures in the distributions of hP1i and
hP3i below 3 GeV suggest that there is interference both

between the S- and P-wave amplitudes and between the

P- and D-wave amplitudes. Therefore broad spin 0 and spin

1 components are required in the DP model. In addition,

structure in hP2i around 2.76 GeV implies the possible

presence of a spin 1 resonance in that region. The angular

moments hP7i and hP8i shown in Fig. 4, show no structure,

consistent with the assumption that contributions from

higher partial waves and from the isospin-2 dipion channel

are small.

Zoomed views of the fourth and sixth moments in the

region around mðDþπ−Þ ¼ 3 GeV are shown in Fig. 5. A

wide bump is visible in the distribution of hP4i at

mðDþπ−Þ ≈ 3 GeV. Although close to the point where

the DP folding affects the interpretation of the moments,

this enhancement suggests that an additional spin 2

resonance could be contributing in this region. A peak is

also seen atmðDþπ−Þ ≈ 2.76 GeV in the hP6i distribution,
suggesting that a spin 3 resonance should be included in the

DP model. As discussed in Sec. I, other recent analyses

[6,7,11,12,15,16] suggest that both spin 1 and spin 3 states

could be expected in this region.

VI. DALITZ PLOT ANALYSIS FORMALISM

The isobar approach [54–56] is used to describe the

complex decay amplitude as the coherent sum of ampli-

tudes for intermediate resonant and nonresonant decays.

The total amplitude is given by
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FIG. 2. Distribution of B−
→ Dþπ−π− candidates in the signal region over (left) the DP and (right) the SDP.
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Aðs; tÞ ¼
X

N

j¼1

cjFjðs; tÞ; ð9Þ

where the complex coefficients cj describe the relative

contribution of each intermediate process. Here, and for the

remainder of this section, m2ðDþπ−Þmin and m2ðDþπ−Þmax

are referred to as s and t, respectively.
The resonant dynamics are encoded in the Fjðs; tÞ terms,

each of which is normalized such that the integral of the
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FIG. 3. The first seven unnormalized angular moments, from hP0i (a) to hP6i (g), for background-subtracted and efficiency-corrected
data (black points) as a function ofmðDþπ−Þ in the range 2.0–4.0 GeV. The blue line shows the result of the DP fit described in Sec. VII.
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magnitude squared across the DP is unity. The amplitude is

explicitly symmetrized to take account of the Bose sym-

metry of the final state due to the identical pions, i.e.

Aðs; tÞ↦Aðs; tÞ þAðt; sÞ: ð10Þ

This substitution is implied throughout this section.

For a Dþπ− resonance

Fðs; tÞ ¼ RðsÞ × Xðj~pjrBWÞ × Xðj~qjrBWÞ × Tð~p; ~qÞ;
ð11Þ

where ~p and ~q are the momenta calculated in the Dþπ−

rest frame of the particle not involved in the resonance and

one of the resonance decay products, respectively. The

functions X, T and R are described below.

The XðzÞ terms are Blatt-Weisskopf barrier factors [57],

where z ¼ j~qjrBW or j~pjrBW and rBW is the barrier radius,

and are given by

L ¼ 0∶ XðzÞ ¼ 1;

L ¼ 1∶ XðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2
0

1þ z2

s

;

L ¼ 2∶ XðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z4
0
þ 3z2

0
þ 9

z4 þ 3z2 þ 9

s

;

L ¼ 3∶ XðzÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z6
0
þ 6z4

0
þ 45z2

0
þ 225

z6 þ 6z4 þ 45z2 þ 225

s

; ð12Þ

where L is the spin of the resonance and z0 is defined as the
value of z where the invariant mass is equal to the mass of

the resonance. Since the B− meson has zero spin, L is

also the orbital angular momentum between the resonance

and the other pion. The barrier radius rBW is taken to be

4.0 GeV−1 ≈ 0.8 fm [16,58] for all resonances.

The Tð~p; ~qÞ functions describe the angular

distribution and are given in the Zemach tensor formalism

]59,60 ],
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FIG. 4. Unnormalized angular moments hP7i and hP8i for background-subtracted and efficiency-corrected data (black points) as a

function of mðDþπ−Þ in the range 2.0–4.0 GeV. The blue line shows the result of the DP fit described in Sec. VII.
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L ¼ 0∶ Tð~p; ~qÞ ¼ 1;

L ¼ 1∶ Tð~p; ~qÞ ¼ −2~p · ~q;

L ¼ 2∶ Tð~p; ~qÞ ¼ 4

3
½3ð~p · ~qÞ2 − ðj~pjj~qjÞ2�;

L ¼ 3∶ Tð~p; ~qÞ ¼ −
24

15
½5ð~p · ~qÞ3 − 3ð~p · ~qÞðj~pjj~qjÞ2�:

ð13Þ

These are proportional to the Legendre polynomials,

PLðxÞ, where x is the cosine of the helicity angle between

~p and ~q.
The function RðsÞ of Eq. (11) describes the resonance

line shape. Resonant contributions to the total amplitude

are modeled by relativistic Breit-Wigner (RBW) functions

given by

RðsÞ ¼ 1

ðm2

0
− sÞ − im0Γð

ffiffiffi

s
p Þ ; ð14Þ

with a mass-dependent decay width defined as

ΓðmÞ ¼ Γ0

�

q

q0

�

2Lþ1
�

m0

m

�

X2ðqrBWÞ; ð15Þ

where q0 is the value of q≡ j~qj whenm ¼ m0 and Γ0 is the

full width. Virtual contributions, from resonances with pole

masses outside the kinematically allowed region, can be

described by RBW functions with one modification: the

pole massm0 is replaced with an effective mass,meff
0
, in the

allowed region of s, when the parameter q0 is calculated.

The term meff
0

is given by the ad hoc formula [16]

meff
0
ðm0Þ ¼ mmin þ ðmmax −mminÞ

×

�

1þ tanh

�

m0 −
mminþmmax

2

mmax −mmin

��

; ð16Þ

where mmax and mmin are the upper and lower thresholds of

s. Note that meff
0

is only used in the calculation of q0, so
only the tail of such virtual contributions enters the DP.

A quasi-model-independent approach is used to describe

the entire Dþπ− spin 0 partial wave. The total Dþπ− S

wave is fitted using cubic splines to describe the magnitude

and phase variation of the spin 0 amplitude. Knots are

defined at fixed values of mðDþπ−Þ and splines give a

smooth interpolation of the magnitude and phase of the S

wave between these points. The S-wave magnitude and

phase are both fixed to zero at the highest mass knot in

order to ensure sensible behavior at the kinematic limit. For

the knot at mðDþπ−Þ ¼ 2.4 GeV, close to the peak of the

D�
0
ð2400Þ0 resonance, the magnitude and phase values are

fixed to 0.5 and 0, respectively, as a reference. The

magnitude and phase values at every other knot position

are determined from the fit.

The folding of the Dalitz plot has implications for the

choice of knot positions. Since the S-wave amplitude varies

with mðDþπ−Þ, its reflection onto the other DP axis gives a

helicity angle distribution that corresponds to higher partial

waves. Equally, if knots are included at high mðDþπ−Þ,
the quasi-model-independent Dþπ− S-wave amplitude can

absorb resonant contributions with nonzero spin due to

their reflections. To avoid this problem, only a single knot

with floated parameters is used above the minimum value

of m2ðDþπ−Þmax, specifically at 4.1 GeV (as mentioned

above, the amplitude is fixed to zero at the highest mass

knot at 5.1 GeV). At lower mðDþπ−Þ, knots are spaced

every 0.1 GeV from 2.0 GeVup to 3.1 GeV, except that the

knot at 3.0 GeV is removed in order to stabilize the fit.

Neglecting reconstruction effects, the DP probability

density function would be

Pphysðs; tÞ ¼
jAðs; tÞj2

R R

DP jAðs; tÞj2dsdt : ð17Þ

The effects of nonuniform signal efficiency and of back-

ground contributions are accounted for as described in

Sec. VII. The probability density function depends on the

complex coefficients introduced in Eq. (9), as well as

the masses and widths of the resonant contributions and the

parameters describing the Dþπ− S wave. These parameters

are allowed to vary freely in the fit. Results for the complex

coefficients are dependent on the amplitude formalism,

normalization and phase convention, and consequently

may be difficult to compare between different analyses.

It is therefore useful to define fit fractions and interference

fit fractions to provide convention-independent results. Fit

fractions are defined as the integral over the DP for a single

contributing amplitude squared divided by that of the total

amplitude squared,

FFj ¼
R R

DP jcjFjðs; tÞj2dsdt
R R

DP jAðs; tÞj2dsdt : ð18Þ

The sum of the fit fractions is not required to be unity due to

the potential presence of net constructive or destructive

interference. Interference fit fractions are defined, for i < j
only, as

FFij ¼
R R

DP 2Re½cic�jFiðs; tÞF�
jðs; tÞ�ds dt

R R

DP jAðs; tÞj2ds dt : ð19Þ

VII. DALITZ PLOT FIT

A. Signal efficiency

Variation of the efficiency across the phase space of

B−
→ Dþπ−π− decays is studied in terms of the SDP, since

the efficiency variation is typically greatest close to the

kinematic boundaries of the conventional DP. The causes of
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efficiency variation across the SDP are the detector accep-

tance and trigger, selection and PID requirements.

Simulated samples generated uniformly over the SDP

are used to evaluate the efficiency variation. Data-driven

corrections are applied to correct the simulation for known

discrepancies with the data, for the tracking, trigger and

PID efficiencies, using identical methods to those described

in Ref. [16]. The efficiency distributions are fitted with

two-dimensional cubic splines to smooth out statistical

fluctuations due to limited sample size. Figure 6 shows the

efficiency variation over the SDP.

B. Background studies

The yields presented in Table II show that the important

background components in the signal region are from

combinatorial background and B−
→ Dð�ÞþK−π− decays.

The SDP distribution of B−
→ Dð�ÞþK−π− decays is

obtained from simulated samples using the same proce-

dures as described in Sec. IV to apply weights and combine

the Dþ and D�þ contributions. The distribution of com-

binatorial background events is obtained from Dþπ−π−

candidates in the high-mass sideband defined to be

5500–5800 MeV. Figure 7 shows the SDP distributions

of these backgrounds, which are used in the Dalitz plot fit.

C. Amplitude model for B
−
→ D

þ
π
−
π
− decays

The DP fit is performed using the LAURA++ [61]

package, and the likelihood function is given by

L ¼
Y

nc

i

�

X

k

NkPkðsi; tiÞ
�

; ð20Þ

where the index i runs over nc candidates, while k sums

over the probability density functions Pk with a yield of Nk

candidates in each component. For signal events Pk ≡ Psig

is similar to Eq. (17), but is modified such that the jAðs; tÞj2
terms are multiplied by the efficiency function described in

Sec. VII A. The mass resolution is approximately 2.4 MeV,

which is much less than the width of the narrowest

contribution to the Dalitz plot (∼50 MeV); therefore, this

has negligible effect on the likelihood. Its effect on the

measurement of masses and widths of resonances is,

however, considered as a systematic uncertainty.

Using the results of the moments analysis presented in

Sec. V as a guide, a B−
→ Dþπ−π− DP model is con-

structed by including various resonant, nonresonant and

virtual amplitudes. Only intermediate states with natural

spin-parity are included because unnatural spin-parity

states do not decay to two pseudoscalars. Amplitudes

that do not contribute significantly and cause the fit to

become unstable are discarded. Alternative and additional

contributions that have been considered include an isobar

description of the Dþπ− S wave including the D�
0
ð2400Þ0

resonance and a nonresonant amplitude, a nonresonant

P-wave component, an isospin-2 ππ interaction described

by a unitary model as in Refs. [24,62] (see also

Refs. [63–65]), and quasi-model-independent descriptions

of partial waves other than the Dþπ− S wave.

The resulting baseline signal model consists of the seven

components listed in Table III: four resonances, two virtual

resonances and a quasi-model-independent description of

the Dþπ− S wave. There are 42 free parameters in this

model. The broad P-wave structure indicated by the angular

moments is adequately described by the virtual D�ð2007Þ0
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FIG. 6. Signal efficiency across the SDP for B−
→ Dþπ−π−

decays. The relative uncertainty at each point is typically 5%.

E
n

tr
ie

s

0

2

4

6

8

10

12

14

16

'm

0 0.2 0.4 0.6 0.8 1

'
θ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
LHCb

E
n

tr
ie

s

0
2

4

6

8

10

12

14

16

18

20
22

'm

0 0.2 0.4 0.6 0.8 1

'
θ

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
LHCb Simulation

FIG. 7. Square Dalitz plot distributions for (left) combinatorial background and (right) B−
→ Dð�ÞþK−π− decays.

AMPLITUDE ANALYSIS OF … PHYSICAL REVIEW D 94, 072001 (2016)

072001-9



and B�0 amplitudes. The peaks seen in various moments are

described by the D�
2
ð2460Þ0, D�

1
ð2680Þ0, D�

3
ð2760Þ0 and

D�
2
ð3000Þ0 resonances. Here, and throughout the paper,

these states are labeled as such since it is not clear if the

D�
1
ð2680Þ0 state corresponds to one of the previously

observed peaks (see Table I), while the parameters of

the D�
3
ð2760Þ0 resonance seem to be consistent with earlier

measurements. An excess at mðDþπ−Þ ≈ 3000 MeV was

reported in Ref. [7], but the parameters of this state were not

reported with systematic uncertainties. The baseline model

provides a better quality fit than the alternative models that

are discussed in Sec. VIII. The inclusion of all components

of the model is necessary to obtain a good description of the

data, as described in Sec. IX.

The real and imaginary parts of the complex coefficients

for each of the components are free parameters of the fit,

except for the D�
2
ð2460Þ0 contribution that is taken to be a

reference amplitude with real and imaginary parts of its

complex coefficient ck fixed to 1 and 0, respectively.

Parameters such as magnitudes and phases for each

amplitude, the fit fractions and interference fit fractions

are calculated from these quantities. The statistical uncer-

tainties are determined using large samples of pseudoex-

periments to ensure that correlations between parameters

are accounted for.

D. Dalitz plot fit results

The masses and widths of the D�
2
ð2460Þ0, D�

1
ð2680Þ0,

D�
3
ð2760Þ0 andD�

2
ð3000Þ0 resonances are determined from

the fit and are given in Table IV. The floated complex

coefficients at each knot position and the splines describing

the total Dþπ− S wave are shown in Fig. 8. The phase

motion at low mðDþπ−Þ is consistent with that expected

due to the presence of the D�
0
ð2400Þ0 state. There is,

however, an ambiguous solution with the opposite phase

motion in this region, which occurs since there are

significant contributions only from S and P waves and

thus only cosðδ0 − δ1Þ can be determined as seen in Eq. (3).

Since the P wave in this region is described by the

D�
vð2007Þ0 amplitude, and hence has slowly varying phase,

the entire Dþπ− S wave has a sign ambiguity. Similar

ambiguities have been observed previously [23]. Only

results consistent with the expected phase motion are

reported.

Table V shows the values of the complex coefficients and

fit fractions for each amplitude. The interference fit

fractions are given in the Appendix.

Given the complexity of the DP fit, the minimization

procedure may find local minima in the likelihood function.

To try to ensure that the global minimum is found, the fit is

performed many times with randomized initial values

for the cj terms. No other minima are found with negative

TABLE III. Signal contributions to the fit model, where

parameters and uncertainties are taken from Ref. [19]. States

labeled with subscript v are virtual contributions. The model

“MIPW” refers to the quasi-model-independent partial wave

approach.

Resonance Spin Model Parameters

D�
2
ð2460Þ0 2 RBW Determined from data

(see Table IV)

D�
1
ð2680Þ0 1 RBW

D�
3
ð2760Þ0 3 RBW

D�
2
ð3000Þ0 2 RBW

D�
vð2007Þ0 1 RBW m ¼ 2006.98� 0.15 MeV,

Γ ¼ 2.1 MeV

B�0
v 1 RBW m ¼ 5325.2� 0.4 MeV,

Γ ¼ 0.0 MeV

Total S wave 0 MIPW See text
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FIG. 8. Real and imaginary parts of the S-wave amplitude

shown in an Argand diagram. The knots are shown with

statistical uncertainties only, connected by the cubic spline

interpolation used in the fit. The leftmost point is that at

the lowest value of mðDþπ−Þ, with mass increasing along the

connected points. Each point labeled 1–13 corresponds to the

position of a knot in the spline, at values of mðDþπ−Þ ¼
f2.01; 2.10; 2.20; 2.30; 2.40; 2.50; 2.60; 2.70; 2.80; 2.90; 3.10;
4.10; 5.14g GeV. The points at (0.5, 0.0) and (0.0, 0.0) are

fixed. The anticlockwise rotation of the phase at low

mðDþπ−Þ is as expected due to the presence of the

D�
0
ð2400Þ0 resonance.

TABLE IV. Masses and widths determined in the fit to data,

with statistical uncertainties only.

Contribution Mass (MeV) Width (MeV)

D�
2
ð2460Þ0 2463.7� 0.4 47.0� 0.8

D�
1
ð2680Þ0 2681.1� 5.6 186.7� 8.5

D�
3
ð2760Þ0 2775.5� 4.5 95.3� 9.6

D�
2
ð3000Þ0 3214� 29 186� 38
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log-likelihood values close to that of the global minimum

so they are not considered further.

The consistency of the fit model and the data is evaluated

in several ways. Numerous one-dimensional projections

comparing the data and fit model (including several shown

below and those from the moments study in Sec. V) show

good agreement. Additionally, a two-dimensional χ2 value

is calculated by comparing the data and the fit model

distributions across the SDP in 484 equally populated bins.

Figure 9 shows the normalized residual in each bin. The

distribution of the z-axis values from Fig. 9 is consistent

with a unit Gaussian centered on zero. Further checks using

unbinned fit quality tests [66] show satisfactory agreement

between the data and the fit model.

One-dimensional projections of the baseline fit model

and data onto mðDþπ−Þmin, mðDþπ−Þmax and mðπ−π−Þ are
shown in Fig. 10. The model is seen to give a good

description of the data sample, with the most evident

discrepancy at low values of mðDþπ−Þmax, a region of

the DP [that corresponds to high values of mðπ−π−Þ and

mðDþπ−Þmin ≈ 3.2 GeV] in which many different ampli-

tudes contribute. In Fig. 11, zoomed views of the

mðDþπ−Þmin invariant mass projection are provided for

regions at threshold and around the D�
2
ð2460Þ0,

D�
1
ð2680Þ0–D�

3
ð2760Þ0 and D�

2
ð3000Þ0 resonances.

Projections of the cosine of the Dþπ− helicity angle in

the same regions of mðDþπ−Þmin are also shown in Fig. 11.

Good agreement is seen in all these projections, suggesting

that the model gives an acceptable description of the data

and the spin assignments of theD�
1
ð2680Þ0,D�

3
ð2760Þ0 and

D�
2
ð3000Þ0 states are correct.

VIII. SYSTEMATIC UNCERTAINTIES

Sources of systematic uncertainty are divided into two

categories: experimental and model uncertainties. The

sources of experimental systematic uncertainty are

the signal and background yields in the signal region,

the SDP distributions of the background components, the

efficiency variation across the SDP, and possible fit bias.

Model uncertainties arise due to the fixed parameters in the

amplitude model, the addition of amplitudes not included in

the baseline fit, the modeling of the amplitudes from virtual

resonances, and the effect of removing the least well-

modeled part of the phase space. The systematic uncer-

tainties from each source are combined in quadrature.

The signal and background yields in the signal region are

determined from the fit to the B candidate invariant mass

distribution, as described in Sec. IV. The total uncertainty

on each yield, including systematic effects due to the

modeling of the components in the B candidate mass fit,

is calculated, and the yields varied accordingly in the DP

fit. The deviations from the baseline DP fit result are

assigned as systematic uncertainties.

The effect of imperfect knowledge of the background

distributions over the SDP is tested by varying the bin

contents of the histograms used to model the shapes within

their statistical uncertainties. For B−
→ Dð�ÞþK−π− decays

the ratio of the D�þ and Dþ contributions is varied. Where

applicable, the reweighting of the SDP distribution of the

simulated samples is removed. Changes in the results

compared to the baseline DP fit result are again assigned

as systematic uncertainties.

The uncertainty related to the knowledge of the variation

of efficiency across the SDP is determined by varying the

TABLE V. Complex coefficients and fit fractions determined from the Dalitz plot fit. Uncertainties are statistical only.

Isobar model coefficients

Contribution Fit fraction (%) Real part Imaginary part Magnitude Phase (rad)

D�
2
ð2460Þ0 35.7� 0.6 1.00 0.00 1.00 0.00

D�
1
ð2680Þ0 8.3� 0.6 −0.38� 0.02 0.30� 0.02 0.48� 0.02 2.47� 0.09

D�
3
ð2760Þ0 1.0� 0.1 0.17� 0.01 0.00� 0.01 0.17� 0.01 0.01� 0.20

D�
2
ð3000Þ0 0.23� 0.07 0.05� 0.02 −0.06� 0.02 0.08� 0.01 −0.84� 0.28

D�
vð2007Þ0 10.8� 0.7 0.51� 0.03 −0.20� 0.05 0.55� 0.02 −0.38� 0.19

B�0
v 2.7� 1.0 0.27� 0.03 0.04� 0.04 0.27� 0.05 0.14� 0.38

Total S wave 57.0� 0.8 1.21� 0.02 −0.35� 0.04 1.26� 0.01 −0.28� 0.05

Total fit fraction 115.7
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FIG. 9. Differences between the SDP distribution of the data

and fit model, in terms of the normalized residual in each bin. No

bin lies outside the z-axis limits.
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efficiency histograms before the spline fit is performed. The

central bin in each 3 × 3 cluster is varied by its statistical

uncertainty and the surrounding bins in the cluster are

varied by interpolation. This procedure accounts for pos-

sible correlations between the bins, since a systematic

effect on a given bin is likely also to affect neighboring

bins. An ensemble of DP fits is performed, each with a

unique efficiency histogram, and the effects on the results

are assigned as systematic uncertainties. An additional

systematic uncertainty is assigned by varying the binning

scheme of the control sample used to determine the PID

efficiencies.

Systematic uncertainties related to possible intrinsic fit

bias are investigated using an ensemble of pseudoexperi-

ments. Differences between the input and fitted values from

the ensemble for the fit parameters are found to be small.

Systematic uncertainties are assigned as the sum in quad-

rature of the difference between the input and output values

and the uncertainty on the mean of the output value

determined from a fit to the ensemble.
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FIG. 10. Projections of the data and amplitude fit onto (top) mðDþπ−Þmin, (middle) mðDþπ−Þmax and (bottom) mðπ−π−Þ, with the

same projections shown (right) with a logarithmic y-axis scale. Components are described in the legend.
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The only fixed parameter in the line shapes of resonant

amplitudes is the Blatt-Weisskopf barrier radius, rBW. To
account for potential systematic effects, this is varied

between 3 and 5 GeV−1 [16], and the difference compared

to the baseline fit model is assigned as an uncertainty. The

choice of knot positions in the quasi-model-independent

description of theDþπ− Swave is another source of possible
systematic uncertainty. This is evaluated from the change

in the fit results when more knots are added at low

mðDþπ−Þ. As discussed in Sec. VI, it is not possible to

add more knots at high mðDþπ−Þ without destabilizing

the fit.

FIG. 11. Projections of the data and amplitude fit onto (left)mðDþπ−Þ and (right) the cosine of the helicity angle for theDþπ− system

in (top to bottom) the low mass threshold region, the D�
2
ð2460Þ0 region, the D�

1
ð2680Þ0–D�

3
ð2760Þ0 region and the D�

2
ð3000Þ0 region.

Components are as shown in Fig. 10.
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As discussed in Sec. I, it is possible that there is

more than one spin 1 resonance in the range

2.6 < mðDþπ−Þ < 2.8 GeV. The measured parameters of

the D�
1
ð2680Þ0 resonance are most consistent with those

given for theD�ð2650Þ state in Table I; therefore the effect of
including an additionalD�ð2760Þ contribution is considered
as a source of systematic uncertainty. Separate fits are

performed with the parameters of the D�ð2760Þ state fixed
to the values determined byBABAR [6] andLHCb [7] and the

larger of the deviations from the baseline results is taken

as the associated uncertainty. Additional fits are performed

with the value of the D�
vð2007Þ0 width given in Table III,

which corresponds to the current experimental upper limit

[19] replaced by the measured central value for the

D�ð2010Þþ (83.4 keV); the associated systematic

uncertainty is negligible. The dependence of the results on

the effective polemass description of Eq. (16) that is used for

the virtual resonance contributions is found by using a fixed

width in Eq. (14), removing the dependence on meff
0
.

A discrepancy between the model and the data is seen in

the low mðDþπ−Þmax region, as discussed in Sec. VII D.

Since this may not be accounted for by the other sources of

systematic uncertainty, the effect on the results is determined

by performing fits where this region of the DP is vetoed by

removing separately candidates with either mðDþπ−Þmax <
3.3 GeV ormðπ−π−Þ > 3.05 GeV. Systematic uncertainties

are assigned as the difference in the fitted parameters

compared to the baseline fit.

Contributions to the experimental and model systematic

uncertainties for the fit fractions, masses and widths are

TABLE VII. Breakdown of model uncertainties on the fit fractions (%) and masses and widths (MeV).

Fixed Add Alternative

Nominal parameters D�
1
ð2760Þ0 models DP veto Total

D�
2
ð2460Þ0 35.7� 0.6 0.9 0.0 0.0 0.1 0.9

D�
1
ð2680Þ0 8.3� 0.6 0.2 0.9 0.0 1.5 1.8

D�
3
ð2760Þ0 1.0� 0.1 0.0 0.0 0.0 0.2 0.2

D�
2
ð3000Þ0 0.2� 0.1 0.0 0.0 0.0 0.1 0.1

D�
vð2007Þ0 10.8� 0.7 2.3 0.1 0.0 0.2 2.3

B�
v 2.7� 1.0 1.2 0.2 0.0 1.0 1.6

Total S wave 57.0� 0.8 0.8 0.4 0.0 0.1 0.9

mðD�
2
ð2460Þ0Þ 2463.7� 0.4 0.4 0.1 0.0 0.4 0.6

ΓðD�
2
ð2460Þ0Þ 47.0� 0.8 0.2 0.0 0.0 0.1 0.3

mðD�
1
ð2680Þ0Þ 2681.1� 5.6 4.7 11.8 0.1 3.0 13.1

ΓðD�
1
ð2680Þ0Þ 186.7� 8.5 3.2 4.5 0.3 6.0 8.2

mðD�
3
ð2760Þ0Þ 2775.5� 4.5 3.4 0.4 0.0 3.3 4.7

ΓðD�
3
ð2760Þ0Þ 95.3� 9.6 2.8 3.2 0.0 32.9 33.1

mðD�
2
ð3000Þ0Þ 3214� 29 25 1 1 26 36

ΓðD�
2
ð3000Þ0Þ 186� 38 7 19 0 60 63

TABLE VI. Breakdown of experimental systematic uncertainties on the fit fractions (%) and masses and widths

(MeV).

Nominal Signal and background fractions Efficiency Background Fit bias Total

D�
2
ð2460Þ0 35.7� 0.6 0.1 1.3 0.0 0.2 1.4

D�
1
ð2680Þ0 8.3� 0.6 0.0 0.7 0.1 0.1 0.7

D�
3
ð2760Þ0 1.0� 0.1 0.0 0.1 0.0 0.0 0.1

D�
2
ð3000Þ0 0.2� 0.1 0.0 0.1 0.0 0.0 0.1

D�
vð2007Þ0 10.8� 0.7 0.0 0.7 0.1 0.1 0.7

B�
v 2.7� 1.0 0.0 1.4 0.1 0.2 1.4

Total S wave 57.0� 0.8 0.1 0.6 0.1 0.1 0.6

mðD�
2
ð2460Þ0Þ 2463.7� 0.4 0.0 0.3 0.1 0.1 0.3

ΓðD�
2
ð2460Þ0Þ 47.0� 0.8 0.1 0.9 0.1 0.0 0.9

mðD�
1
ð2680Þ0Þ 2681.1� 5.6 0.1 4.8 0.9 0.2 4.9

ΓðD�
1
ð2680Þ0Þ 186.7� 8.5 0.5 8.4 1.0 1.2 8.6

mðD�
3
ð2760Þ0Þ 2775.5� 4.5 0.4 4.4 0.6 0.4 4.5

ΓðD�
3
ð2760Þ0Þ 95.3� 9.6 0.9 5.9 1.5 4.9 7.9

mðD�
2
ð3000Þ0Þ 3214� 29 3 29 13 9 33

ΓðD�
2
ð3000Þ0Þ 186� 38 2 31 8 12 34
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TABLE VIII. Results for the complex amplitudes. The three quoted errors are statistical, experimental systematic

and model uncertainties.

Resonance Isobar model coefficients

Real part Imaginary part

D�
2
ð2460Þ0 1.00 0.00

D�
1
ð2680Þ0 −0.38� 0.02� 0.05� 0.08 0.30� 0.02� 0.08� 0.03

D�
3
ð2760Þ0 0.17� 0.01� 0.01� 0.02 0.00� 0.01� 0.05� 0.02

D�
2
ð3000Þ0 0.05� 0.02� 0.02� 0.04 −0.06� 0.02� 0.05� 0.03

D�
vð2007Þ0 0.51� 0.03� 0.02� 0.05 −0.20� 0.05� 0.11� 0.05

B�
v 0.27� 0.03� 0.11� 0.10 0.04� 0.04� 0.12� 0.05

Total S wave 1.21� 0.02� 0.01� 0.02 −0.35� 0.04� 0.07� 0.03

Magnitude Phase

D�
2
ð2460Þ0 1.00 0.00

D�
1
ð2680Þ0 0.48� 0.02� 0.01� 0.06 2.47� 0.09� 0.18� 0.12

D�
3
ð2760Þ0 0.17� 0.01� 0.01� 0.02 0.01� 0.20� 0.11� 0.09

D�
2
ð3000Þ0 0.08� 0.01� 0.01� 0.01 −0.84� 0.28� 0.52� 0.63

D�
vð2007Þ0 0.55� 0.02� 0.01� 0.06 −0.38� 0.19� 0.15� 0.08

B�
v 0.27� 0.05� 0.13� 0.09 0.14� 0.38� 0.19� 0.25

Total S wave 1.26� 0.01� 0.02� 0.02 −0.28� 0.05� 0.05� 0.03

TABLE IX. Results for the Dþπ− S-wave amplitude at the spline knots. The three quoted errors are statistical,

experimental systematic and model uncertainties.

Knot mass Dþπ− S wave amplitude

(GeV) Real part Imaginary part

2.01 −0.11� 0.05� 0.07� 0.09 −0.04� 0.03� 0.05� 0.11

2.10 0.00� 0.05� 0.11� 0.05 −0.58� 0.02� 0.03� 0.03

2.20 0.39� 0.05� 0.08� 0.05 −0.62� 0.04� 0.07� 0.04

2.30 0.62� 0.02� 0.03� 0.01 −0.28� 0.05� 0.10� 0.03

2.40 0.50 0.00

2.50 0.23� 0.01� 0.01� 0.01 −0.00� 0.02� 0.04� 0.01

2.60 0.21� 0.01� 0.01� 0.01 −0.10� 0.02� 0.03� 0.06

2.70 0.14� 0.01� 0.01� 0.01 −0.05� 0.01� 0.02� 0.02

2.80 0.14� 0.01� 0.01� 0.01 −0.10� 0.01� 0.02� 0.04

2.90 0.13� 0.01� 0.02� 0.01 −0.16� 0.01� 0.02� 0.02

3.10 0.05� 0.01� 0.02� 0.02 −0.12� 0.01� 0.01� 0.01

4.10 0.04� 0.01� 0.01� 0.01 0.07� 0.01� 0.01� 0.01

5.14 0.00 0.00

Magnitude Phase

2.01 0.12� 0.05� 0.07� 0.06 −2.82� 0.22� 0.28� 1.47

2.10 0.58� 0.02� 0.03� 0.03 −1.56� 0.09� 0.17� 0.08

2.20 0.73� 0.01� 0.03� 0.02 −1.00� 0.08� 0.15� 0.08

2.30 0.68� 0.01� 0.03� 0.01 −0.42� 0.08� 0.14� 0.05

2.40 0.50 0.00

2.50 0.23� 0.01� 0.01� 0.01 −0.00� 0.06� 0.07� 0.05

2.60 0.23� 0.01� 0.01� 0.03 −0.42� 0.09� 0.13� 0.24

2.70 0.15� 0.01� 0.01� 0.01 −0.31� 0.07� 0.11� 0.15

2.80 0.17� 0.01� 0.01� 0.01 −0.63� 0.08� 0.10� 0.19

2.90 0.20� 0.01� 0.01� 0.01 −0.87� 0.09� 0.12� 0.10

3.10 0.14� 0.00� 0.01� 0.01 −1.16� 0.10� 0.13� 0.13

4.10 0.08� 0.00� 0.01� 0.01 1.02� 0.12� 0.20� 0.16

5.14 0.00 0.00
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broken down in Tables VI and VII. The largest source of

experimental systematic uncertainty for many parameters is

the knowledge of the efficiency variation across the Dalitz

plot. The various parameters are affected differently by the

sources of model uncertainty, with some being affected by

thevariationof fixedparameters in themodel, others [notably

the parameters associated with theD�
1
ð2680Þ0 amplitude] by

the introduction of an additional D�
1
ð2760Þ0 resonance, and

some changing when the poorly modeled region of phase

space is vetoed. The effect of the finite mass resolution

described in Sec. VII C on the measurements of the masses

and widths of resonances is found to be negligible.

Several cross-checks are performed to confirm the

stability of the results. The data sample is divided into

two parts depending on the charge of the B candidate, the

polarity of the magnet and the year of data taking. All fits

give consistent results.

IX. RESULTS AND SUMMARY

Results for the complex coefficients multiplying each

amplitude are reported in Table VIII, and those that describe

the Dþπ− S wave amplitude are shown in Table IX. These

complex numbers are reported in terms of real and imaginary

parts and also in terms of magnitude and phase as, due

to correlations, the propagation of uncertainties from one

form to the other may not be trivial. Results for the

interference fit fractions are given in the Appendix.

The fit fractions summarized in Table X for resonant

contributions are converted into quasi-two-body product

branching fractions by multiplying by the B−
→ Dþπ−π−

branching fraction. This value is taken from the

world average after a correction for the relative branching

fractions of BþB− and B0B̄0 pairs at the ϒð4SÞ resonance,
Γðϒð4SÞ → BþB−Þ=Γðϒð4SÞ → B0B̄0Þ ¼ 1.055� 0.025

[19], givingBðB−
→ Dþπ−π−Þ ¼ ð1.014� 0.054Þ × 10−3.

The product branching fractions are shown in Table XI; they

cannot be converted into absolute branching fractions

because the branching fractions for the resonance decays

to Dþπ− are unknown.

The masses and widths of the D�
2
ð2460Þ0, D�

1
ð2680Þ0,

D�
3
ð2760Þ0 andD�

2
ð3000Þ0 resonances are determined to be

mðD�
2
ð2460Þ0Þ ¼ 2463.7� 0.4� 0.4� 0.6 MeV;

ΓðD�
2
ð2460Þ0Þ ¼ 47.0� 0.8� 0.9� 0.3 MeV;

mðD�
1
ð2680Þ0Þ ¼ 2681.1� 5.6� 4.9� 13.1 MeV;

ΓðD�
1
ð2680Þ0Þ ¼ 186.7� 8.5� 8.6� 8.2 MeV;

mðD�
3
ð2760Þ0Þ ¼ 2775.5� 4.5� 4.5� 4.7 MeV;

ΓðD�
3
ð2760Þ0Þ ¼ 95.3� 9.6� 7.9� 33.1 MeV;

mðD�
2
ð3000Þ0Þ ¼ 3214� 29� 33� 36 MeV;

ΓðD�
2
ð3000Þ0Þ ¼ 186� 38� 34� 63 MeV;

where the three quoted errors are statistical, experimental

systematic and model uncertainties. The results for the

D�
2
ð2460Þ0 are consistent with the PDG averages [19] given

in Table I. The D�
1
ð2680Þ0 state has parameters close to

those measured for the D�ð2650Þ resonance observed by

LHCb in prompt production in pp collisions [7]. As

discussed in Sec. I, both 2S and 1D states with spin-parity

JP ¼ 1− are expected in this region. Similarly, the

D�
3
ð2760Þ0 state has parameters close to those for the

D�ð2760Þ states reported in Refs. [6,7] and for the charged

D�
3
ð2760Þþ state [11]. It appears likely to be a member of

the 1D family. The D�
2
ð3000Þ0 state has parameters that are

not consistent with any previously observed resonance,

although due to the large uncertainties it cannot be ruled out

that it has a common origin with the D�ð3000Þ state that

was reported, without evaluation of systematic uncertain-

ties, in Ref. [7]. It could potentially be a member of the 2P

or 1F family.

Removal of any of the D�
1
ð2680Þ0, D�

3
ð2760Þ0 and

D�
2
ð3000Þ0 states from the baseline fit model results in

large changes of the likelihood value. To investigate

the effect of the systematic uncertainties, a similar like-

lihood ratio test is performed in the alternative models that

give the largest uncertainties on the parameters of these

resonances. Accounting for the 4 degrees of freedom

associated with each resonance, the significances of the

D�
1
ð2680Þ0 and D�

3
ð2760Þ0 states including systematic

uncertainties are found to be above 10σ, while that for

the D�
2
ð3000Þ0 state is 6.6σ. Assigning alternative spin

TABLE X. Results for the fit fractions. The three quoted errors

are statistical, experimental systematic and model uncertainties.

Resonance Fit fraction (%)

D�
2
ð2460Þ0 35.69� 0.62� 1.37� 0.89

D�
1
ð2680Þ0 8.32� 0.62� 0.69� 1.79

D�
3
ð2760Þ0 1.01� 0.13� 0.13� 0.25

D�
2
ð3000Þ0 0.23� 0.07� 0.07� 0.08

D�
vð2007Þ0 10.79� 0.68� 0.74� 2.34

B�
v 2.69� 1.01� 1.43� 1.61

Total S wave 56.96� 0.78� 0.62� 0.87

TABLE XI. Results for the product branching fractions

BðB−
→ Rπ−Þ × BðR → Dþπ−Þ. The four quoted errors are

statistical, experimental systematic, model and inclusive branch-

ing fraction uncertainties.

Resonance Branching fraction (10−4)

D�
2
ð2460Þ0 3.62� 0.06� 0.14� 0.09� 0.25

D�
1
ð2680Þ0 0.84� 0.06� 0.07� 0.18� 0.06

D�
3
ð2760Þ0 0.10� 0.01� 0.01� 0.02� 0.01

D�
2
ð3000Þ0 0.02� 0.01� 0.01� 0.01� 0.00

D�
vð2007Þ0 1.09� 0.07� 0.07� 0.24� 0.07

B�
v 0.27� 0.10� 0.14� 0.16� 0.02

Total S wave 5.78� 0.08� 0.06� 0.09� 0.39
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hypotheses to these states results in similarly large changes

in likelihood.

In summary, an analysis of the amplitudes contributing

to B−
→ Dþπ−π− decays has been performed using a data

sample corresponding to 3.0 fb−1 of pp collision data

recorded by the LHCb experiment. The Dalitz plot fit

model containing resonant contributions from the

D�
2
ð2460Þ0, D�

1
ð2680Þ0, D�

3
ð2760Þ0 and D�

2
ð3000Þ0 states,

virtual D�
vð2007Þ0 and B�0

v resonances and a quasi-model-

independent description of the full Dþπ− S wave has been

found to give a good description of the data. These results

constitute the first observations of the D�
3
ð2760Þ0 and

D�
2
ð3000Þ0 resonances and may be useful to develop

improved models of the dynamics in the Dþπ− system.
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APPENDIX: RESULTS FOR INTERFERENCE

FIT FRACTIONS

The central values and statistical errors for the interfer-

ence fit fractions are shown in Table XII. The experimental

systematic and model uncertainties are given in Table XIII.

TABLE XII. Interference fit fractions (%) and statistical uncertainties. The amplitudes are (A0) D
�
vð2007Þ0, (A1)

Dþπ− S wave, (A2)D
�
2
ð2460Þ0, (A3)D

�
1
ð2680Þ0, (A4) B

�0
v , (A5)D

�
3
ð2760Þ0, (A6)D

�
2
ð3000Þ0. The diagonal elements

are the same as the conventional fit fractions.

A0 A1 A2 A3 A4 A5 A6

A0 10.8� 0.7 3.1� 1.0 −0.8� 0.0 0.7� 1.9 −6.2� 1.3 0.1� 0.0 −0.2� 0.0

A1 57.0� 0.8 −2.4� 0.2 −5.5� 0.4 −1.9� 1.4 −0.0� 0.0 −0.3� 0.1

A2 35.7� 0.6 −0.3� 0.1 −0.7� 0.4 −0.2� 0.0 −0.5� 0.2

A3 8.3� 0.6 −0.9� 1.8 0.1� 0.0 0.1� 0.0

A4 2.7� 1.0 −0.0� 0.0 0.1� 0.0

A5 1.0� 0.1 0.0� 0.0

A6 0.2� 0.1

TABLE XIII. (Top) Experimental and (bottom) model system-

atic uncertainties on the interference fit fractions (%). The

amplitudes are (A0) D�
vð2007Þ0, (A1) Dþπ− S wave, (A2)

D�
2
ð2460Þ0, (A3) D�

1
ð2680Þ0, (A4) B�0

v , (A5) D�
3
ð2760Þ0, (A6)

D�
2
ð3000Þ0. The diagonal elements are the same as the conven-

tional fit fractions.

A0 A1 A2 A3 A4 A5 A6

A0 0.74 0.42 0.04 1.46 1.42 0.01 0.06

A1 0.62 0.21 0.34 0.58 0.03 0.13

A2 1.37 0.13 0.14 0.01 0.24

A3 0.69 2.11 0.00 0.06

A4 1.43 0.15 0.05

A5 0.13 0.01

A6 0.07

A0 A1 A2 A3 A4 A5 A6

A0 2.34 0.91 0.21 1.01 3.11 0.04 0.12

A1 0.87 0.21 0.48 1.74 0.02 0.16

A2 0.89 0.07 0.53 0.08 0.34

A3 1.79 0.87 0.02 0.04

A4 1.61 0.04 0.05

A5 0.25 0.03

A6 0.08
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