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ABSTRACT— 

Background—Targeted localized biopsies and treatments for diffuse gliomas rely on accurate 

identification of tissue subregions, for which current MRI techniques lack specificity.  

Purpose—To explore the complementary and competitive roles of a variety of conventional and 

quantitative MRI methods for distinguishing subregions of brain gliomas.   

Study Type—Prospective  

Population—51 tissue specimens were collected using image-guided localized biopsy surgery from 10 

patients with newly diagnosed gliomas. 

Field Strength/Sequence—Conventional and quantitative MR images consisting of pre and post-

contrast T1w, T2w, T2-FLAIR, T2-relaxometry, DWI, DTI, IVIM, and DSC-MRI were acquired pre-

operatively at 3T . 

Assessment—Biopsy specimens were histopathologically attributed to glioma tissue subregion 

categories of active tumor (AT), infiltrative edema (IE), and normal tissue (NT) subregions. For each 

tissue sample, a feature vector comprising of 15 MRI-based parameters was derived from pre-operative 

images and assessed by a machine learning algorithm to determine the best multi-parametric feature 

combination for characterizing the tissue subregions.  

Statistical Tests— For discrimination of AT, IE, and NT subregions, one-way ANOVA test and for 

pairwise tissue subregion differentiation, Tukey-HSD and Games-Howell tests were applied (P<0.05). 

Cross-validated feature selection and classification methods were implemented for identification of 

accurate multi-parametric MRI parameter combination. 

Results— After exclusion of 17 tissue specimens, 34 samples (AT=6, IE=20, and NT=8) were considered 

for analysis. Highest accuracies and statistically significant differences for discrimination of IE from NT 

and AT from NT were observed for diffusion-based parameters (AUCs>90%), and perfusion-derived 
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parameter as the most accurate feature in distinguishing IE from AT. A combination of “CBV, MD, 

T2_ISO, FLAIR” parameters showed high diagnostic performance for identification of the three 

subregions (AUC~90%).   

Data Conclusion—Integration of a few quantitative along with conventional MRI parameters may provide 

a potential multi-parametric imaging biomarker for predicting the histopathologically-approved glioma 

tissue subregions. 

KEYWORDS— Glioma, Imaging Biomarker, Intra-tumor Heterogeneity, Multi-parametric MRI, Machine 

Learning   
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INTRODUCTION 

Diffuse gliomas manifest extensive diffuse infiltration of tumor cells in adjacent brain parenchyma (1). 

Even when low grade, diffuse gliomas are generally fatal after several years (1,2). It is widely known that 

characteristic spatial intra-tumor variability within microenvironment of gliomas account for grim prognosis 

of these patients (3,4). Within heterogeneous tumors like gliomas, multiple subregions with different 

phenotypic characteristics coexist, which often represent heterogeneous genetic and microenvironmental 

profiles, likely to respond variably to treatment (5,6). Lack of sensitive and specific quantitative imaging 

biomarkers for realizing spatial variations of gliomas and localizing the most aggressive portion of the 

tumor leads to inaccurate biopsy sampling, which hinders target-specific diagnosis and therapies (5).     

Targeted biopsy procedures and surgical/treatment planning for gliomas most often rely on conventional 

contrast-enhanced T1-weighted (CE-T1w) and T2-weighted (T2w) and T2-FLAIR images (7-9). 

Nonetheless, as diffuse gliomas tend to invade the brain tissue in small cell groups, tumor expansion and 

progression may precede changes in contrast enhancement (1,8). Furthermore, CE-T1w cannot 

sufficiently localize the most aggressive or active tumor sub-compartment to ensure reliable biopsy 

outcome (10,11). On the other hand, T2w hyperintense regions are incapable of characterizing the 

infiltrative glioma sub-region (infiltrative edema, also referred to as non-enhancing tumor (NET)), and 

diffuse infiltrating cells can be found beyond the extent of T2w hyperintensity borders (12,13). Hence, 

based on conventional MRI, stratification of the most aggressive/active part of the tumor and infiltrative 

glioma and detection of the extent of invasion from normal tissue remains challenging.  

Various advanced MRI contrasts have been explored for their potential in localizing and grading glioma 

brain tumors. Diffusion weighted imaging (DWI) and diffusion tensor imaging (DTI) reflect the water proton 

mobility related to changes in cellular density, permeability of the cell membrane, and tissue 

microstructure(14,15). Perfusion-weighted imaging (PWI) visualizes microvascular changes and cellular 

proliferation; particularly, regional cerebral blood volume (rCBV) derived from dynamic susceptibility 
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contrast enhanced (DSC)-MRI, correlates with the degree of neo-vascularization and histopathological 

grade surpassing the performance of CE-T1w MRI (16-18).  

There have been sporadic attempts to study the role of quantitative MRI methods, including DSC-MRI, 

DWI/DTI, IVIM, and T2-relaxometry for characterizing infiltrating glioma regions through biopsy validation 

(18-20). Hence, we sought to  address:  (1) the roles of individual MRI-derived parameters in 

differentiation of the three subregions, i.e. AT, IE, and NT, from each other; (2) the relationship among 

MRI-derived parameters with histopathological cellular density; and (3) the best multi-parametric 

combination of MRI-derived features for discrimination of AT, IE, and NT through a quantitative 

methodology. 

MATERIALS AND METHODS 

Patients 

Between July 2015 and February 2016, 10 adult patients (6 men and 4 women; mean age 40.4 years; 

age range, 20-76 years) with newly diagnosed gliomas were prospectively recruited in this study. The 

patients underwent pre-surgical MRI and CT examinations, followed by image-guided neurosurgery 

within 1-3 days from image acquisition. Institutional review board (IRB) approval was obtained and the 

patients provided their informed written consent to be included in this study, designed in compliance with 

Health Insurance Portability and Accountability Act (HIPAA) law. Inclusion criteria for this study consisted 

of patients: (1) with suspected glioma brain tumors based on their initial MR scan; (2) with no prior 

treatment, including surgery or radiotherapy; (3) having no contra-indications for surgery; (4) in whom the 

tumor was not in eloquent area; and (5) for whom there were no technical challenges for performing 

surgery. 
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Patients or biopsy specimens were excluded if (1) they did not undergo surgery; (2) imaging was 

performed inadequately or some image sequences were missing; and (3) if histopathological assessment 

of gross tumor or specimens were impossible or not provided. 

Image Acquisition 

All patients underwent pre-operative MRI acquisition within two days prior to their surgery. Structural and 

physiological MRI acquisitions were performed on a 3T MRI scanner (Siemens MAGNETOM Tim Trio, 

Erlangen, Germany). Sagittal T2w turbo spin echo (TE/TR=80/6000, Slice Thickness = 5 mm, Flip Angle 

= 140°, FOV = 230×230 mm2, Image Matrix = 320×320, Pixel size = 0.72×0.72 mm2). Axial T2w turbo 

spin echo (TE/TR=106/5400, Slice Thickness = 5 mm, Flip Angle = 120°, FOV = 200×200 mm2, Image 

Matrix = 232×256, Pixel size = 0.78×0.78 mm2). Axial fluid attenuated inversion recovery (FLAIR) 

(TE/TR/TI = 115/8400/2240, Slice Thickness = 5 mm, Flip Angle = 125°, FOV = 181×200 mm2, Image 

Matrix = 232×256, Pixel size= 0.78×0.78 mm2). Axial 3D MP-RAGE T2w spin-echo as a part of image-

guided surgery protocol with TE/TR = 200/2500, Slice Thickness = 1 mm, Flip Angle = 120°, FOV = 

208×256 mm2, Image Matrix = 420×512, Pixel size= 0.50×0.50 mm2.  

Axial DWI using echo-planar imaging (EPI) sequence with TE/TR = 100/4000, Slice Thickness = 5 mm, 

Flip Angle = 90°, FOV = 200×200 mm2, Image Matrix = 136×136, Pixel size = 1.47×1.47 mm, b-value = 

50, 1000 s/mm2). Axial multi b-value DWI using EPI method with TE/TR = 100/4000, Slice Thickness = 5 

mm, Flip Angle = 90°, FOV = 200×200 mm2, Image Matrix = 136×136, Pixel size = 1.47×1.47 mm2, b-

values = 0, 50, 200, 400, 600, 800, 1000 s/mm2. Diffusion tensor imaging (DTI) with 64 directions and 

TE/TR = 90/9000, Slice Thickness = 5 mm, FOV = 256×256 mm2, Flip Angle = 90°, NEX = 1, Image 

Matrix = 128×128×72, Pixel size = 1.72×1.72 mm2, b-value = 50, 1000 s/mm2. 

Axial multi-echo T2w spin-echo (T2-relaxometry) was carried out with TR=4000 ms, TE=12, 24, 36, 48, 

60, 72, 84, 96, 108, 120, 132, 144, 156, 168, 180, 192 ms, Slice Thickness = 5 mm, Flip Angle = 180°, 

FOV = 200×200 mm2, Image Matrix = 232×256, Pixel size = 0.78×0.78 mm2. 
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After injection of 0.2 mmol/kg of Gadovist (Bayer Schering Pharma, Berlin, Germany) at a rate of 5 ml/s 

and followed by a 20 mL saline flush, dynamic susceptibility contrast enhanced (DSC-) MRI was acquired 

using GE-EPI sequence with TE/TR = 30/1600, Slice Thickness = 5 mm, FOV = 220×220 mm2, Flip Angle 

= 70°, NEX = 1, Image Matrix = 128×128×20, Pixel size = 1.72×1.72 mm2, Number of Dynamic Scans = 

64, Temporal Resolution = 1.5 s. To minimize the effects of contrast agent extravasation a pre-load of 

contrast agent was administered with about 25% of the total contrast dose about 4 minutes of incubation 

time before the second injection for DSC-MR imaging.  

Pre- and post-contrast axial 3D MP-RAGE T1w spin-echo were also acquired as a part of the protocol 

required for navigation system TE/TR = 5/17, Slice Thickness = 1 mm, Flip Angle = 25°, FOV = 208×256 

mm2, Image Matrix = 208×256, Pixel size = 1×1 mm2. 

MR imaging pulse sequences and their parameter adjustments are summarized in Table 1. 

Computed tomography (CT) images were acquired for all patients prior to surgery to ensure accurate 

registration of the images with the position of the patient during image-guided neurosurgery. 3D images 

were acquired on a 64-slice CT scanner (GE Healthcare Technologies, WI, USA) with no gantry tilt, slice 

thickness of 0.625 mm, from maxilla to the top of the head.  

Quantification of MR Images 

Diffusion Tensor Imaging (DTI) 

Quantification of DTI was executed in ExploreDTI software (v4.8.6)(21) with proper parameter 

adjustments, and after EPI and patient motion correction. Maps of mean diffusivity (MD), fractional 

anisotropy (FA), and L1, L2, and L3 eigenvalues were exported from the software. Pure isotropic diffusion 

and pure anisotropic diffusion maps denoted by P and Q, respectively, were calculated based on this 

formula (22): 
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Dynamic Susceptibility Contrast-Enhanced (DSC-) MRI 

DSC-MRI analysis was carried out based on an algorithm developed in-house, which inputs signal 

intensity-time curves of T2*-based dynamic images in each pixel, converts them to ǻR2* curves, selects 

the arterial input function (AIF) based on a modified automated algorithm, performs decorrelation using 

block-circulant SVD, and generates regional CBV (rCBV) map.  

T2/Proton Density Mapping 

In T2-relaxometry, images are acquired at multiple echo times to obtain an estimate of T2 and proton 

density by fitting the following equation to the signal: 

2
0

TE

TS S e


  

where S0 is the proton density and T2 is the spin-spin relaxation. Quantitative T2 and proton density (PD) 

maps were generated by pixelwise fitting of the mentioned equation to the corresponding multi-echo 

signal.  

Quantification of Intra-Voxel Incoherent Motion  

Diffusion-weighted images are highly affected by flow of blood and cerebrospinal fluids at very low b-

values (i.e. less than 100-200 s/mm2) (23,24). Here, to separate contributions of diffusion and perfusion, 

the bi-exponential intra-voxel incoherent motion (IVIM) model is which is denoted by: 

*

0( (1 ) )D b DbS S fe f e     
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where S0 is the signal at b-value of zero, f is the fraction of signal affected by flow, D* describes the decay 

of signal caused by flow, D is the measured diffusion coefficient which is a function of diffusion time. To 

nullify the effect of flow on diffusion measurements, diffusion coefficients (D) for each voxel were 

calculated using conservative minimum b-values of 200 s/mm2 (26). As diffusion parameters are highly 

affected by non-Gaussian behavior of diffusion at higher b-values, for calculation of D, this effect was 

conservatively cancelled by using maximum value of 600 s/mm2. 

To account for non-Gaussianity of the signal in higher b-values, the modified IVIM model including 

diffusion kurtosis imaging (IVIM-DKI) was considered (25): 

ܵ ൌ ܵ଴ ቆ݂݁ି௕஽כ ൅ ሺͳ െ ݂ሻ݁ି௕஽ା௕మ஽మ௄଺ ቇ 

where K is the kurtosis factor that measures deviation from the Gaussian behavior. D for each voxel was 

estimated by fitting the equation to the segment of the signal at b-values of 200, 400, and 600 s/mm2 and 

K was estimated on b-values of 600, 800, and 1000 s/mm2 using nonlinear least-squares method.  

 

Biopsy Site Selection  

The generated maps from different modalities, including rCBV-map from DSC-MRI, ADC-map from DWI,  

FA, MD, P, Q from DTI, D, D*, f, and K -maps from multi b-value diffusion imaging, T2 and PD maps from 

T2-relaxometry technique, and conventional images comprising of FLAIR, T2_ISO (MP-RAGE T2w), and 

MP-RAGE pre-contrast T1w, were co-registered with post-contrast MP-RAGE T1w (CE-T1w) image 

using rigid registration method with normalized mutual information (NMI) as the similarity measure in 

SPM software (http://www.fil.ion.ucl.ac.uk/spm/). The difference between post- and pre-contrast T1w 

images was calculated to form T1_SUB (subtracted T1w) image, which shows the enhanced regions 

(Fig. 1).  

http://www.fil.ion.ucl.ac.uk/spm/
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A senior radiologist (K. F. with 12 years of experience in neuroradiology) identified the biopsy targets, i.e. 

active tumor, infiltration, and normal regions, based on presence of hyperintensity on CE-T1w, 

hypointensity on T2w and FLAIR images, and according to quantitative ADC and rCBV maps.  

Rectangular regions of interest (ROIs) with sizes of at most 8x8 pixels were marked on CE-T1w images 

and imported into the navigation workstation to plan for image-guided biopsy intervention. The regions 

were ideally identified on areas with best accessibility for the neurosurgeon for specimen collection and 

distant from vessels, ventricles, and critical brain regions.  

Image-Guided Tissue Biopsy Procedure 

The specimens were sampled from the patients by a senior neurosurgeon (M. Z. with 10 years of 

experience in neurosurgery) using disposable biopsy needle (Stryker Inc., Switzerland). The coordinates 

of the ROIs were recorded by the navigation system (OpticVisionTM, Parseh Intelligent Surgical Systems 

Co. (PARSISS), Iran), which were used to overlay on the images and MRI-derived quantitative maps. 

Based on the guide provided by navigation, needle biopsy was performed on all target points. For each 

patient, 4 to 6 specimens with at least 1-cm of distance were collected for histopathological assessments.  

These technical considerations were addressed during the biopsy to minimize intra-operative brain shift 

and error: 

1- The target points were pre-surgically marked in the order of normal tissue, edema, tumor, and 

necrosis; 

2- Serum manitol, corticosteroids or any other diuretics pre-/intraoperative were not given to 

patients prior to biopsy procedure; 

3- Hypo/hyperventilation during surgery was avoided; 

4- Minimal dural opening was performed to prevent CSF egress resulting in brain shift; 
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5- The target points in proximity of the ventricles were the last points for biopsy, to avoid unwanted 

entrance into the ventricles resulting in CSF  drainage and therefore changing navigation 

accuracy due to brain shift; 

6- For the target points in proximity of cystic portions within the tumor, similar strategy was adopted. 

After needle biopsy, the dura was opened and based on pre-operative images, complete resection of the 

tumor was performed and the resected gross tumor volume was transferred for histopathological grading.  

 Histopathological Assessment of Tissue Samples 

After being removed from the brain, the specimens were fixed in 10% buffered formalin and routinely 

processed for histopathological assessment. Five micrometer sections were stained using hematoxylin 

and eosin (H&E) method and reviewed by a patholologist (F. A. with 20 years of experience in 

neuropathology).  For each specimen, the pathologist determined the presence of tumor cells and scored 

the samples as “normal tissue” where no tumor cells were identified, “positive tumor cells” when infiltrating 

tumor cells were present, and “tumor core” when tumor constituted the majority of tissue. Tumor was 

identified, classified and graded based on morphological features, such as density and distribution of 

cells, nuclear atypia, mitotic activity, vascular proliferation and necrosis. Throughout this manuscript, we 

regard the pathological term “tumor core” as “active tumor (AT)”, “positive tumor cells” as “infiltrating 

edema (IE)”, and “normal tissue” as “normal tissue (NT)”.   

For each specimen, the area with the highest cellularity was selected and one image was captured at 

x40 magnification. Quantitative assessment of histology images was performed automatically by a cell 

segmentation method which applies decorrelation and stretching of the colorspace in the preprocessing 

step for improving the performance of cell segmentation (Fig. 2) (27). Cellular count (CC) within the 

specified area was calculated from the segmented images and used as a representative parameter of 

cellular density. The relationship between the calculated CC on all regions and interpretation of the 

pathologist, as the gold standard, was examined.   
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Statistical Analysis 

The statistical analysis comprised of the following steps: (1) evaluating the association of MRI-derived 

parameters with each other and with statistically significant quantitative histopathological feature(s); (2) 

assessment of each of the mean values of the extracted features among the three tissue subtypes, i.e. 

infiltrative edema (IE), normal tissue (NT), and active tumor (AT); (3) investigating the diagnostic 

performances of individual MRI-derived features for identifying the histopathologically-identified regions 

and their combinations based on a machine learning technique, comprising automatic feature selection 

and classification.  

The computed MRI-based features (n=15) include morphological parameters, i.e. T1_SUB, T2_ISO, 

FLAIR, diffusion-related parameters, i.e. ADC, MD, FA, P, Q, D, D*, K, perfusion-related parameters, i.e. 

CBV, and f, and T2-relaxometry parameters, i.e. T2 and PD. Histopathological CC metric was also 

evaluated for its potential in discriminating the sub-regions. All statistical analysis and machine learning 

procedures were performed in R Statistical Software (R3.0.2, Vienna, Austria). 

Comparison of Mean Values—One-way ANOVA method was applied to evaluate the discrimination of 

normal tissue (NT), infiltrative edema (IE), and active tumor (AT) tissue subtypes based on the MRI-

derived parameters and cellular count. P-value<0.05 was considered significant for differentiation of the 

three tissue regions simultaneously. For each parameter, pairwise differentiation of the regions, namely 

NT from IE, NT from AT, and IE from AT, was assessed by post-hoc tests, namely Tukey’s honest 

significant difference (Tukey-HSD) or Games-Howell methods, to avoid Type I errors by adjusting the 

calculated p-values for multiple comparisons.  The HSD test is based on assumptions of normality and 

equality of variance, which the former was evaluated using normality tests and the latter by Bartlett 

method. If equality of variance assumption passed, Tukey-HSD was performed; otherwise, Games-

Howell nonparametric test was applied.   
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Association of Parameters—Relationships between MRI-derived parameters with each other and also 

between them and cellular count were obtained using Spearman’s rank correlation. To correct for multiple 

comparisons, Holm’s method for multiple testing was applied (28) and after correction, a level of 0.05 

was considered statistically significant.  

Assessment of Diagnostic Performances of Individual MRI-derived Parameters— Fischer’s linear 

discriminant analysis (LDA) method was used to assess performances of MRI-derived and CC 

parameters in discrimination of NT from IE, NT from AT, and IE from AT. LDA was implemented with 

leave-one-out cross validation (LOOCV), where in each iteration (number of iterations equals the number 

of samples), the dataset is partitioned into the training set composed of whole data excluding one sample, 

which is separated as the test object. Assessment metrics, namely sensitivity, specificity, accuracy, and 

area under the receiver operating characteristic (ROC) curve (AUC) were calculated on test samples and 

averaged over loops of cross-validation. 

Combination of MRI-derived Parameters through Classification— To identify the 

complementary/competitive values of MRI-derived features, feature selection was carried out using 

Akaike Information Criterion (AIC) (29) and Schwarz Bayesian Information Criterion (BIC) (30) in forward 

selection, backward elimination and stepwise selection strategies (constructing 6 feature selection 

methods) on a feature space consisting of the 15 MRI-derived parameters.  

The feature selection algorithm was adjusted to avoid choosing similar parameters in a set, e.g. the 

algorithm should select only one feature among diffusion-related features: ADC, D, MD, P; anisotropy-

related features: FA, Q; perfusion-related features: f, CBV; T2-related features: T2, T2_ISO.  

Feature selection was performed in loops of LOOCV and the most frequently selected feature subsets 

by each of the feature selection methods were the representative feature subset (31). This was followed 

by a classification step based on Fischer’s linear discriminant analysis (LDA), quadratic discriminant 
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analysis (QDA), and support vector machine (SVM) methods (32) for discrimination of tissue subtypes. 

To avoid bias, classification was also performed using LOOCV.  

RESULTS 

Among the 10 recruited patients, 6 were diagnosed with low grade glioma (WHO Grade II: low-grade 

astrocytoma (n=3), diffuse oligoastrocytoma (n=2), oligodendroglioma (n=1)), 1 with anaplastic 

oligoastrocytoma (WHO Grade III), and 3 with glioblastoma multiforme (WHO Grade IV).  A total of 51 

tissue specimens were collected from ten patients. Three patients (2 GBM and 1 Grade II 

Oligodendroglioma) were excluded due to absence or distorted multi b-value, multi-echo, DTI or DSC-

MRI. Finally, seven patients with 34 samples were included in the study. Based on qualitative 

histopathological assessment, 6 samples were diagnosed as the “tumoral core”, 20 samples as “positive 

tumor cells”, and 8 samples as “normal tissue”.  

Relationship of MRI Parameters 

The summary results for correlations among the MRI parameters with each other and with CC are 

provided in Table 2. The statistically significant correlations are stated in boldface type and are shaded 

in gray. 

Diffusion-based parameters—ADC parameter significantly correlated with MD, P, D, T2_ISO and T2 and 

negatively with FA and K. This parameter showed strongest correlations with D (R=0.96), MD (R=0.91), 

P (R=0.88), and T2 (R=0.80), showed no significant correlation with CC. 

D is directly correlated with ADC, FA, MD, P, T2_ISO, T2, and inversely correlated with K. The strongest 

correlation of D was with ADC (R=0.96), MD (R=0.90), and P (R=0.88). It showed significant correlation 

with CC (R=0.40).   
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D* was correlated poorly and inversely with T2. K correlated inversely with ADC, MD, P, and T2 (in all, 

R≤0.62).  Besides the correlations mentioned earlier that included MD, this parameter was strongly 

correlated with P (R=0.98) and T2 (R=0.84), and showed moderate correlations with T2_ISO. P was 

highly related to T2 (R=0.81), and moderately correlated with T2_ISO. Both MD and P were correlated 

with CC (R=0.36). 

FA was strongly correlated with Q (R=0.86) and indicated modest inverse association with ADC, D, MD, 

P, and T2. Furthermore, FA showed an inverse correlation with CC (R=-0.37). Q was directly correlated 

with FA, and showed no relationships with CC. 

Perfusion-based parameters—CBV only showed statistically significant correlation with f parameter 

derived from IVIM which was not strong (R=0.35). Additionally, it indicated a significant correlation with 

CC (R=0.46). Parameter f correlated with none of the parameters except CBV.  

cMRI parameters—FLAIR only correlated with T2_ISO with correlation coefficient of 0.67. T2_ISO was 

significantly associated with ADC, D, MD, FA, FLAIR, and P (for all, R<0.70). T1_SUB showed no 

significant correlations with any of the parameters. 

T2-mapping parameters—As mentioned in previous sections, T2 demonstrated correlations with ADC, D, 

K, MD, P, and T2_ISO. PD-map correlated with none of the parameters.  

Association of Tissue Subtypes with Quantitative MRI-derived Parameters 

Comparison of the mean values of individual parameters based on ANOVA test for differentiation of the 

three tissue subtypes from each other is stated in Table 3. The results suggest that among MRI-derived 

parameters, T2_ISO, FLAIR, ADC, CBV, MD, FA, P, D, and T2 show statistically significant differences 

among the three subregions, i.e. NT, IE, and AT. Histopathologically-derived parameter, CC, showed 

statistically significant differences among the three tissue subregions (P = 8.9E-06). 
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The details of classification performances of individual parameters in differentiation of each of the two 

subregions from each other and based on cross-validated LDA method are given in Table 3. For 

differentiation of NT from IE (requiring high sensitivity), highest performances were for T2_ISO, FLAIR, 

ADC, MD, P, D, and T2. T2-based features, i.e. T2_ISO, FLAIR, and T2 resulted in AUCs>84% for this 

discrimination. The four diffusion-related parameters, i.e. ADC, MD, P, and D resulted in AUCs of over 

90% (and sensitivities >90%) for discrimination of NT from IE. In this context, T1_SUB, CBV, and f were 

highly sensitive (100%) but lack specificity. 

All MRI-derived parameters except for D*, f, and PD were accurate for separation of NT from AT, implying 

high sensitivity of these metrics.  

The only statistically significant MRI-derived feature for identification of IE from AT was DSC-MRI-derived 

parameter, i.e. CBV, with high specificity of 95%.  

CC showed high AUCs for differentiation of the three two-by-two subregions (>84%), although its 

specificity for separation of NT from IE was rather low. 

Combination of Quantitative MRI-derived Parameters 

For classification of the three tissue subtypes from each other, i.e. NT, IE, and AT, four feature 

combinations were selected by the feature selection methods: (1) CBV, MD, FLAIR, T2_ISO (selected 

by Backward AIC); (2) CBV, MD (selected by Backward BIC); (3) CBV, D, T2_ISO (Forward/Stepwise 

AIC); and (4) CBV, D (selected by Backward BIC) (Table 4). Three classification methods, namely, LDA, 

QDA, and SVM, were applied on the selected combinations. As Table 4 summarizes, using the 

classifiers, the most accurate feature set was “CBV, MD, FLAIR, T2_ISO” with AUC of ~90% for all three 

classifiers. Additionally, the feature combination “CBV, D, T2_ISO” resulted in AUC of ~92% using LDA 

classification scheme. 
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Table 5 should assess the performances of classification schemes (each classifier on the selected 

feature subsets) for two-by-two discrimination of the three subregions from each other. Combination of 

“CBV, MD, FLAIR, T2_ISO” using either QDA or SVM classifiers produces accurate results for all the 

three discrimination purposes, i.e. NT from IE, NT from AT, and IE from AT. Using QDA, this combination 

indicates AUC of 92.3% for characterization of NT from IE, 100% for NT from AT, and 89.2% for IE from 

AT. SVM classification based on this combination results in AUC of 98.8% for identification of NT from 

IE, 100% for NT from AT, and 100% for IE from AT. 

Additionally, “CBV, D, T2_ISO” using QDA classifier can generate AUC of 85.6% for differentiation of NT 

from IE, 100% for NT from AT, and 91.6% for IE from AT. 

DISCUSSION 

Conventional MR imaging lacks accuracy in assessing physiological variations and regional 

heterogeneity within tumors. During the past years, several quantitative methods, such as DWI/DTI and 

DSC-MRI, have been investigated for their potential as adjuncts to cMRI. Yet, the comparative and 

complementary roles of these methods and emerging techniques, such as T2-relaxometry and IVIM, are 

not explored especially through histopathologically-approved specimens and objective classification 

techniques.  

In this preliminary study, we attempted to tackle this problem by evaluation of the aforementioned 

techniques on localized biopsy specimens, which were histopathologically assessed and attributed to 

active tumor (AT), infiltrative edema (IE), and normal tissue (NT) subregions. Among individual MRI-

derived parameters, diffusion-related ADC, MD, P, D parameters, as markers of cellular proliferation, 

indicated high classification performance for identification of NT from IE, and NT from AT, but were not 

suitable for IE from AT separation. This finding along with significant correlation of D, MD, and P with 

histopathological CC parameter, suggests that changes in cellular distribution captured by diffusion-

based parameters can be early markers of glioma infiltration (NT from IE discrimination). But, these 
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changes in low-grade glioma are not significantly different among IE and AT subregions; therefore, these 

parameters may not be diagnostically valuable for localizing the most active part of the tumor and other 

features must be explored. Among FA and Q as indicators of diffusion anisotropy, FA was statistically 

significant for discrimination of the three subregions and showed significant inverse correlation with CC, 

and accurately discriminated NT from AT.. However, FA did not result in statistically significant differences 

for isolation of NT from IE or IE from AT in our sample population. 

In animal studies, DTI has been shown to identify microinfiltration of tumor cells in the surrounding brain 

tissue (33,34). Early investigations on human brain glioma indicate that DWI/DTI can provide helpful 

information for assessment of peritumoral edema and to define margins of tumor invasion (3,35,36). 

Specifically, apparent diffusion coefficient (ADC) (20,37) or mean diffusivity (MD) and fractional 

anisotropy (FA) (19,38,39) have shown correlations with NET based on histopathologically-approved 

biopsy specimens. 

Unlike other MRI-derived parameters, CBV was the only statistically significant feature for discrimination 

of IE from AT . Hence, early vascularization is a discriminative factor for identifying the most active 

component of gliomas. This parameter was not statistically significant for identification of NT from IE, 

indicating that in early stages of infiltration and before transforming into the most active subpopulations, 

neo-angiogenesis may not have a role in gliomas. CBV was evidently statistically significant for 

characterization of NT from AT. Nonetheless, the classification performance  was lower than that of 

diffusion-based parameters . Suboptimal performance of CBV in contrast to diffusion-based parameters 

in this context can be attributed to our sample population of low-grade gliomas, in which neo-

vascularization has not become largely prominent in the infiltrative or active tumor regions.   

The best combination of these parameters was sought using cross-validated feature selection and 

classification methods. Three classifiers with increasing complexity, namely LDA, QDA, and SVM, were 

implemented to get insights about capability of the selected feature combinations in tissue identification 
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irrespective of classifier formulation. In all four selected feature sets, CBV and a diffusion-based 

parameter like D or MD were present, signifying the importance of perfusion and diffusion parameters in 

subregion characterization. Incorporation of T2_ISO and FLAIR to perfusion and diffusion parameters in 

the form of “CBV, MD, T2_ISO, and FLAIR” combination resulted in high classification performance for 

characterization of the three tissue subregions from each other, using the classifiers (AUC~90%). This 

feature set revealed high classification performance in pairwise subregion classification, as well . T2_ISO 

and FLAIR are important factors for illustrating the pathogenic changes within glioma borders. Similar 

integration of parameters has been intuitively employed in brain tumor segmentation elsewhere (40-42).  

A combination of fewer parameters including “CBV, D, T2_ISO” based on QDA classifier generated a 

relatively high classification performance for pairwise differentiation of tissue subregions . In occasions 

with high risk of patient discomfort and motion, IVIM acquisition combined with DSC-MRI perfusion and 

anatomical high-resolution T2w, required for image-guided neurosurgery, could be performed without 

addition of DTI acquisition, which is highly susceptible to motion. 

Nonetheless, our study and the results achieved are limited by the included patient population and small 

sample size. Furthermore, despite using cross-validation for reducing bias in classification in our work, 

an independent validation dataset is required for generalizing the findings. Finally, in this work, our 

research imaging protocol had to be adapted to the clinical set-up constraints of our academic educational 

institution and therefore, some of the imaging parameters may not be optimal; for example, in quantitative 

imaging sequences, the voxel sizes are non-isotropic. Future works may benefit from optimization of 

parameter specifications for quantitative imaging sequences. 

In conclusion, through investigation of a variety of conventional and quantitative MRI techniques applied 

on histopathologically-approved tissue specimens, we have demonstrated that incorporation of a few 

imaging techniques (comprising of conventional MRI (T2w and FLAIR) and DSC-MRI with DTI or IVIM) 
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can form a multi-parametric surrogate marker, predictive of tissue subregions prior to image-guided 

biopsy procedures. 
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Table 1—MR Imaging Specifications 

Sequence TE/TR  Slice Thickness 
(mm) 

Flip Angle FOV (mm2) Image Matrix Other Specifications 

Pre- and Post-contrast 
3D T1w 

5/17 1 25° 208×256 208×256 N/A 

3D T2w 200/2500 1 120° 208×256 420×512 N/A 

T2-FLAIR 115/8400 5 125° 181×200 232×256 TI=2240 

T2-Relaxometry (12, 24, 36, 48, 60, 72, 
84, 96, 108, 120, 132, 
144, 156, 168, 180, 
192)/4000 

5 180° 200×200 232×256 N/A 

DWI 100/4000 5 90° 200×200 136×136 b-values=50, 1000 
s/mm2 

Multi b-value DWI 100/4000 5 90° 200×200 136×136 b-values=0, 50, 200, 
400, 600, 800, 1000 
s/mm2 

DTI 90/9000 5 90° 256×256 128×128 b-values=50, 1000 
s/mm2 

DSC-MRI 30/1600 5 70° 220×220 128×128 No. Dynamic Scans = 
64, Temporal 
Resolution = 1.5 s 

DWI—Diffusion Weighted Imaging; DTI—Diffusion Tensor Imaging; DSC-MRI—Dynamic Susceptibility Contrast Enhanced MRI;   
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Table 2—Correlations (in terms of R) among the MRI-derived parameters with each other and between MRI-derived parameters and cell count (from 
histopathology) †. 

 ADC CBV D D* FA FLAIR f K MD P PD Q T1_SUB T2_ISO T2 Count 

ADC  -0.078 0.96 -0.40 -0.60 0.45 -0.11 -0.71 0.91 0.88 0.28 -0.28 0.13 0.66 0.80 0.30 

CBV   0.01 0.14 -0.25 0.03 0.35 0.17 -0.09 -0.06 0.18 -0.24 0.28 -0.22 -0.19 0.46 

D    -0.31 -0.64 0.46 -0.09 -0.68 0.90 0.88 0.26 -0.31 0.15 0.64 0.78 0.40 

D*     0.30 -0.25 0.15 0.43 -0.38 -0.40 -0.25 0.30 -0.09 -0.30 -0.49 -0.02 

FA      -0.33 0.10 0.58 -0.56 -0.58 -0.41 0.86 -0.20 -0.39 -0.54 -0.37 

FLAIR       0.14 -0.43 0.41 0.44 0.21 -0.14 0.37 0.69 0.34 0.05 

f        0.36 0.01 -0.01 0.07 0.08 0.27 0.10 -0.07 0.32 

K         -0.60 -0.59 -0.18 0.41 -0.19 -0.51 -0.61 -0.09 

MD          0.98 0.46 -0.28 0.19 0.62 0.84 0.36 

P           0.47 -0.31 0.26 0.59 0.81 0.36 

PD            -0.47 0.27 0.02 0.39 0.00 

Q             -0.23 -0.11 -0.34 -0.17 

T1_SUB              0.03 0.03 0.23 

T2_ISO               0.69 0.15 

T2                0.18 

† The cells with bold-face type and with gray-shaded color are those with significant correlation as indicated by Spearman’s rank correlation.  

ADC—Apparent Diffusion Coefficient (DWI); CBV—Cerebral Blood Volume (DSC-MRI); D—True diffusion coefficient (IVIM); D*—Pseudo-diffusion coefficient (IVIM); f—perfusion fraction (IVIM); K—Diffusion 
Kurtosis; MD—Mean Diffusivity (DTI); FA—Fractional Anisotropy (FA); P—Pure isotropic diffusion coefficient (DTI); Q—Pure anisotropic diffusion coefficient (DTI); PD—Proton Density (T2-relaxometry); T2— T2 
relaxation time (T2-relaxometry); T1_SUB—Subtracted high-resolution T1w from the corresponding high-resolution contrast-enhanced T1w image; T2_ISO—High-resolution T2w image; FLAIR—Fluid-attenuated 

inversion recovery image;   
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Table 3— Comparison of the Mean Values Based on ANOVA Test (Second Column), for Differentiation of Normal Tissue (NT) vs. Infiltrative Edema 
(IE) vs. Active Tumor (AT) Simultaneously, and Evaluating the Diagnostic Performances of Individual Parameters in Differentiating Pairwise Regions, 

i.e. “NT” from “IE”, “NT” from “AT”, and “IE” from “AT” Using Cross-validated LDA Method †.  

Feature 
ANOVA 
Test (P-
values) 

NT from IE NT from AT IE from AT 

P-values Sens. Spec. Acc. AUC (95% CI) P-values Sens. Spec. Acc. AUC (95% CI) P-values Sens. Spec. Acc. AUC (95% CI) 

T1_SUB 0.203 0.563 100 0 71.4 68.8 (45.0 – 92.5) 0.176 50 100 78.6 81.2 (54.1 – 100) 0.462 1.9 95.1 73.7 67.5 (36.4 – 98.1) 

T2_ISO 0.001 0.018 87.0 75.9 83.9 89.4 (77.0 – 100) 0.000 77.9 87.5 83.5 95.8 (86.0 – 100) 0.913 0.0 100 76.9 59.1 (35.5 – 82.8) 

FLAIR 0.001 0.016 89.8 64.7 82.7 90.6 (79.0 – 100) 0.000 67.9 87.5 79.1 93.7 (81.2 – 100) 0.958 0.0 100 76.9 49.2 (21.8 – 76.5) 

ADC 0.005 0.002 89.6 87.5 89.0 90.0 (76.9 – 100) 0.001 100 87.5 92.9 100 (100 – 100) 0.473 0.64 100 77.1 65.0 (41.9 – 88.1) 

CBV 0.004 0.963 100 0 71.4 50.7 (24.1 – 77.3) 0.003 66.7 87.5 78.6 75.0 (41.1 – 100) 0.018 51.3 95.4 85.2 80.0 (50.7 – 100) 

MD 0.000 0.001 93.9 63.8 85.3 93.8 (85.0 – 100) 0.001 100 100 100 100 (100 – 100) 0.601 1.3 100 77.2 68.3 (46.3 – 90.3) 

FA 0.010 0.082 94.6 12.9 71.3 70.6 (50.2 – 91.0) 0.007 100 85.5 91.8 100 (100 – 100) 0.209 0.0 100 76.9 86.7 (71.0 – 100) 

Q 0.116 0.215 100 0 71.4 51.9 (27.5 – 76.4) 0.104 77.6 80.4 79.7 83.3 (58.6 – 100) 0.990 5.8 98.6 77.2 82.5 (65.4 – 99.3) 

P 0.000 0.001 89.7 69.2 84.0 91.9 (81.0 – 100) 0.002 100 99.1 99.5 100 (100 – 100) 0.737 0.0 100 76.9 60.0 (35.3 – 84.7) 

D 0.000 0.002 90.0 71.4 84.9 90.6 (78.6 – 100) 0.000 100 94.0 96.7 100 (100 – 100) 0.251 9.9 99.0 78.5 68.3 (46.0 – 90.6) 

D* 0.748 0.918 98.9 0.9 70.9 60.6 (31.8 – 89.5) 0.734 41.2 74.1 61.5 60.4 (24.4 – 95.9) 0.855 0.0 100 76.9 52.2 (23.5 – 80.8) 

f 0.505 0.941 100 0 71.4 52.0 (27.1 – 76.8) 0.504 32.6 86.1 63.7 59.5 (27.8 – 90.7) 0.574 0.6 97.6 75.2 64.2 (39.9 – 88.4) 

K 0.1136 0.906 93.5 14.9 71.2 73.7 (52.9 – 94.6) 0.165 83.3 86.5 85.2 87.5 (65.8 – 100) 0.145 0 100 76.9 55.8 (32.4 – 79.3) 

T2 0.018 0.024 93.3 66.8 86.0 84.4 (65.4 – 100) 0.041 83.3 87.5 85.7 87.5 (67.8 – 100) 0.890 0.0 100 76.9 50.1 (24.4 – 75.8) 

PD 0.282 0.461 100 0.51 71.6 66.9 (43.0 – 90.7) 0.272 42.9 86.5 68.1 72.9 (42.7 – 100) 0.738 2.1 100 77.4 55.1 (23.4 – 86.9) 

Count 8.9E-06 0.221 92.5 25.9 73.5 83.8 (68.5 – 98.9) 1.0E-05 66.7 100 85.7 100 (100 – 100) 6.1E-05 66.7 99.8 92.1 91.7 (79.2 – 100) 
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† The values with bold-face type under the P-values column are those with significant P-values based on ANOVA test for simultaneous differentiation of the three regions from each other, and 
also pairwise differentiation of the regions based on Tukey-HSD or Games-Howell tests (whichever was appropriate for each of the parameters). The bold-face type values under other columns 

indicate high accuracy.
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Table 4— Evaluating accuracy and diagnostic performances (AUC) of LDA, QDA, and SVM 
classifiers on the selected features †. 

Feature Selection 

Method 

Selected Features Accuracy 

(%) 

AUC (95% CI) 

(%) 

Cross-Validated LDA 

Backward AIC CBV, FLAIR, MD, T2_ISO 82.8 89.3 (75.9 – 100) 

Backward BIC CBV, MD 75.4 74.7 (55.0 – 94.4) 

Forward/Stepwise AIC CBV, D, T2_ISO 82.1 91.9 (83.1 – 100) 

Backward BIC CBV, D 74.8 73.2 (54.4 – 91.6) 

Cross-Validated QDA 

Backward AIC CBV, FLAIR, MD, T2_ISO 85.1 92.4 (84.1 – 100) 

Backward BIC CBV, MD 79.9 80.0 (61.8 – 98.0) 

Forward/Stepwise AIC CBV, D, T2_ISO 83.4 85.3 (71.2 – 99.1) 

Backward BIC CBV, D 81.2 84.8 (69.1 – 99.4) 

Cross-Validated SVM 

Backward AIC CBV, FLAIR, MD, T2_ISO 91.3 91.9 (79.6 – 100) 

Backward BIC CBV, MD 80.2 79.8 (61.4 – 98.1) 

Forward/Stepwise AIC CBV, D, T2_ISO 79.3 83.0 (65.9 – 99.7) 

Backward BIC CBV, D 79.3 81.4 (63.6 – 98.8) 

† The gray-shaded cells with bold-type face numbers or letters indicate highest diagnostic performances. 
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Table 5— Evaluating classification performances of LDA, QDA, and SVM classifiers on the selected features for differentiation of each of 

two tissue subregions from each other, i.e. NT from IE, NT from AT, and IE from AT †. 

Classifiers 
Feature Combinations  NT from IE  NT from AT  IE from AT 

 Sens. Spec. Acc. AUC (95% CI)  Sens. Spec. Acc. AUC (95% CI)  Sens. Spec. Acc. AUC (95% CI) 

L
D

A
 

CBV, FLAIR, MD, 
T2_ISO 

 90.0 86.8 89.1 94.8 (86.4 – 100)  100 100 100 100 (100 – 100)  57.9 99.8 90.1 92.0 (80.0 – 100) 

CBV, MD  91.1 65.9 84.0 92.6 (83.1 – 100)  100 100 100 100 (100 – 100)  62.3 99.6 91.1 91.5 (79.0 – 100) 

CBV, D, T2_ISO  86.1 94.1 88.5 91.7 (80.5 – 100)  100 100 100 100 (100 – 100)  50.6 100 88.6 91.4 (78.6 – 100) 

CBV, D  89.6 64.2 82.5 90.0 (77.7 – 100)  100 100 100 100 (100 – 100)  50.6 100 88.6 91.3 (78.3 – 100) 

Q
D

A
 

CBV, FLAIR, MD, 
T2_ISO 

 85.2 99.5 89.3 92.3 (83.9 – 99.9)  100 100 100 100 (100 – 100)  84.1 94.4 92.0 89.2 (72.5 – 100) 

CBV, MD  86.6 73.4 82.9 80.0 (61.6 – 98.0)  100 100 100 100 (100 – 100)  66.7 99.6 92.0 83.1 (83.1 – 100) 

CBV, D, T2_ISO  81.4 89.8 93.9 85.6 (71.7 – 99.0)  100 100 100 100 (100 – 100)  83.3 99.8 96.0 91.6 (91.6 – 100) 

CBV, D  85.5 83.4 85.1 84.5 (68.6 – 99.3)  100 100 100 100 (100 – 100)  61.1 100 91.1 80.6 (59.1 – 98.9) 

S
V

M
 

CBV, FLAIR, MD, 
T2_ISO 

 94.6 89.8 93.3 98.8 (95.9 – 100)  100 100 100 100 (100 – 100)  85.4 100 96.6 100 (100 – 100) 

CBV, MD  93.7 65.2 85.6 94.6 (86.8 – 100)  100 100 100 100 (100 – 100)  69.5 100 92.9 93.5 (80.2 – 100) 

CBV, D, T2_ISO  88.3 86.9 88.0 92.9 (82.9 – 100)  100 100 100 100 (100 – 100)  50.6 100 88.6 91.1 (77.8 – 100) 

CBV, D  91.1 61.4 82.7 91.4 (79.8 – 100)  100 100 100 100 (100 – 100)  50.6 100 88.6 91.6 (78.7 – 100) 

† The gray-shaded cells with bold-type face numbers or letters indicate highest diagnostic performances of classifiers for all three discrimination 
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FIGURE CAPTIONS 

Fig 1. MR images and quantitative maps of a 20-years old female with histopathologically-confirmed grade 

II Oligodendroglioma (images are coregistered with CE-T1w image) 

Fig 2. Automated segmentation of cells in microscopic images (x40 magnification): (A) a sample image 

from tumor core of the same patient indicated in Fig 1; (B) automated cell segmentation result. 

 


