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Simulation and Synthesis in Medical Imaging
Alejandro F. Frangi, Fellow, IEEE, Sotirios A. Tsaftaris, Member, IEEE, and Jerry L. Prince, Fellow, IEEE

(Invited Editorial)

Abstract—This editorial introduces the Special Issue on Sim-
ulation and Synthesis in Medical Imaging. In this editorial, we
define so-far ambiguous terms of simulation and synthesis in
medical imaging. We also briefly discuss the synergistic im-
portance of mechanistic (hypothesis-driven) and phenomenologic
(data-driven) models of medical image generation. Finally, we
introduce the twelve papers published in this issue covering
both mechanistic (5) and phenomenologic (7) medical image
generation. This rich selection of papers covers applications in
cardiology, retinopathy, histopathology, neurosciences, and on-
cology. It also covers all mainstream diagnostic medical imaging
modalities. We conclude the editorial with a personal view on the
field and highlight some existing challenges and future research
opportunities.

Index Terms—Simulation, Synthesis, Modelling, Imaging, Ma-
chine learning, Data-driven, Hypothesis-driven

I. INTRODUCTION

THE medical image community has always been fasci-

nated by the possibility to create simulated or synthetic

data upon which to understand, develop, assess, and validate

image analysis and reconstruction algorithms. From very ba-

sic digital phantoms all the way to very realistic in silico

models of medical imaging and physiology, our community

has progressed enormously in the available techniques and

their applications. For instance, mechanistic models (imaging

simulations) emulating the geometrical and physical aspects

of the acquisition process have been used now for a long

time. Advances on computational anatomy and physiology

have further enhanced the potential of such simulation plat-

forms by incorporating structural and functional realism to

the simulations that can now account for complex spatio-

temporal dynamics due to changes in anatomy, physiology,

disease progression, patient and organ motion, etc.

More recently, developments in machine learning together

with the growing availability of ever larger-scale databases

have provided the theoretical underpinning and the practical

data access to develop phenomenologic models (image synthe-

sis) that learn models directly from data associations across

subjects, time, modalities, resolutions, etc. These techniques

may provide ways to address challenging tasks in medical

image analysis such as cross-cohort normalization, image im-

putation in the presence of missing or corrupted data, transfer

of knowledge across imaging modalities, views or domains.
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ing & Simulation Technologies in Biomedicine, Electronic & Electrical
Engineering Department, University of Sheffield, Sheffield, UK. e-mail:
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S.A. Tsaftaris is with the Institute of Digital Communications
School of Engineering, University of Edinburgh, Edinburgh, UK. e-mail:
S.Tsaftaris@ed.ac.uk.
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and Computer Engineering, The Johns Hopkins University, Baltimore, USA.

To this date, however, these two main research avenues

(simulation and synthesis) remain independent efforts despite

sharing common challenges. For instance, both modelling

approaches involve dealing with large scale optimization prob-

lems (e.g. in learning processes or physical equations), involve

the use of regularization and priors (e.g. either based on math-

ematical or physical properties), need to generalize well, adapt

to new scenarios, and degrade gracefully beyond the original

learning set or modelling assumptions, require the definition

of meaningful figures of merit to assess the quality, accuracy,

or realism of simulated/synthesized data, in both approaches

there is a growing emphasis on open source implementations,

open data benchmarks, and evaluation challenges, just to name

a few. These and other challenges have been discussed at the

successful SASHIMI Satellite Workshop1 held in conjunction

with the Medical Image Computing and Computer Assisted

Interventions (MICCAI) Conference in 2016 (Athens, Greece)

and 2017 (Quebec, Canada). We look forward to the future

editions of this Workshop as a forum for identifying new

research challenges and avenues, and tackling them as a

community.

This special issue provides an overview of the state-of-the-

art in methods and algorithms at the bleeding edge of synthesis

and simulation in/for medical imaging research. We hope this

collection will stimulate new ideas leading to theoretical links,

practical synergies, and best practices in evaluation and assess-

ment common to these two research directions. We solicited

contributions from cross-disciplinary teams with expertise,

among others, on machine learning, statistical modelling,

information theory, computational mechanics, computational

physics, computer graphics, applied mathematics, etc.

In the sequel, we first aim to formally define simulation

and synthesis in medical imaging and then discuss similarities

and differences between simulation (mechanistic) vs. synthesis

(phenomenologic) approaches. We then give the main high-

lights of the published papers within this issue and conclude

by offering our perspective on some trends and challenges, and

point our to some open problems awaiting future research.

II. CONTEXT AND DEFINITIONS

It is helpful at this point to be specific about the concepts

of simulation and synthesis in this special issue, that is, in

medical imaging and medical image computing. We found out

that the concept of simulation is, in general, very ample and

unspecific to medical imaging, and that there was virtually no

formal definition of medical image synthesis. We could find

1http://www.cistib.org/sashimi

http://www.cistib.org/sashimi
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none of these terms defined in the Dictionary of Computer

Vision and Image Processing2.

The concepts of image simulation and synthesis can

be ambiguous (or even interchangeable) if one attends

to dictionary definitions of these terms by authoritative

references such as Oxford (OED)3 and Merriam-Webster

(MWD)4:

Simulation [OED] n • 3. The technique of imitating the

behaviour of some situation or process (whether economic,

military, mechanical, etc.) by means of a suitably analogous

situation or apparatus, esp. for the purpose of study or

personnel training.

Simulation [MWD] n • 3a: the imitative representation of

the functioning of one system or process by means of the

functioning of another – a computer simulation of an industrial

process; b: examination of a problem often not subject to

direct experimentation by means of a simulating device.

Synthesis [OED] n • 1. Logic, Philos., etc.: a. The action of

proceeding in thought from causes to effects, or from laws or

principles to their consequences. (Opposed to analysis n. 3).

Synthesis [MWD] n • 1 a : the composition or combination of

parts or elements so as to form a whole.

The concept of synthesis currently in use in computer vision

and medical image analysis contrasts strikingly as almost

opposite to that traditionally used in philosophy or science5.

In computer graphics, the “goal in realistic image synthesis

is to generate an image that evokes from the visual perception

system a response indistinguishable from that evoked by

the actual environment”.6,7 However, computer graphics is

focused on perceptual accuracy. Glassner, in his classical book

states: “our job as image synthesists is to create an illusion

of reality –to make a picture that carries our message, not

necessarily one that matches some objective standard. It’s a

creative job”.8 While medical imaging does not neglect visual

realism (e.g. for conventional radiographic assessment this

remains important), the key concern is one of quantitative

accuracy of the synthesised images or, at least, in accuracy in

terms of figures of merit that are meaningful for the intended

task (e.g. diagnostics, planning, prognosis, etc.). In the sequel,

we attempt to provide some distinction between and propose

a definition to the concepts of image synthesis and image

2Fisher RB, Breckon TP, Dawson-Howe K, Fitzgibbon A, Robertson
C, Trucco E, Williams CKI, Dictionary of Computer Vision and Image

Processing, 2nd Ed, Wiley, 2013.
3http://www.oed.com
4http://www.merriam-webster.com
5The Oxford English Dictionary provides contextual quotes that illustrate

this contrast. For instance, from T. Hobbes in Elements Philos. iii. xx. 230,
1656: “Synthesis is Ratiocination from the first causes of the Construction,
continued through all the middle causes till we come to the thing itself which
is constructed or generated.”, and from I. Newton in Opticks (ed. 2) iii. i.
380, 1718: “The Synthesis consists in assuming the Causes discover’d, and
establish’d as Principles, and by them explaining the Phnomena proceeding
from them.” Source: http://www.oed.com/view/Entry/196574.

6Hall RA, Greenberg DP. “A Testbed for Realistic Image Synthesis. IEEE

Computer Graphics and Applications, 1983; 3(8):10-20.
7Magnenat-Thalmann N, Thalmann D. “An Indexed Bibliography on Image

Synthesis. IEEE Computer Graphics and Applications, 1987; 7(8):27-38.
8Glassner A, Principles of Digital Image Synthesis, Morgan Kaufmann,

1995.

Fig. 1. Data-Information-Knowledge-Wisdom (DIKW) pyramid and how
phenomenologic and mechanistic approaches relate to it. Adapted from [10].

simulation based on the literature and praxis of our medical

imaging community.

At one level, in using the concepts of simulation and synthe-

sis, our community usually makes a fundamental ontological

distinction best described by referring to mechanistic and phe-

nomenologic models, respectively. In simulation, we usually

adopt first principles for image generation while in synthesis

we start off with abundant data (with the notion of abundance

changing through the years). We also usually assume behind

these concepts a natural information processing direction: from

data to models with synthesis; and from models to data with

simulation (Fig. 1). Simulation implies the existence of an

abstraction of the knowledge we possess, usually in the form

of first principles, that is used to derive instances of that

knowledge in a scenario that is fully controlled by the selection

of simulation parameters. Synthesis, on the contrary, implies

the ability to abstract or summarise (synthesise) knowledge

from a collection of exemplars that are representative of a

wider population, phenotype or phenomenon. This is usually

accomplished through statistical or phenomenologic models.

If a mechanistic model is available, one can perform data

assimilation or parameter identification resulting in a cus-

tomised or individualised mechanistic model. Conversely, one

can simulate new image (or shape) examples from an image

(or shape) synthesis method but we talk then of data-driven

models and these are usually phenomenologic in nature. At

this point, we make explicit that the notion of ”medical image”

we use here refers to any spatially (or spatio-temporally)

resolved mapping or function9 to any physical or physiological

parameter space, even if that space is non-measurable and

hence derived from a computer-based synthesis or simulation.

In this case, we can refer to “virtual” or ”in silico” medical

imaging10. This has as a side-effect that while phenomenologic

model can issue forecasts (i.e. are regressive or extrapolative),

only mechanistic models are truly predictive (Latin: præ-,

”before,” and dicere, ”to say”).

Here, we offer these two definitions:

9Clapham C, Nicholson J. The Concise Oxford Dictionary of Mathematics,
Oxford University Press, 5 ed., 2014.

10Frangi AF, Taylor ZA, Gooya A. “Precision Imaging: more descriptive,
predictive and integrative imaging”. Med Image Anal. 2016 Oct;33:27-32

http://www.oed.com
http://www.merriam-webster.com
http://www.oed.com/view/Entry/196574
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(Image) Synthesis [ours] n • The generation of visually

realistic and quantitatively accurate images through learning

phenomenologic models with application to problems like

interpolation, super resolution, image normalisation, modality

propagation, data augmentation, etc.

(Image-based) Simulation [ours] n • The application of

mechanistic first principles from imaging physics, organ

physiology, and/or their interaction, to produce virtual images

that are informed by individualised data; these result on both

visually realistic and physically/clinically plausible images,

and are generated under controlled hypothetical imaging

conditions.

Synthetic images are generally useful in structuring infor-

mation and capturing knowledge from vast image data sets

when little is known about the underlying mechanisms. They

are particularly useful as a modeling approach when data is

abundant and we have few hypothesis to make about the under-

lying mechanisms. They are hypothesis-free but data-driven:

this means the extracted knowledge must be cautiously inter-

preted in light of the way the data has been collected (e.g. what

population is represented by this sample?, which inclusion

and exclusion criteria underlie the data?, etc.). Virtual images

derived from image-based simulations, in turn, produce images

with strong mechanistic priors and are a great approach when

acquiring (large amounts of) images is impractical, ethically

unjustifiable, or simply impossible. Here, the data generated

from simulations must also be cautiously interpreted check-

ing the epistemological validity of the underlying modeling

assumptions and mechanisms. In brief, both approaches have

strengths and limitations. Synthetic images play a key role in

data-driven information processing and knowledge discovery

while image-based simulations are valuable in hypothesis-

driven research in image-based diagnosis and treatment.

III. MECHANISTIC OR PHENOMENOLOGIC?

It is beyond the scope of this editorial to review the

considerable progress made over the past decades in both

physical models of image formation and in machine learning

techniques for image synthesis. This special issue is a modern

and exciting excerpt of the most recent developments. We

would like, however, to put these two approaches underpinning

these special issue in the wider context of current trends in

science and data science.

There are opportunities and limitations in approaching

image generation from a mechanistic or a phenomenologic

standpoint, some of epistemological reach. Some would ar-

gue with increasing availability of big data, computational

resources, and breakthroughs in artificial intelligence, data-

driven phenomenologic models will eventually supersede the

need of mechanistic theories,11 while others seriously contest

this viewpoint.12 The complexity of image generation process,

the need to model detailed and accurately the geometry

11Anderson C. “The end of theory: the data deluge makes the scien-
tific method obsolete,” Wired, http://archive.wired.com/science/discoveries/
magazine/16-07/pb theory, Jul 23, 2008

12Mazzocchi F. “Could Big Data be the end of theory in science? A
few remarks on the epistemology of data-driven science,” EMBO Rep. 2015
Oct;16(10):1250-5.

Fig. 2. Helbing’s model for digital growth where systemic complexity (e.g.
algorithmic parametric complexity and complexity of health data) grows at
a factorial rate compared to the exponential rate of data and computing
resources. Courtesy of D Helbing. Reprinted with permission.

and physics of imaging, and the variability and uncertainty

associated with anatomical and physiological factors, all seem

to favour those challenging the need or feasibility of gen-

erating truly accurate medical images from first principles.

In Chapter 12 of his book, Helbing13 presents an interesting

cautionary argument that contrasts with Anderson’s vision of

Big Data (assuming that we no longer will need theory and

science). Fig. 2 shows Helbing’s model for digital growth

in computational resources doubling about every 18 months

(Moore’s law), and data resources doubling about every 12

months (soon every 12 hours!). While these two resources

follow an exponential growth, the complexity of the processes

that these resources help to elucidate or decide on (e.g. para-

metric complexity of the computational methods, ontological

complexity of health data) follow a factorial growth as they

are based on combinatorial combinations and system networks,

respectively. The above implies the problem of “dark data”, i.e.

the share of data we cannot process is increasing with time. As

a consequence, we must know what data to process and how,

which requires hypothesis-driven science and understanding

of the underlying mechanisms relating data and phenomena

so that algorithmic complexity is dealt with tractably.

IV. SPECIAL ISSUE STATISTICS

Twenty-four manuscripts were received for this special

issue. Two were immediately rejected while another ten were

rejected after a revision round. Twelve papers were finally

accepted after peer-review covering both mechanistic (5) and

phenomenologic (7) modelling and data generation. This rich

selection of papers covers applications in cardiology, retinopa-

thy, histopathology, neurosciences, and oncology. It also cov-

ers all mainstream diagnostic medical imaging modalities.

Two manuscripts were handled by Associate Editors Mehrdad

Gangeh and Hayit Greenspan to avoid potential conflicts of

13Helbing D, Thinking Ahead-Essays on Big Data, Digital Revolution, and

Participatory Market Society, Springer, 2015.

http://archive.wired.com/science/ discoveries/magazine/16-07/pb_theory
http://archive.wired.com/science/ discoveries/magazine/16-07/pb_theory
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interest. Each paper was reviewed, at least, by three expert

reviewers.

V. SPECIAL ISSUE OVERVIEW

This special issue comprises 12 papers covering both image-

based simulation and synthesis.

A. Image-based Simulation

Simulation papers focus on either devising computational

phantoms of anatomy or physiology in health and disease, or

aim at developing computational phantoms in image forma-

tion.

In the first category of simulation papers, Segars et al.

start off by reviewing what is arguably one of the most

widespread digital phantoms in computational human anatomy

and physiology of the human thorax. The authors overview

the four dimensional (4D) eXtended CArdiac-Torso (XCAT)

series of phantoms, which cover a vast population of phan-

toms of varying ages from newborn to adult, each including

parametrised models for the cardiac and respiratory motions.

This paper illustrates how these phantoms found great use in

radiation dosimetry, radiation therapy, medical device design,

and even the security and defence industry. Abadi et al. extend

upon the capabilities of the XCAT series of computational

phantoms, and propose a detailed lung architecture including

airways and pulmonary vasculature. Eleven XCAT phantoms

of varying anatomy were used to characterize the lung ar-

chitecture. The XCAT phantoms were utilized to simulate

CT images for validation against true clinical data. As the

number of organs described as numerical phantoms as XCAT

models increases, the potential use of such models as a tool to

virtually evaluate the current and emerging medical imaging

technologies increases. Polycarpou et al. propose a digital

phantom to synthesise 3D+t PET data using a fast analytic

method. The proposed method derives models of cardiac res-

piration and motion based on real respiratory signals derived

from PET-CT images are combined with MRI-derived motion

modelling and high resolution MRI images. In addition, this

study incorporates changes in lung attenuation at different

respiratory cycle positions. The proposed methodology and

derived simulated datasets can be useful in the development

and benchmarking of motion-compensated PET reconstruction

algorithms by providing associated ground-truth of various

controlled imaging scenarios.

Others consider the role of models in disease processes.

For example, in the paper by Garcı́a et al., the authors

consider the challenging task of evaluating the correlation of

parenchymal patterns (i.e. local breast density) as provided

by mammography with MRI volume information. Differences

in distributions (MRI versus x-ray) and radical deformation

present (due to how the breast is imaged during mammography

and MR) render this problem also relevant from a registration

perspective. The authors in tackling this challenge, employ a

subject-specific biomechanical model of the breast to assist

the MRI volumes to X-ray mammograms. When converged, a

direct projection of the MR-derived glandular tissue permits

the comparison to the corresponding mammogram. Along

the same theme, Roque et al. propose a reaction-diffusion

model of tumour growth. Predicting tumour growth (based

on models) and particularly its response to therapy is a

critical aspect of cancer care and a challenge in cancer

research. In this work, the authors derive an image-driven

reaction-diffusion model of avascular tumour growth, which

permits proliferation, death and spread of tumour cells, and

accounts for nutrient distribution and hypoxia. The model

parameters are learned (and evaluated) based on longitudinal

time series of DCE-MRI images. Rodrigo et al. study the

influence of anatomical inaccuracy in the reconstruction of

Electrocardiographic Images (ECGI) in non-invasive diagnosis

of cardiac arrhythmias. The precise position of the heart inside

the body is important for accurate reconstructions but often

not accurately known. They explored the curvature of L-

curve from the Tikhonov regularization approach, which is

one methodology used to solved the inverse problem, and

discovered that optimization of the maximum curvature min-

imizes inaccuracies in the atrial position an orientation. Such

automatic method to remove inaccuracies in atrial position

improves the results of ECGI. Moreover, it allows to apply

ECGI technology also where the electric recording, usually

done via Body Surface Potential Mapping (BSPM) and the

anatomical CT/MRI images are not recorded one after another,

which could potentialy expand ECGI use to a larger group of

patients.

B. Image Synthesis

This issue also comprises several papers using phenomeno-

logic or data-driven methods for image synthesis or generating

annotated reference datasets.

It is interesting to see that some methods are hybrid, i.e.

they combine both data-driven with mechanistic approaches.

Zhou et al., for instance, undertake to generate realistic syn-

thetic cardiac images, of both ultrasound (US), and cine and

tagged Magnetic Resonance Imaging (MRI), corresponding to

the same virtual patient. This method develops a synthesis-

by-registration approach where an initial dataset is segmented,

transformed and warped (as needed) to generate a motion and

deformation-informed set of cMRI, tMRI, and US images.

Only the motion model in this method is derived from an

actual physical model while the image intensity is created

through mapping reference values from literature. In a related

paper, Duchateau et al. also focus on the automatic generation

of a large database of annotated cardiac MRI image sequences.

Their approach, like the one of Zhou et al., combines both

mechanistic motion models of cardiac electro-mechanics with

anatomical augmentation via data-driven non-rigid deforma-

tions. The proposed method requires the existence of a small

database of cine CMR sequences that serve as seed to augment

the anatomical variability by creating simulations of cardiac

electro-mechanics under diverse conditions. Augmented data

is created by warping image intensities in the original sequence

through the electromechanical simulation. This method en-

sures the material point correspondence between frames com-

plies with a mechanistic electromechanical model yet image

appearance is not altered compared to that of the original
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dataset used. The authors apply this approach to generate a

database of subjects myocardial infarction under controlled

conditions in infarct location and size. Finally, Mattausch and

Goksel’s paper focuses on how to reconstruct the distribu-

tion of ultrasound image scatterers of tissue samples non-

invasively. The recovered scatterer map will inform a realistic

ultrasound image simulation under different viewing angles

or transducer profiles. The robustness of this technique relies

on obtaining images from multiple view points to accurately

assess scatterer distribution, without which the forward prob-

lem is not accurately solved. Besides an inversion strategy, the

authors contribute a novel beam-steering technique to insonify

the tissue rapidly and conveniently acquiring multiple images

of the same tissue. The authors also demonstrate that the

scatterer map offers a new tissue representation that can be

edited to create controlled variations.

Several papers focus on machine learning for image syn-

thesis to tackle problems as diverse as generating benchmark

data, image normalisation, super resolution, or cross-modality

synthesis, to name just a few. One technique prominent

among several submissions is adversarial learning. For in-

stance, Costa et al. propose a combination of adversarial

networks and adversarial auto-encoders to develop synthetic

retinal colour images. Adversarial auto-encoders are used to

learn a latent representation of retinal vascular trees and gen-

erate corresponding retinal vascular tree masks. Adversarial

learning, in turn, is used to map these vascular masks into

colour retinographies. The authors present a learning approach

that jointly learns the parameters of the adversarial network

and auto-encoder. The authors extensively validated of the

quality of their synthetic images. The data produced can

help in the generation of valuable labelled ground-truth data

for testing or training retinal image analysis methods. Ben

Taieb and Hamarneh also use adversarial learning to address

the problem of histopathology normalisation. Recognizing

the large variability between staining processes in different

histopathology laboratories, the authors propose a method that

aims to emulate stain characteristics from one laboratory to

the other. Treated as a style transfer problem (to adopt the

term from computer vision literature) the authors proposed

a deep neural network that learns to map input images to

output images that best match the distribution characteristics

of a reference set of data, thus achieving stain normalization.

A combination of generative, discriminative and task specific

networks jointly optimized achieve the desired objective of

finding stain normalizations suitable for segmentation or clas-

sification tasks.

Chartsias et al. propose an approach to MRI synthesis that is

both multi-input and multi-output and uses fully convolutional

neural networks. The model has two interesting properties: it is

robust to handle missing data, and, while it benefits from, does

not require, additional input modalities. The model was evalu-

ated on the ISLES and BRATS datasets and demonstrated sta-

tistically significant improvements over state-of-the-art meth-

ods for single input tasks. Using dictionary learning, Huang et

al. present a method that can synthesize data across modalities

using paired and unpaired data. Relying on the power of cross

modal dictionaries they establish matching functions that can

discover cross-modal sparse embeddings even when unpaired

and unregistered data are available. Considering that across

modalities different distributions may be present, a manifold

geometry formulation term is considered. They extensively

evaluate their method on two publicly available brain MRI

datasets.

C. Outlook and Conclusions

We hope with this special issue we have successfully consol-

idated current efforts in image-based simulation and synthesis,

and stimulate future research. Image-based simulation and

image synthesis will only gain relevance in the years to come:

consider the tsunami of healthcare data14, emerging large-scale

population imaging and its analytics15,16, and the growing role

of machine learning17,18,19 and computational medicine20,21,

just to name a few trends. As perhaps never before, intensive

industrial innovation in this area fuels translation of these tech-

nologies into clinical applications and commercial products.

Tractica22, for instance, forecasts global software revenue from

21 key healthcare AI use cases will grow from $165 million in

2017 to $5.6 billion annually by 2025. Including the hardware

and services sales driven by these software implementations,

the firm anticipates the total revenue opportunity for the

healthcare AI market will reach $19.3 billion by 2025.

By unambiguously defining these terms and putting them

in context, we will be in a better position to see the research

gaps and synergies, address common challenges, and better

track the evolution of these methods. With data becoming

pervasive and machine learning a commodity, we expect

image synthesis research to grow. As our discussion above

shows, mechanistic understanding and interpretation of the

available data will have to develop on par to data-driven

approaches. Mechanism-driven priors will remain a foundation

of Bayesian inference or physics-based approaches to data

14Andreu-Perez J, Poon CC, Merrifield RD, Wong ST, Yang GZ. “Big data
for health”. IEEE J Biomed Health Inform. 2015 Jul;19(4):1193-208.

15Petersen SE, Matthews PM, Bamberg F, Bluemke DA, Francis JM,
Friedrich MG, Leeson P, Nagel E, Plein S, Rademakers FE, Young AA, Garratt
S, Peakman T, Sellors J, Collins R, Neubauer S. “Imaging in population
science: cardiovascular magnetic resonance in 100,000 participants of UK
Biobank -rationale, challenges and approaches”. J Cardiovasc Magn Reson.
2013 May 28;15:46.

16Alfaro-Almagro F, Jenkinson M, Bangerter NK, Andersson JLR, Griffanti
L, Douaud G, Sotiropoulos SN, Jbabdi S, Hernandez-Fernandez M, Vallee E,
Vidaurre D, Webster M, McCarthy P, Rorden C, Daducci A, Alexander DC,
Zhang H, Dragonu I, Matthews PM, Miller KL, Smith SM. “Image processing
and Quality Control for the first 10,000 brain imaging datasets from UK
Biobank”. Neuroimage. 2018 Feb 1;166:400-424.

17Suzuki K. “Overview of deep learning in medical imaging”. Radiol Phys

Technol. 2017 Sep;10(3):257-273.
18Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M,

van der Laak JAWM, van Ginneken B, Snchez CI. “A survey on deep learning
in medical image analysis”. Med Image Anal. 2017 Dec;42:60-88.

19Ravi D, Wong C, Deligianni F, Berthelot M, Andreu-Perez J, Lo B, Yang
GZ. “Deep Learning for Health Informatics”. IEEE J Biomed Health Inform.
2017 Jan;21(1):4-21.

20Winslow RL, Trayanova N, Geman D, Miller MI. “Computational
medicine: translating models to clinical care”. Sci Transl Med. 2012 Oct
31;4(158):158rv11.

21Viceconti M, Hunter P. “The Virtual Physiological Human: Ten Years
After”. Annu Rev Biomed Eng. 2016 Jul 11;18:103-23.

22Tractica, “Artificial Intelligence for Healthcare Applications”, Market

Analysis and Forecast, Sep 2017.
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Fig. 3. Top five healthcare artificial intelligence use cases revenue. World
Markets: 2016-2025. Medical image analysis has the lion’s share of revenues;
other use cases are likely to also involve image analytics of some sort.
Courtesy of Tractica [22]. Reprinted with permission.

interpretation and reconstruction. Some methods presented do

in fact combine both mechanistic and data-driven models, but

the gap still exists and more research is needed here.

Evaluation of machine learning and computational mod-

elling remain crucial if these models are to percolate to the

clinical community with credibility. As machine learning,

artificial intelligence, computational medicine, etc. turn into

buzzwords even among clinicians and market analysts23,24, and

the threshold to access and (mis)use these technologies low-

ers, they become commodities25,26 with the potential risk of

confusing reality with fiction. Well-designed community chal-

lenges27 for performance assessment and cross-algorithmic

benchmarking should keep us grounded in reality and grow

their importance. For these challenges to be successful in

this aim, larger and more diverse datasets must be developed

and made openly available, alongside with standards ensuring

transparent analysis and reporting protocols.

More benchmark data only part addresses the problem.

Preprocessing, training, and testing largely remain ad hoc

processes with non-negligible impact on performance compar-

isons. Standardised evaluation protocols are as key as standard-

ised datasets. There are insufficient reference implementations

of key algorithms that everyone uses in open benchmarks.

This leads to considerable algorithmic re-implementation fur-

ther obfuscating genuine contributions and the origin of im-

proved performance. Reference open-source implementations

of benchmark protocols are helpful but still remain the excep-

tion rather than the norm (e.g. only a fraction of the papers

in the special issue offer that). Of course, this challenge holds

23Mayo RC, Leung J. “Artificial intelligence and deep learning -Radiology’s
next frontier?” Clin Imaging. 2017 Nov 18;49:87-88.

24Dreyer KJ, Geis JR. “When Machines Think: Radiology’s Next Frontier”.
Radiology. 2017 Dec;285(3):713-718.

25Kohli M, Prevedello LM, Filice RW, Geis JR. “Implementing Machine
Learning in Radiology Practice and Research”. AJR Am J Roentgenol. 2017
Apr;208(4):754-760.

26Deo RC. “Machine Learning in Medicine”. Circulation. 2015 Nov
17;132(20):1920-30.

27https://grand-challenge.org

both for simulation and synthesis approaches.

Computational sciences are increasingly pervasive in our

lives. It is reassuring to see growing awareness on the im-

portance of model verification and validation across engi-

neering28,29, medicine30,31 and biology32. While recent years

have seen very positive initiatives in this arena,33,34,35 our

community of medical imaging and medical image computing

will have to give even more consideration to these topics and

develop and promote best practices in the assessment and

benchmarking of simulation and synthesis methods.

One other area we believe is worth investigating is the

definition of appropriate evaluation criteria. Numerical fidelity

in reconstruction is rather common (e.g. mean square error

and its variants) yet does not necessarily translate to best

visual results. In computer vision research, human observers

are recruited via crowd sourcing and visually score the results

of image synthesis. In our domain (medical imaging), this

would ideally require the involvement of clinical experts,

which is costly and time consuming. Perhaps more suitable

evaluations can be those that are application-driven, i.e. those

that assess whether simulated/synthesised data can be used in

lieu of real data in an analysis task (or several tasks). Some

papers in this special issue did in fact use such application-

driven evaluations, but these approaches are not standardised

across methods or applications, which adds another layer of

obfuscation to the assessment of performance.

In summary, simulation and synthesis are evolving areas

in our field. Thankfully, specialised workshops such as the

MICCAI SASHIMI series can facilitate cross-disciplinary ex-

change, visualise the progress made, and advance upon the

challenges described earlier.
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33Kauppi T, Kämäräinen JK, Lensu L, Kalesnykiene V, Sorri I, Uusitalo
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