

This is a repository copy of A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at simulated altitude.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/128878/

Version: Accepted Version

Article:

Matu, J, Deighton, K, Ispoglou, T et al. (2 more authors) (2017) A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at simulated altitude. Physiology & Behavior, 179. pp. 353-360. ISSN 0031-9384

https://doi.org/10.1016/j.physbeh.2017.07.006

© 2017 Elsevier Inc. Licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Title: A high fat breakfast attenuates the suppression of appetite and acylated ghrelin during exercise at
2	simulated altitude.
3	Authors names: Jamie Matu, ¹ Kevin Deighton, ¹ Theocharis Ispoglou, ¹ Oliver M Shannon, ¹ and Lauren
4	Duckworth ¹
5	Department and institution: ¹ Institute for Sport Physical Activity & Leisure, Leeds Beckett University, Leeds,
6	United Kingdom
7	Running heading: Changes in appetite after a high fat and a high carbohydrate breakfast at simulated altitude
8	Corresponding author: J. Matu, Carnegie Research Institute Room 104, Institute for Sport Physical Activity &
9	Leisure, Leeds Beckett University, Leeds, LS6 3QS, United Kingdom (email: J.Matu@leedsbeckett.ac.uk)
10	Emails: Jamie Matu: J.Matu@leedsbeckett.ac.uk; Kevin Deighton: K.Deighton@leedsbeckett.ac.uk; Theocharis
11	Ispoglou: <u>T.Ispoglou@leedsbeckett.ac.uk;</u> Oliver M Shannon <u>O.Shannon@leedsbeckett.ac.uk;</u> Lauren
12	Duckworth: L.Duckworth@leedsbeckett.ac.uk
13	Telephone number : +44 (0)113 8123603
14	

16 Abstract

18

17 High-altitude exposure induces a negative energy balance by increasing resting energy expenditure and decreasing

19 detrimental effects for those travelling to high-altitude. We aimed to investigate whether altering the

energy intake. This diminished energy intake is likely caused by altitude-induced anorexia and can have

- 20 macronutrient composition of breakfast could attenuate altitude-induced anorexia and augment energy intake at
- 21 high-altitude. Twelve healthy men (aged 26 (8) years, body mass index 23.9 (2.7) kg·m⁻²) completed two, 305
- 22 minute experimental trials at 4300m simulated altitude (~11.7% O₂). After an overnight fast, participants entered
- a normobaric hypoxic chamber and rested for one hour, before receiving either a high fat (HF; 60% fat, 25%
- 24 carbohydrate) or an isocaloric high carbohydrate (HC; 60% carbohydrate, 25% fat) breakfast. One hour after
- breakfast, participants performed 60 minutes of treadmill walking at 50% of relative $\dot{V}O_{2max}$. An ad-libitum buffet meal was consumed 1h 30 minutes after exercise. Appetite perceptions, blood samples and substrate oxidation
- 27 rates were measured throughout. A significantly higher area under the curve for composite appetite score was
- 28 observed during exercise in HF (40 (12) mm \cdot h⁻¹) compared with HC (30 (17) mm \cdot h⁻¹, P=0.036). During exercise,
- 29 lower insulin concentrations (P=0.013) and elevated acylated ghrelin concentrations (P=0.048) were observed in
- 30 HF compared with HC. After exercise there was no significant difference in composite appetite score (P=0.356),
- 31 acylated ghrelin (P=0.229) or insulin (P=0.513) between conditions. Energy intake at the buffet did not
- 32 significantly differ between conditions (P=0.384). A HF breakfast attenuated appetite suppression during exercise
- at 4300m simulated altitude, however ad-libitum energy intake did not increase.
- 34 Key words: Hypoxia; Medium-chain fatty acids; Energy balance; Altitude-induced anorexia
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 4/
- 48

49 1 Introduction

- 50 Appetite suppression has previously been observed during acute exposure to both simulated [1-3] and terrestrial
- altitude [4]. This effect appears to be maintained during chronic altitude exposures [5, 6] which is associated with
- 52 significant decreases in energy intake [7, 8], body mass [7-9] and physical performance at altitude [9, 10].
- 53 Additionally, resting energy expenditure is suggested to be elevated at altitude [1, 11], which may further stimulate
- 54 a negative energy balance. Maintaining energy balance is therefore vital for individuals ascending to altitude to
- 55 maintain body mass and physical capabilities.
- 56 Previous research at sea level has identified that acute dietary interventions can alter postprandial gut 57 hormone responses [12, 13] and subsequent energy intake [14, 15]. It is well established that protein is the most 58 satiating macronutrient [16, 17]. Contrastingly, high fat meals have been found to produce the smallest magnitude 59 of postprandial acylated ghrelin suppression and the highest appetite scores, compared with other macronutrients 60 [12, 13, 18, 19]. Ghrelin is a 28 amino acid peptide which is post-translationally modified at its serine 3 residue 61 with medium-chain fatty acids (MCFAs), catalysed by the enzyme Ghrelin-O-Acyl-Transferase (GOAT) [20, 21]. 62 This acylation of ghrelin is necessary for it to bind with the growth hormone secretagogue receptor-1a (GHS-R1a) 63 and exert its orexigenic effects [22]. Furthermore, des-acylated ghrelin has been found to inhibit the orexigenic 64 effects of acylated ghrelin, independently of the GHS-R1a [23]. A growing body of evidence suggests that 65 ingested MCFAs are directly utilised in the acylation of ghrelin, increasing circulating concentrations of acylated 66 ghrelin [24, 25]. This effect can increase appetite and has been found to promote a positive energy balance, 67 preventing weight loss in cachectic patients [26]. In addition, compared with other macronutrients, high fat meals 68 may result in a decreased energy expenditure due to their lower thermic effect [27].
- 69 Several circulating hormones have been implicated in the development of altitude-induced anorexia, 70 including glucagon-like peptide-1, peptide YY and pancreatic polypeptide. However, recent studies have 71 identified acylated ghrelin as the strongest mediator of this response based on concomitant decreases of appetite 72 and circulating acylated ghrelin concentrations at altitude [1, 2, 28]. It seems plausible that the ingestion of a high 73 fat meal rich in MCFAs may increase circulating acylated ghrelin concentrations, elevate subjective appetite 74 ratings, augment energy intake and decrease energy expenditure. A combination of these factors over a prolonged 75 period would be beneficial in a high altitude environment by helping to maintain energy balance and body mass.
- The purpose of this study was to compare the effects of a high fat breakfast rich in MCFAs and a high
 carbohydrate breakfast on appetite, gut hormones, energy intake and substrate oxidation. This study represents
 the first investigation of an intervention attempting to attenuate reductions in appetite at altitude.

79

81 2 Methods

82 <u>2.1 Participants</u>

83 Twelve healthy men (age 26 (8) years, body mass index 23.9 (2.7) kg·m⁻², body mass 77 (8.1) kg) volunteered to 84 participate in this study. Informed consent was obtained from all individual participants included in the study. All 85 participants were non-smokers, non-diabetic, normotensive, free from food allergies and were not taking any 86 regular medication. None of the participants had travelled to an altitude >1500m for the previous three months 87 and were currently residing at an altitude of <500m. All study protocols received institutional ethics approval and 88 were performed in accordance with the Declaration of Helsinki.

89

90 <u>2.2 Experimental Design</u>

91 Participants attended the laboratory on four separate occasions. The first visit included screening, anthropometry, 92 a food preferences assessment and a test for sickle cell trait. Sickle cell trait was an exclusion criteria due to 93 complications that may occur in hypoxia, for example splenic infarction [29]. During the second visit participants 94 completed an incremental exercise test at 4300m simulated altitude, to determine a relative treadmill walking 95 speed for subsequent experimental trials, as previously described [1]. In a randomised and counter-balanced 96 fashion, two experimental trials were conducted ≥48h following the incremental exercise test and were separated 97 by \geq 7 days. Participants were not informed by the researcher which breakfast they were provided with before or 98 during each trial. During the experimental trials participants consumed either a high fat (HF) or a high 99 carbohydrate (HC) breakfast. Target FiO₂ was adjusted on the morning of each testing day using the following 100 equation: FiO2 = PiO2 / (PB - 47); where PB is barometric pressure in mmHg and 47 mmHg is the vapour pressure of water at 37 °C [30, 31]. Simulated PiO₂ was 83 mmHg (FiO₂ ~11.7%). Temperature and humidity were 101 102 maintained at 20 °C and 50% for all tests, respectively.

103

104 <u>2.3 Experimental trials</u>

105 Participants recorded their dietary intake on the day prior to their first experimental trial and repeated the quantity 106 and timing of this intake before their second trial. On the day preceding each experimental trial participants also 107 refrained from alcohol, caffeine and strenuous exercise, and consumed a standardised evening meal (4338 kJ, 108 57% carbohydrate, 28% fat, 15% protein) between 7pm and 8pm. This meal contained: fusilli pasta, pasta sauce, 109 cheddar cheese, milk, and jelly beans and was consumed to minimise the possibility of a 'second meal effect' 110 confounding the outcome measures [32, 33]. Compliance to pre-experimental controls was verbally confirmed 111 with each participant on the morning of each trial. On the day of testing, participants arrived at the laboratory and 112 entered the hypoxic chamber at 8am. At 1h participants were given 15 minutes to consume either a HF (60% fat, 113 25% carbohydrate, 15% protein) or a HC (60% carbohydrate, 25% fat, 15% protein) breakfast (Table 1). Both 114 breakfasts consisted of cooked porridge served in an oversized bowl with a separate drink of 216mL. Participants 115 remained rested (e.g. reading or watching DVDs; material strongly related to the aims of the study was not 116 permitted) throughout both trials with the exclusion of the exercise period. At 2h 15 minutes a 1h exercise protocol was completed in which participants walked on a treadmill at 50% of relative VO_{2max} at a 10% gradient whilst 117

- 118 carrying a 10kg backpack, to mimic the demands of high altitude trekking [34]. Participants then remained rested
- until the end of the trial at 5h 05 minutes. Rating of perceived exertion (RPE) was measured at 15 minute intervals
- during exercise [35]. Acute mountain sickness (AMS) was measured every 30 minutes via the Lake Louise Score
- 121 (LLS) [36] and used to diagnose mild AMS (LLS \ge 3 in the presence of a headache) and severe AMS (LLS \ge 6 in
- 122 the presence of a headache).
- 123

124 <u>2.4 Appetite and palatability perceptions</u>

Subjective appetite perceptions were measured at baseline and every 30 minutes throughout each experimental trial, with the exclusion of the 15 minute interval for breakfast consumption. During exercise, subjective appetite perceptions were measured whilst maintaining walking on the treadmill. Validated visual analogue scales (VAS) were used to assess appetite and palatability perceptions [37]. A composite appetite score (CAS) was calculated after inverting the values for fullness and satisfaction [38]. A higher CAS is associated with greater appetite sensations and thus a stronger motivation to eat.

131

132 <u>2.5 Ad-libitum meal</u>

At 4h 45 minutes participants were given 20 minute access to a cold ad-libitum meal that was presented identically
between trials, and consisted of: three types of cereal, semi-skimmed milk, orange juice, white bread, brown bread,
cheese, ham, tuna, bananas, apples, oranges, crisps, butter, margarine, mayonnaise, cereal bars, chocolate bars,
cookies, muffins and chocolate rolls. All foods were provided in excess of expected consumption and participants

- 137 were informed to 'eat until comfortably full'. Participants were also made aware that additional quantities of each
- 138 food item were available if desired. Meals were consumed in isolation, inside the hypoxic chamber and behind a
- 139 privacy screen to minimise any effects of social influence on food intake. Energy intake was calculated by
- 140 weighing foods before and after consumption (to the nearest 0.1g), and with reference to the manufacturers
- 141 nutritional information. This ad-libitum meal allowed for macronutrient preferences to be assessed.

142

143 <u>2.6 Online gas analysis</u>

Expired gas analysis was conducted throughout trials using an online gas analyser (Metalyser® 3B, Cortex,
Leipzig, Germany), as previously described [1]. Substrate oxidation was estimated using equations for rest [39]
and exercise [40]. Substrate oxidation rates were then used to estimate energy expenditure at rest and during
exercise.

148

149 <u>2.7 Blood sampling</u>

150 All venous blood samples were obtained from an antecubital vein using a 20-gauge cannula (Introcan Safety; B

Braun, Sheffield, UK). The first blood sample was collected >10 minutes after the cannulation procedure to

152 minimise any effect of vagus nerve stimulation on measured blood analytes [41]. Further samples were drawn at

1h, 2h 15 minutes, 3h 15 minutes, 4h and 4h 45 minutes. From each venous sample a microcuvette and a 153 154 heparinised micro haematocrit tube were used to collect 10 μ L and ~45 μ L of whole blood, respectively, for the 155 measurement of haemoglobin and haematocrit concentrations. These data were used to estimate plasma volume 156 changes over time [42]. To minimise the effect of any postural changes in plasma volume all blood samples were 157 collected whilst the participant was seated [43]. At each time point samples were collected into one 4.9 mL and 158 one 9 mL pre-cooled EDTA monovette (Sarstedt, Leicester, UK). The 9 mL tube was used for the determination 159 of plasma concentrations of insulin, glucose, lactate, non-esterified fatty acids (NEFA) and triglycerides. The 4.9 160 mL tube was used for the determination of plasma concentrations of acylated and des-acylated ghrelin. To prevent 161 the degradation of acylated ghrelin, 4.9 mL tubes were pre-treated on the morning of each experimental trial, as 162 previously described [1, 44]. Immediately after filling, both tubes were spun at 1500 x g for 10 minutes in a centrifuge (CompactStar CS4, VWR). Plasma from the 9 mL tube was transferred into cryovials and 1 mL of the 163 164 plasma from the 4.9 mL tube was mixed with 100 µL of 1M hydrochloric acid. This solution was then spun at 165 1500 x g for five minutes before the supernatant was then transferred into cryovials. All cryovials were then

- immediately frozen at -20 °C before being transferred to -80°C and stored until analysis.
- 167

168 <u>2.8 Blood Analysis</u>

169 Commercially available enzyme-linked immunosorbent assays were used to determine plasma concentrations of 170 acylated ghrelin (SPI BIO, Montigny Le Bretonneux, France), des-acylated ghrelin (SPI BIO, Montigny Le 171 Bretonneux, France) and insulin (IBL, Hamburg, Germany). To eliminate inter-assay variation, all samples from 172 each participant were assayed on the same plate. Photometic analysis was utilised to measure glucose, lactate, 173 NEFA and triglycerides using reagents from Instrumentation Laboratory (Lexington, MA), Randox Laboratories 174 (Crumlin, UK), Wako Chemicals (Dusseldorf, Germany) and Instrumentation Laboratory (Lexington, MA), 175 respectively. The within batch coefficients of variation were as follows: acylated ghrelin 2.4%, des-acylated 176 ghrelin 4.1%, insulin 5.7%, glucose 3.2%, lactate, 2.8%, NEFA 2.8% and triglycerides 3.7%. Total ghrelin was 177 computed via the addition of acylated and des-acylated ghrelin concentrations.

178

179 <u>2.9 Statistical analysis</u>

180 Data are expressed as mean (SD) in text and tables and mean (SE) in figures to avoid distortion of the graphs. All 181 data were analysed using IBM SPSS statistics (v22.0 for Windows; SPSS, Chicago, IL). Area under the curve 182 (AUC) was calculated using the trapezoid method for appetite perceptions and blood parameters. The four AUC periods were defined as: pre-prandial (the 1h before breakfast), postprandial (the 1h after breakfast), exercise (the 183 184 1h exercise period), and post-exercise (the 1hr 30 minutes post-exercise). Paired t-tests were used to assess 185 differences in RPE, palatability ratings and energy intake. Two-way repeated measures analysis of variance (ANOVA) was used to assess condition, time, and condition*time based differences in AUC values for appetite 186 187 perceptions, LLS, blood analyte concentrations, substrate oxidation and energy expenditure. Where significant 188 effects were found, post-hoc analysis was performed using paired t tests. . Analysis of covariance (ANCOVA) 189 was performed on appetite perceptions, blood analyte concentrations and energy intake using LLS as a covariate. 190 The interpretation of the findings was unchanged when accounting for LLS as a covariate, and thus the original

- 191 data are presented. Effect sizes are presented as Cohen's d and interpreted as ≤ 0.2 trivial, >0.2 small, >0.6
- 192 moderate, >1.2 large, >2 very large and >4 extremely large [45]. Interpretation of all blood analytes was
- unchanged when plasma volume changes were accounted for, thus the original data is presented. The sample size
- used was deemed sufficient to detect significant differences in CAS, acylated ghrelin and energy intake between
- 195 conditions. Based on effect sizes calculated from previous work in our laboratory[1], and an alpha value of 5%, a
- sample size of 12 participants would generate a power >95% for these three variables. Calculations were
- 197 performed using G*power [46].

198 3 Results

199 <u>3.1 Exercise responses and acute mountain sickness</u>

200 Maximal oxygen uptake at 4300m was 39.2 (5.1) mL·kg·min⁻¹ and walking speed was 2.8 (0.6) km·h⁻¹ during the

201 experimental trials. There was no difference in RPE between the HF (12 (2)) and the HC (12 (2), P = 0.467, d = 0.4

202 0.08) conditions during exercise. Mild AMS manifested in four and six participants in the HF and HC conditions,

203 respectively. Severe AMS occurred in one and two participants in the HF and HC conditions, respectively. Two-

- way repeated measures ANOVA revealed a significant effect of time (P = 0.009) on LLS, however no effect of
- 205 condition (P = 0.313) or condition*time (P = 0.318) was observed. Mean LLS across the entire trial was 1 (2)
- 206 during the HF and 1 (1) during in HC condition.

207 <u>3.2 Appetite and palatability perceptions</u>

208 Two-way repeated measures ANOVA revealed a significant effect of time (P < 0.001) and condition*time (P =209 (0.026), but not condition (P = 0.223) on CAS. Post-hoc analysis revealed at baseline and during the pre-prandial period there were no significant differences in CAS between the HF and HC conditions (all P \ge 0.218, all d \le 210 211 0.31). During exercise AUC for CAS was significantly higher in HF (40 (12) mm · h⁻¹) compared with HC (30 (17) 212 $\text{mm} \cdot h^{-1}$, P = 0.036, d = 0.63). During the post-exercise period there was no significant difference in AUC for CAS 213 between conditions (P = 0.356, d = 0.26) (Figure 1). Two-way ANOVA revealed no significant effects of 214 condition or condition*time for hunger (P \ge 0.163), satisfaction (P \ge 0.288) or fullness (P \ge 0.102). A significant 215 effect of condition*time was observed for prospective food consumption (P = 0.001). Post-hoc analysis revealed 216 significantly higher prospective food consumption in HF, compared with HC, during the post-prandial (P = 0.019, 217 d = 0.92) and exercise (P = 0.016, d = 0.88) periods. There was no difference observed for appeal (P = 0.319, d = (0.29), smell (P = 0.507, d = 0.19), taste (P = 0.843, d = 0.06), aftertaste (P = 0.208, d = 0.33) and palatability (P 218 219 = 0.768, d = 0.09) of the breakfast between conditions (Supplementary Table 1).

220

221 <u>3.3 Energy intake</u>

222 Mean energy intake at the ad-libitum meal was not different after the HF breakfast (5589 (2076) kJ) compared

with the HC breakfast (6086 (2235) kJ, P = 0.384, d = 0.23). In addition, there were no differences in the absolute

224 or relative consumption of carbohydrate (both $P \ge 0.731$, $d \le 0.08$), fat (both $P \ge 0.348$, $d \le 0.27$) or protein (both

- $\label{eq:product} \mbox{225} \qquad P \geq 0.260, \, d \leq 0.31) \mbox{ (Supplementary Table 2)}.$
- 226

227 <u>3.4 Substrate oxidation and energy expenditure</u>

228 Two-way repeated measures ANOVA revealed a significant effect of time, condition and condition*time for

relative (all P \leq 0.038) and absolute (all P \leq 0.003) carbohydrate oxidation. Post-hoc analysis revealed that during

- the pre-prandial period, there were no significant differences in relative or absolute carbohydrate and fat oxidation
- between conditions (all P \ge 0.105, all d \le 0.17). During the postprandial period, exercise and the post-exercise
- period both relative (all P \leq 0.012, d \geq 0.75) and absolute (all P \leq 0.009, all d \geq 0.70) carbohydrate oxidation were
- significantly higher in HC, compared with HF. A significant effect of time (P < 0.001) and condition*time (P = 0.001) and condi

- 234 0.003) was observed for absolute fat oxidation, however no effect of condition was revealed (P = 0.111). Post-235 hoc analysis revealed absolute fat oxidation was not significantly different between conditions in the postprandial 236 or the post-exercise period (both P \ge 0.133, d \le 0.26). However, during exercise absolute fat oxidation was
- significantly higher after the HF breakfast compared with the HC breakfast (P = 0.014, d = 0.76) (Table 2).

Two-way repeated measures ANOVA revealed a significant effect of time (P < 0.001) on energy expenditure but not condition*time (P = 0.617). There was however a tendency towards an effect of condition (P= 0.060) on energy expenditure, with lower values observed for total energy expenditure across the entire trial in HF (3635 (561) kJ) compared with HC (3848 (491) kJ.

242

243 <u>3.5 Blood parameters</u>

There were no differences between trials for the concentrations of any blood analyte at baseline (all P \ge 0.137, all $d \le 0.18$).

246 There was a significant main effect of time (P = 0.029) and condition*time (P = 0.002), but not condition 247 (P = 0.100) on acylated ghrelin concentrations. Post-hoc analysis revealed that during the postprandial period 248 AUC for acylated ghrelin tended to be higher after the HF breakfast compared with the HC breakfast (P = 0.069, 249 d = 0.15) (Figure 2A). During exercise AUC for acylated ghrelin was significantly higher after the HF breakfast 250 $(151.9 \ (180.2) \ \text{pg} \cdot \text{mL}^{-1} \cdot \text{h}^{-1})$ compared with the HC breakfast (100.6 (106.1) \ \text{pg} \cdot \text{mL}^{-1} \cdot \text{h}^{-1}, P = 0.048, d = 0.35). 251 During the post-exercise period, AUC for acylated ghrelin was not significantly different between conditions (P 252 = 0.153, d = 0.14). There was no effect of time (P = 0.857), condition (P = 0.219) or condition*time (P = 0.605) 253 for des-acylated ghrelin concentrations (Figure 2B). Furthermore, there was a tendency for a main effect of 254 condition (P = 0.052), time (P = 0.079) and condition*time (P = 0.089) for total ghrelin concentrations (Figure 255 2C).

256 There was a main effect of time (P = 0.005) and condition*time (0.039), but not condition (P = 0.494) 257 for glucose concentrations. Post-hoc analysis revealed that glucose concentrations tended to be higher and were 258 significantly higher during the postprandial (P = 0.094, d = 0.25) and exercise (P = 0.033, d = 0.37) periods in HC 259 compared with HF. There was no difference in glucose concentrations between conditions in the post-exercise period (P = 0.199, d = 0.32) (Figure 3A). There was a main effect of time (P < 0.001) and condition*time (P < 260 261 (0.001), and a tendency for condition (P = 0.053) for insulin concentrations. Post-hoc analysis revealed that during the postprandial period AUC for insulin was significantly lower in HF (24.9 (16.1) ulU·mL⁻¹·h⁻¹) compared with 262 263 HC (34.3 (14.2) μ lU·mL⁻¹·h⁻¹, P = 0.003, d = 0.62). During exercise AUC for insulin was also lower in HF (27.0 $(15.9) \mu$ lU·mL⁻¹·h⁻¹) compared with HC (39.5 (15.0) μ lU·mL⁻¹·h⁻¹, P = 0.013, d = 0.81). There was no difference 264 in AUC for insulin between conditions in the post-exercise period (P = 0.513, d = 0.11) (Figure 3B). 265

There was a main effect of time (P < 0.001), condition (P = 0.002) and condition*time (P = 0.005) for lactate concentrations. Post-hoc analysis revealed that lactate concentrations were significantly lower in the postprandial, exercise and post-exercise periods (all P \le 0.011, all d \ge 0.62) in HF compared with HC (Figure 3C). There was a main effect of condition*time (P = 0.002), a tendency for condition (P = 0.086) and no effect of time (P = 0.235) on NEFA concentrations. Post-hoc analysis revealed that during the postprandial period there was no

- 271 difference between conditions for concentrations of NEFA (P = 0.553, d = 0.20). However during the exercise
- and post-exercise periods, concentrations of NEFA were significantly higher in HF compared with HC (both $P \le P$
- 273 0.047, $d \ge 0.97$) (Figure 4A). There was a main effect of time (P < 0.001) and condition*time (P = 0.015), and a
- trend for an effect of condition (P = 0.052) on triglyceride concentrations. Post-hoc analysis revealed that during
- the postprandial period there was a tendency for higher triglycerides concentrations in HF compared with HC (P
- 276 = 0.078, d = 0.73). During the exercise and post-exercise periods triglyceride concentrations were significantly
- higher in HF compared with HC (both $P \le 0.049$, $d \ge 0.81$) (Figure 4B).
- 278

280 4 Discussion

281 This study investigated the effects of a HF and a HC breakfast on changes in appetite perceptions, gut hormones,

- energy intake and substrate oxidation during a 5h exposure to 4300m simulated altitude. The primary finding of
- this investigation is that consumption of a HF breakfast, compared with a HC breakfast, resulted in significantly
- higher CAS and acylated ghrelin concentrations during a subsequent exercise bout. However, this effect was
- transient and thus did not alter ad-libitum energy intake 1hr 30 minutes after exercise. In addition, absolute and
- relative carbohydrate oxidation was significantly lower in all periods after the HF breakfast compared with the
- 287 HC breakfast. This effect produced a trend for a lower total energy expenditure in HF compared with HC.
- 288 Although AUC for CAS was 31% higher and AUC for acylated ghrelin was 51% higher during exercise 289 in HF compared with HC, no differences were observed in subsequent energy intake. This was likely due to the 290 1hr 30 minute time period between exercise and ad-libitum feeding, in which appetite perceptions and acylated 291 ghrelin concentrations converged between conditions. It seems feasible that a difference in energy intake may 292 have been observed if ad-libitum feeding was administered immediately after exercise and future research is 293 warranted in this respect. This future research could hold ecologically validity, as trekking at terrestrial altitude is 294 often followed immediately by a meal, e.g. a stop for lunch. Furthermore, the increased appetite in the present 295 study during exercise in HF may have increased ad-libitum feeding during exercise, had foods been made 296 available. This could increase energy intake at terrestrial altitude as snacks are usually available during trekking. 297 The appetite responses in the present study corroborate the findings of similar investigations at sea level. 298 Monteleone, Bencivenga [47] observed that a 77% carbohydrate meal suppressed hunger to a significantly greater 299 extent than a 75% fat meal. Furthermore, previous data has suggested that a high carbohydrate meal induces a 300 greater decrease in postprandial ghrelin concentrations than an isocaloric high fat meal [12, 18, 47]. Previous 301 research shows that this larger postprandial decrease in appetite and plasma ghrelin concentrations, begins to 302 manifest approximately 60 minutes after food ingestion [12, 18, 47], which coincided with the start of exercise in 303 the present study. Therefore, it is possible that the observed differences in appetite and plasma acylated ghrelin 304 concentrations during exercise may be attributable to nutrient transit through the gastrointestinal tract over time, 305 rather than being induced by exercise.

306 The findings of the present study suggest a possible role of insulin in postprandial appetite suppression 307 at altitude. Insulin has been shown to suppress appetite and food intake via signalling in the hypothalamus [48] 308 and it seems feasible that the larger insulin response following the HC breakfast in the present study may have 309 contributed to the significantly lower appetite perceptions compared with HF. In addition, the higher postprandial 310 insulin concentration in the HC condition could have influenced appetite indirectly by contributing to the larger 311 suppression of acylated ghrelin, compared with the HF condition [49-51]. Without dietary intervention, acylated 312 ghrelin appears to be more strongly associated with altitude-induced anorexia than circulating insulin 313 concentrations [1]. Subsequently it seems reasonable to suggest that changes in CAS in the present study may 314 have been mediated predominantly by the acylated ghrelin responses, as opposed to changes in insulin 315 concentrations. This is the first study to directly influence acylated ghrelin concentrations at simulated altitude 316 via dietary intervention, and this elevation of acylated ghrelin concentrations during exercise resulted in a 317 simultaneous elevation of CAS. This strengthens the concept of a causal relationship between circulating acylated 318 ghrelin concentrations and subjective appetite responses at altitude. This speculation is supported at sea level as studies have found ghrelin infusion to decrease satiety [52], increase hunger [53-55] and increase energy intake
[55, 56] in a variety of populations.

321 The high-fat breakfast provided within the current study was rich in coconut oil, a foodstuff known for 322 high concentrations of MCFAs [57]. It seems plausible that the significantly higher acylated ghrelin 323 concentrations after the HF breakfast may be due to an increased availability of MCFAs as a substrate for GOAT 324 [24], which is supported by the elevated NEFA and triglyceride concentrations in the present study. This 325 speculation is corroborated by evidence that ingested MCFAs are directly utilised in the acyl modification of 326 ghrelin in rodents [24]. Substantiating this, others have found MCFA ingestion increases circulating acylated 327 ghrelin concentrations in ruminants [58], piglets [59] and cachectic patients [26]. Additionally, following a meal, 328 neural signals are produced from the gastrointestinal tract which represent direct post-ingestive satiety signals, 329 outlined in the satiety cascade [60]. It may be possible that circulating glucose elicits more potent satiating neural 330 signals compared with circulating free fatty acids at altitude.

331 Entire trial energy expenditure tended to be lower after the HF breakfast compared with the HC breakfast. 332 This phenomenon would be beneficial in minimising an altitude-induced negative energy balance, potentially 333 aiding the maintenance of body composition at altitude, were it to persist. The thermic effect of food is reported 334 to be 0–3% and 5–10% of the caloric content of the fat and carbohydrate administered [27], supporting the lower 335 energy expenditure after the HF breakfast, compared with the HC breakfast. Interestingly we found that, whilst 336 resting, absolute fat oxidation rate remained unchanged between conditions and absolute carbohydrate oxidation 337 was lower after the HF breakfast, explaining the lower energy expenditure in the HF condition. The higher 338 absolute carbohydrate oxidation observed after the HC breakfast aligns with the simultaneously higher lactate 339 concentrations, which substantiates previous data at sea level [61]. This is likely the result of an increased 340 glycolytic flux in the HC condition producing a higher rate of lactate production, and thus plasma lactate 341 concentrations. Recent research has demonstrated an increased reliance on fat oxidation during acute exposure to 342 altitude compared with a matched sea level condition in fed individuals at rest [1] and during exercise [1, 62]. The 343 current study demonstrated that, although reliance on fat as a substrate was already high due to acute hypoxic 344 exposure, feeding with a HF breakfast further increased relative reliance on fat up to 74.6 (12.5)% in the 345 postprandial stage.

346 Despite the novel findings observed in the present study, some notable limitations must be 347 acknowledged. Firstly, the hypoxic exposure was relatively short and it is possible that acylated ghrelin and CAS 348 may respond differently over a longer period of time. It seems feasible that the consumption of additional high fat 349 meals during more prolonged exposure may produce additional smaller magnitudes of postprandial acylated 350 ghrelin suppression compared with high carbohydrate meals and this area warrants further research. In addition, 351 tightly controlled laboratory studies of this nature are valuable to gain mechanistic understanding and provide a 352 proof of concept but these findings require application in further field studies to assess the effects of high fat 353 feeding when combined with the effects of trekking, gradual ascent and other environmental stimuli (e.g. cold 354 exposure) which occur during real life ascent to high-altitude. It is not possible to attribute the findings of the 355 present study to high fat feeding, or MCFAs per se. In order to make this distinction a control high-fat breakfast 356 would be necessary containing minimal amounts of MCFAs, this is a potential area for further research. 357 Additionally, without a sea level control group in the present study it is not possible to state that an altitude related

suppression of appetite occurred. However, in our laboratory we have previously observed significant altitude-358 359 induced appetite, acylated ghrelin and energy intake suppression using an extremely similar population and 360 protocol at the same altitude [1]. Therefore it seems likely that participants were suffering appetite suppression as 361 a result of altitude exposure. Finally, human energy balance is regulated by a complex multifaceted system. 362 Although the current study shows an augmentation of appetite after consuming a high fat breakfast, it is overly 363 simplistic to attribute all of the findings to a single gut hormone. Further research is needed to provide a full 364 mechanistic explanation of these findings. In conclusion, the consumption of a high fat breakfast at 4300m 365 simulated altitude attenuated the suppression of CAS and acylated ghrelin during subsequent exercise. However, this was transient and had no effect on energy intake at an ad-libitum meal provided 1hr 30 minutes after exercise. 366 367 In addition, high fat feeding resulted in a lower energy expenditure during the five hour trial in comparison with 368 high carbohydrate feeding. It seems plausible that a combination of these factors would help to maintain energy 369 balance at altitude, however further research would be beneficial to establish whether energy intake can be 370 augmented at altitude.

372 Acknowledgements

- 373 We would like to thank all of the volunteers who participated in this study. We would also like to thank Leah
- Boullier, Milton Holt, Becky Price, Georgia Head and Timothy Keitaro for their help with the study.

375

- 376 Funding
- 377 This research did not receive any specific grant from funding agencies in the public, commercial, or
- 378 not-for-profit sectors.

Table 1. Characteristics of the breakfasts

	Meal	Porridge ingredients	Drink	Total energy and macronutrient composition
	High fat breakfast	 43 g rolled oats (598 kJ, 26 g carbohydrate, 3 g fat, 4 g protein) 233 mL whole milk (645 kJ, 10 g carbohydrate, 9 g fat, 8 g protein) 26 g coconut oil (961 kJ, 1 g carbohydrate, 25 g fat, 0 g protein) 7 g unflavoured whey (125 kJ, 0 g carbohydrate, 1 g fat, 6 g protein) 	216 mL whole milk (597 kJ, 10 g carbohydrate, 9 g fat, 7 g protein)	2927 kJ, 47 g (25%) carbohydrate, 47 g (60%) fat, 25 g (15%) protein
	High carbohydrate breakfast	 81 g rolled oats (1122 kJ, 49 g carbohydrate, 6 g fat, 8 g protein) 437 mL semi-skimmed milk (868 kJ, 20 g carbohydrate, 8 g fat, 15 g protein) 25 g maltodextrin (369 kJ, 24 g carbohydrate, 0 g fat, 0 g protein) 10 mL double cream (186 kJ, 0 g carbohydrate, 5 g fat, 0 g protein) 1 g unflavoured whey (17 kJ, 0 g carbohydrate, 0 g fat, 1 g protein) 	216 mL orange juice (354 kJ, 19 g carbohydrate, 1 g fat, 1 g protein)	2917 kJ, 112 g (60%) carbohydrate, 19 g (25%) fat, 26 g (15%) protein
381 382				
383 384				
385 386				
387 388				
389				

	Pre-prandial		Postprandial		Exercise		Post-exercise	
	Carbohydrate	Fat	Carbohydrate	Fat	Carbohydrate	Fat	Carbohydrate	Fat
	oxidation,							
	g∙min ⁻¹ [%]							
High fat	0.19 (0.08)	0.09 (0.03)	0.17 (0.07)*	0.13 (0.05)	0.69 (0.19)*	0.45 (0.08)*	0.12 (0.06)*	0.16 (0.05)
	[48.6 (13.4)]	[51.4 (13.4)]	$[34.9 \pm (10.1)]^*$	[65.1 (10.1)]*	[39.7 (10.2)]*	[60.3 (10.2)]*	[25.4 (12.5)]*	[74.6 (12.5)]*
High	0.21 (0.11)	0.10 (0.04)	0.25 (0.11)	0.12 (0.05)	0.84 (0.24)	0.40 (0.07)	0.17 (0.10)	0.15 (0.06)
carbohydrate	[48.9 (17.1)]	[51.1 (17.1)]	[46.6 (15.9)]	[53.4 [15.9)]	[47.5 (10.7)]	[52.5 (10.7)]	[33.6 (18.4)]	[66.4 (18.4)]

390 Table 2. Absolute and relative contributions of carbohydrate and fat oxidation in the high fat and high carbohydrate trials.

391 Values are mean (SD), N = 12. % is percentage of energy yield. * Significantly (P < 0.05) different to high carbohydrate condition.

		Appeal, mm	Smell, mm	Taste, mm	Aftertaste, mm	Palatability, mm	
	High fat	32 (17)	31 (16)	36 (25)	47 (26)	35 (23)	
	High	38 (22)	25 (17)	34 (22)	56 (26)	37 (20)	
	carbohydrate	38 (22)	35 (17)			37 (20)	
394	Values are mean	n (SD), N = 12.					

Supplementary Table 1. Palatability perceptions after the high fat and high carbohydrate breakfasts

397 Supplementary Table 2. Macronutrient intakes at the ad-libitum meal in the high fat and high carbohydrate398 conditions.

	Carbohydrate, g [%]	Fat, g [%]	Protein, g [%]
High fat	155 (57)	59 (29)	42 (19)
-	[48 (11)]	[39 (11)]	[13 (2)]
High carbohydrate	160 (62)	68 (34)	48 (20)
	[47 (15)]	[40 (14)]	[13 (3)]

399 Values are mean (SD), N = 12.

400

402 References

403 Matu J, Deighton K, Ispoglou T, Duckworth L. The effect of moderate versus severe simulated altitude 1. 404 on appetite, gut hormones, energy intake and substrate oxidation in men. Appetite. 2017;113:284-92. 405 406 Wasse LK, Sunderland C, King JA, Batterham RL, Stensel DJ. Influence of rest and exercise at a 2. 407 simulated altitude of 4,000 m on appetite, energy intake, and plasma concentrations of acylated ghrelin and 408 peptide YY. J Appl Physiol. 2012;112:552-9. 409 410 3. Westerterp-Plantenga MS, Westerterp KR, Rubbens M, Verwegen CR, Richelet JP, Gardette B. 411 Appetite at "high altitude" [Operation Everest III (Comex-'97)]: a simulated ascent of Mount Everest. J Appl 412 Physiol. 1999;87:391-9. 413 414 Aeberli I, Erb A, Spliethoff K, Meier D, Gotze O, Fruhauf H, et al. Disturbed eating at high altitude: 4. 415 influence of food preferences, acute mountain sickness and satiation hormones. Eur J Nutr. 2013;52:625-35. 416 417 Major GC, Doucet E. Energy intake during a typical Himalayan trek. High Alt Med Biol. 5. 418 2004;5(3):355-63. 419 420 Armellini F, Zamboni M, Robbi R, Todesco T, Bissoli L, Mino A, et al. The effects of high altitude 6. 421 trekking on body composition and resting metabolic rate. Horm Metab Res. 1997;29:458-61. 422 423 Rose MS, Houston CS, Fulco CS, Coates G, Sutton JR, Cymerman A. Operation Everest. II: Nutrition 7. 424 and body composition. J Appl Physiol. 1988;65:2545-51. 425 426 8. Pulfrey SM, Jones PJ. Energy expenditure and requirement while climbing above 6,000 m. J Appl 427 Physiol. 1996;81:1306-11. 428 429 Sergi G, Imoscopi A, Sarti S, Perissinotto E, Coin A, Inelmen EM, et al. Changes in total body and 9. 430 limb composition and muscle strength after a 6-8 weeks sojourn at extreme altitude (5000-8000 m). J Sports 431 Med Phys Fit. 2010;50:450-5. 432 433 10. Hoppeler H, Vogt M. Muscle tissue adaptations to hypoxia. J Exp Biol. 2001;204:3133-9. 434 435 11. Westerterp KR, Kayser B, Wouters L, Le Trong JL, Richalet JP. Energy balance at high altitude of 436 6,542 m. J Appl Physiol. 1994;77:862-6. 437 438 12. Foster-Schubert KE, Overduin J, Prudom CE, Liu J, Callahan HS, Gaylinn BD, et al. Acyl and Total 439 Ghrelin Are Suppressed Strongly by Ingested Proteins, Weakly by Lipids, and Biphasically by Carbohydrates. J 440 Clin Endoc Metab. 2008;93:1971-9. 441 13. El Khoury D, El-Rassi R, Azar S, Hwalla N. Postprandial ghrelin and PYY responses of male subjects 442 on low carbohydrate meals to varied balancing proportions of proteins and fats. Eur J Nutr. 2010;49:493-500. 443 Bowen J, Noakes M, Trenerry C, Clifton PM. Energy intake, ghrelin, and cholecystokinin after 444 14. 445 different carbohydrate and protein preloads in overweight men. J Clin Endoc Metab. 2006;91:1477-83. 446 447 15. Porrini M, Crovetti R, Testolin G, Silva S. Evaluation of Satiety Sensations and Food Intake After 448 Different Preloads. Appetite. 1995;25:17-30. 449 450 Stubbs RJ. Nutrition Society Medal Lecture. Appetite, feeding behaviour and energy balance in human 16. subjects. Proc Nutr Soc. 1998;57:341-56. 451 452 453 Tome D. Protein, amino acids and the control of food intake. The British journal of nutrition. 17. 454 2004;92:27-30. 455 456 Tannous dit El Khoury D, Obeid O, Azar ST, Hwalla N. Variations in postprandial ghrelin status 18. 457 following ingestion of high-carbohydrate, high-fat, and high-protein meals in males. Annals Nutr Metab. 458 2006;50:260-9.

459 19. Hopkins M, Gibbons C, Caudwell P, Blundell JE, Finlayson G. Differing effects of high-fat or high-460 carbohydrate meals on food hedonics in overweight and obese individuals. British J Nutr. 2016;115:1875-84. 461 462 Yang J, Brown MS, Liang G, Grishin NV, Goldstein JL. Identification of the acyltransferase that 20. 463 octanoylates ghrelin, an appetite-stimulating peptide hormone. Cell. 2008;132:387-96. 464 465 Kojima M, Hamamoto A, Sato T. Ghrelin O-acyltransferase (GOAT), a specific enzyme that modifies 21. 466 ghrelin with a medium-chain fatty acid. J Biochem. 2016;160:189-94. 467 468 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K. Ghrelin is a growth-hormone-22. 469 releasing acylated peptide from stomach. Nature. 1999;402:656-60. 470 471 Fernandez G, Cabral A, Cornejo MP, De Francesco PN, Garcia-Romero G, Revnaldo M, et al. Des-23 472 Acyl Ghrelin Directly Targets the Arcuate Nucleus in a Ghrelin-Receptor Independent Manner and Impairs the 473 Orexigenic Effect of Ghrelin. J Neuroendoc. 2016;28:12349. 474 475 24. Nishi Y, Hiejima H, Hosoda H, Kaiya H, Mori K, Fukue Y, et al. Ingested medium-chain fatty acids 476 are directly utilized for the acyl modification of ghrelin. Endocrinology. 2005;146:2255-64. 477 478 Lemarie F, Beauchamp E, Legrand P, Rioux V. Revisiting the metabolism and physiological functions 25. 479 of caprylic acid (C8:0) with special focus on ghrelin octanoylation. Biochimie. 2016;120:40-8. 480 481 26. Ashitani J-i, Matsumoto N, Nakazato M. Effect of octanoic acid-rich formula on plasma ghrelin levels 482 in cachectic patients with chronic respiratory disease. Nutr J. 2009;8(1):25. 483 484 27. Acheson KJ. Influence of autonomic nervous system on nutrient-induced thermogenesis in humans. 485 Nutr. 1993;9(4):373-80. 486 487 Bailey DP, Smith LR, Chrismas BC, Taylor L, Stensel DJ, Deighton K, et al. Appetite and gut 28. 488 hormone responses to moderate-intensity continuous exercise versus high-intensity interval exercise, in 489 normoxic and hypoxic conditions. Appetite. 2015;89:237-45. 490 491 29. Goodman J, Hassell K, Irwin D, Witkowski EH, Nuss R. The splenic syndrome in individuals with 492 sickle cell trait. High Alt Med Biol. 2014;15(4):468-71. 493 494 Fenn WO, Rahn H, Otis AB. A theoretical study of the composition of the alveolar air at altitude. Am J 30. 495 Physiol. 1946;146:637-53. 496 497 Conkin J. PH2O and simulated hypobaric hypoxia. Aviat Sp Environ Med. 2011;82:1157-8. 31. 498 499 Stevenson E, Williams C, Nute M, Swaile P, Tsui M. The effect of the glycemic index of an evening 32. 500 meal on the metabolic responses to a standard high glycemic index breakfast and subsequent exercise in men. 501 Int J Sport Nutr Ex Metab. 2005;15:308-22. 502 503 Wolever TM, Jenkins DJ, Ocana AM, Rao VA, Collier GR. Second-meal effect: low-glycemic-index 33. 504 foods eaten at dinner improve subsequent breakfast glycemic response. Am J Clin Nutr. 1988;48:1041-7. 505 506 Mellor A, Bakker-Dyos J, Howard M, Boos C, Cooke M, Vincent E, et al. British Services Dhaulagiri 34. 507 Medical Research Expedition: A unique military/civilian research collaboration. J Royal Army Med Corps. In 508 Press. 509 510 Borg GA. Psychophysical bases of perceived exertion. Med Sci Sports Exercise. 1982;14:377-81. 35. 511 512 Roach RC, Bärtsch P, Oelz O, Hackett PH. The Lake Louise acute mountain sickness scoring system. . 36 513 In: Sutton JR, Houston CS, Goates G, editors. Hypoxia and Molecular Medicine. Burlington, VT: Queens City 514 Press 1993. pp. 272-4. 515 516 Flint A, Raben A, Blundell JE, Astrup A. Reproducibility, power and validity of visual analogue scales 37. 517 in assessment of appetite sensations in single test meal studies. Int J Obes Relat Metab Disord. 2000;24:38-48. 518

- 519 38. Stubbs RJ, Hughes DA, Johnstone AM, Rowley E, Reid C, Elia M, et al. The use of visual analogue
 520 scales to assess motivation to eat in human subjects: a review of their reliability and validity with an evaluation
 521 of new hand-held computerized systems for temporal tracking of appetite ratings. Brit J Nutr. 2000;84:405-15.
 522
- 523 39. Frayn KN. Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol.
 524 1983;55:628-34.
- 525
 526 40. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas
 527 exchange measurements. Int J Sports Med. 2005;26:28-37.
 528
- 529 41. Date Y. The Vagus Nerve and Ghrelin Function. In: Portelli J, Smolders I, editors. Central Functions of
 530 the Ghrelin Receptor. New York, NY: Springer New York; 2014. pp. 53-61.
 531
- 532 42. Dill DB, Costill DL. Calculation of percentage changes in volumes of blood, plasma, and red cells in
 533 dehydration. J Appl Physiol. 1974;37:247-8.
 534
- 535 43. Fawcett JK, Wynn V. Effects of posture on plasma volume and some blood constituents. J Clin Pathol.
 536 1960;13:304-10.
 537
- 44. Hosoda H, Doi K, Nagaya N, Okumura H, Nakagawa E, Enomoto M, et al. Optimum collection and
 storage conditions for ghrelin measurements: octanoyl modification of ghrelin is rapidly hydrolyzed to desacyl
 ghrelin in blood samples. Clin Chem. 2004;50:1077-80.
- 45. Hopkins WG. How to interpret changes in an athletic performance test. Sportscience. 2004; 8:1–7.
- 544 46. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for
 545 the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175-91.
 546
- 547 47. Monteleone P, Bencivenga R, Longobardi N, Serritella C, Maj M. Differential responses of circulating
 548 ghrelin to high-fat or high-carbohydrate meal in healthy women. J Clin Endoc Metab. 2003;88:5510-4.
 549
- 48. Scherer T, Buettner C. Yin and Yang of hypothalamic insulin and leptin signaling in regulating white
 adipose tissue metabolism. Rev Endoc Metab Disord. 2011;12:235-43.
- 49. Leonetti F, Iacobellis G, Ribaudo MC, Zappaterreno A, Tiberti C, Iannucci CV, et al. Acute insulin
 infusion decreases plasma ghrelin levels in uncomplicated obesity. Regul Pept. 2004;122:179-83.
- 556 50. Saad MF, Bernaba B, Hwu CM, Jinagouda S, Fahmi S, Kogosov E, et al. Insulin regulates plasma
 557 ghrelin concentration. J Clin Endoc Metab. 2002;87:3997-4000.
- 559 51. Anderwald C, Brabant G, Bernroider E, Horn R, Brehm A, Waldhausl W, et al. Insulin-dependent
 560 modulation of plasma ghrelin and leptin concentrations is less pronounced in type 2 diabetic patients. Diabetes.
 561 2003;52:1792-8.
- 563 52. Vestergaard ET, Hansen TK, Gormsen LC, Jakobsen P, Moller N, Christiansen JS, et al. Constant
 intravenous ghrelin infusion in healthy young men: clinical pharmacokinetics and metabolic effects. Am J
 565 Physiol. 2007;292:1829-36.
 566
- 567 53. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in
 568 obese as well as lean subjects. Int J Obes. 2005;29:1130-6.
 569
- 570 54. Schmid DA, Held K, Ising M, Uhr M, Weikel JC, Steiger A. Ghrelin stimulates appetite, imagination
 571 of food, GH, ACTH, and cortisol, but does not affect leptin in normal controls. Neuropsychopharmacology.
 572 2005;30:1187-92.
 573
- 574 55. Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite
 575 and increases food intake in humans. J Clin Endoc Metab. 2001;86:5992.
- 576

558

- 56. Neary NM, Small CJ, Wren AM, Lee JL, Druce MR, Palmieri C, et al. Ghrelin increases energy intake
 in cancer patients with impaired appetite: acute, randomized, placebo-controlled trial. J Clin Endoc Metab.
 2004;89:2832-6.
- 581 57. Babu AS, Veluswamy SK, Arena R, Guazzi M, Lavie CJ. Virgin coconut oil and its potential
 582 cardioprotective effects. Postgrad Med J. 2014 Nov;126:76-83.
 583
- 584 58. Fukumori R, Sugino T, Shingu H, Moriya N, Kobayashi H, Hasegawa Y, et al. Ingestion of medium
 585 chain fatty acids by lactating dairy cows increases concentrations of plasma ghrelin. Domest Anim Endoc.
 586 2013;45:216-23.
- 588 59. Zhang H, Li Y, Hou X, Zhang L, Wang T. Medium-chain TAG improve energy metabolism and
 589 mitochondrial biogenesis in the liver of intra-uterine growth-retarded and normal-birth-weight weanling piglets.
 590 Brit J Nutr. 2016;115:1521-30.
 591
- 592 60. Blundell J. Pharmacological approaches to appetite suppression. Trends In Pharmacological Sciences.
 593 1991;12:147-57.
 594
- 595 61. Surina DM, Langhans W, Pauli R, Wenk C. Meal composition affects postprandial fatty acid oxidation.
 596 Am J Physiol. 1993;264:1065-70.
 597
- 598 62. O'Hara JP, Woods DR, Mellor A, Boos C, Gallagher L, Tsakirides C, et al. A comparison of substrate
 599 oxidation during prolonged exercise in men at terrestrial altitude and normobaric normoxia following the
 600 coingestion of 13C glucose and 13C fructose. Physiol Rep. 2017; doi: 10.14814/phy2.13101
- 601

- 602
- 603
- 604

605 Figure Legends

- **Figure 1.** Composite appetite score in the high fat (solid line) and high carbohydrate (dashed line) trials
- expressed as mean (SE), N = 12. Thin upward arrow represents breakfast and thick upward arrow represents adlibitum meal. Black rectangle represents exercise.
- **Figure 2.** Acylated ghrelin (A), des-acylated ghrelin (B) and total ghrelin (C) concentrations in the high fat
- 610 (solid line) and high carbohydrate (dashed line) trials expressed as mean (SE), N = 12. Thin upward arrow
- 611 represents breakfast and thick upward arrow represents ad-libitum meal. Black rectangle represents exercise.
- **Figure 3.** Glucose (A), insulin (B) and lactate (C) concentrations in the high fat (solid line) and high
- 613 carbohydrate (dashed line) trials expressed as mean (SE), N = 12. Thin upward arrow represents breakfast and
- thick upward arrow represents ad-libitum meal. Black rectangle represents exercise.
- **Figure 4.** Non-esterified fatty acids (A) and triglycerides (B) concentrations in the high fat (solid line) and high
- 616 carbohydrate (dashed line) trials expressed as mean (SE), N = 12. Thin upward arrow represents breakfast and
- 617 thick upward arrow represents ad-libitum meal. Black rectangle represents exercise.