

This is a repository copy of *Biocatalytic Conversion of Cyclic Ketones Bearing* α -Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium-Sized Carbocycles.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/128867/

Version: Accepted Version

Article:

Morrill, Charlotte, Jensen, Chantel N, Just-Baringo, Xavier et al. (3 more authors) (2018) Biocatalytic Conversion of Cyclic Ketones Bearing α-Quaternary Stereocenters into Lactones in an Enantioselective Radical Approach to Medium-Sized Carbocycles. Angewandte Chemie International Edition. pp. 3692-3696. ISSN 1433-7851

https://doi.org/10.1002/anie.201800121

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Accepted Article

Title: Biocatalytic conversion of cyclic ketones bearing alphaquaternary stereocenters to lactones in an enantioselective radical approach to medium-sized carbocycles

Authors: Charlotte Morrill, Chantel Jensen, Xavier Just-Baringo, Gideon Grogan, Nicholas Turner, and David John Procter

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201800121 Angew. Chem. 10.1002/ange.201800121

Link to VoR: http://dx.doi.org/10.1002/anie.201800121 http://dx.doi.org/10.1002/ange.201800121

WILEY-VCH COMMUNICATION

Biocatalytic conversion of cyclic ketones bearing α-quaternary stereocenters to lactones in an enantioselective radical approach to medium-sized carbocycles

Charlotte Morrill, [a] Chantel Jensen, [a] Xavier Just-Baringo, [a] Gideon Grogan, [b] Nicholas J. Turner*[a] and David J. Procter*[a]

Abstract: Cyclic ketones bearing α-quaternary stereocenters undergo efficient kinetic resolution using cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. Lactones possessing tetrasubstituted stereocenters are obtained with high enantioselectivity (up to >99% ee) and complete chemoselectivity. Preparative scale biotransformations were exploited in conjunction with a Sml2-mediated cyclization process to access complex, enantiomerically enriched cycloheptan- and cycloctan-1,4-diols. In a parallel approach to structurally distinct products, enantioenriched ketones from the resolution bearing an α all carbon quaternary stereocenter were used in a Sml2-mediated cyclization process to give cyclobutanol products (up to >99% ee).

The Baeyer-Villiger (BV) reaction[1] transforms ketones into esters or lactones with predictable regioselectivity and as such is a valuable tool for synthesis. Metal-based catalysts [2] organocatalysts^[3] have been developed for catalytic enantioselective variants of the BV reaction, however, high enantioselectivities are generally limited to the transformation of activated cyclobutanone substrates in which the release of ring strain drives the BV reaction. [4] Baeyer-Villiger monooxygenases (BVMOs) offer an attractive alternative to the use of chemical reagents for enantioselective BV reactions. These flavin-dependent enzymes exploit atmospheric oxygen and catalyze the transformation through an enzyme-bound flavin-(hydro)peroxy intermediate. [5] The use of distinct advantages promises enantioselectivities, substrate scope, and chemoselectivity not possible using chemical reagents. [6]

BV transformations of α,α -dialkyl cyclic ketones have the potential to deliver enantioenriched lactones with tetrasubstituted stereocenters and cyclic ketones bearing α -all-carbon quaternary centers. Such products possess hard-to-build stereocenters[7] and are high value chiral building blocks for synthesis. [8] To our knowledge, there are no reports of the enantioselective BV reaction of α,α -dialkyl cyclic ketones using chemical reagents. [2b, 2g] Furthermore, the ability of BVMOs to catalyze the kinetic resolution of α,α -dialkyl cyclic ketones was, until now, unexplored (Scheme

1A). [9] The synthetic reach of biocatalytic reactions is greatly extended when enzymatic processes are integrated into synthetic sequences involving chemical catalysts and reagents. [10] Herein, we describe a highly enantioselective and chemoselective, biocatalytic Baeyer-Villiger approach to unsaturated lactones II bearing tetrasubstituted stereocenters that proceeds by the kinetic resolution of cyclic ketones I bearing α -quaternary stereocenters. Crucially, lactones II are not easily accessible in enantiomerically enriched form using state-of-the-art chemical methods.[11] Lactones II are excellent substrates for Sml₂-H₂O-mediated^[12] cyclization reactions that complete an enantioselective biocatalytic-chemical approach to important and complex cycloheptan- and cycloctan-1,4-diols III (Scheme 1B): Structural motifs that are notoriously hard to prepare and that are prevalent in many biologically-relevant targets (Schemes 1B and 1C).[13]

A. Biocatalytic kinetic resolution of cyclic ketones using BVMOs

$$\begin{array}{c|c}
 & R^1 & BVMOs \\
 & R^2 & kinetic resolution
\end{array}$$

$$\begin{array}{c|c}
 & R^1 & R^2 + R$$

B. A biocatalytic-chemical approach to complex, medium-sized cycloalkanols

■ tetrasubstituted stereocenters ■ quaternary all-carbon stereocenters ■ high enantioselectivity ■ high chemoselectivity ■ good substrate scope

C. Biologically significant targets possessing complex medium-sized cycloalkanols

Scheme 1. A. BVMOs in the kinetic resolution of cyclic ketones: lack of precedent for the resolution of substrates bearing $\alpha\text{-quaternary}$ stereocenters. B. An approach to complex, medium-sized cycloalkanols that exploits the synergy between a biocatalytic and a chemical process. C. The biological importance of molecules containing cycloheptanol and cyclooctanol motifs.

C. Morrill, Dr. C. Jensen, Dr. X. Just-Baringo, Prof. N. J. Turner, Prof. D. J. Procter School of Chemistry, University of Manchester Manchester, M13 9PL (UK) E-mail: david.j.procter@manchester.ac.uk

Prof. G. Grogan Department of Chemistry, University of York Heslington, York, YO10 5DD (UK)

> Supporting information for this article is given via a link at the end of the document.

The biocatalytic kinetic resolution was explored using the purified CHMO_{Actineto} enzyme from Acinetobacter calcoaceticus (NCIMB 9871). A glucose/glucose dehydrogenase (GDH) recycling system was employed for catalytic regeneration of the NADPH cofactor^[14] and the feasibility of the biotransformation was initially assessed on an analytical scale using ketone ${\bf 1a}$ (R¹ = Me, R² = H). Pleasingly, despite the lack of precedent for the resolution of substrates bearing α -quaternary centers, lactone ${\bf 2a}$ was efficiently formed in >99% ee at a conversion of 50% (Table 1). A control reaction, in which ${\bf 1a}$ was exposed to the reaction conditions in the absence of CHMO, resulted in no conversion to the product. In order to assess the scope of the transformation, a range of lactones bearing various aryl groups on the alkene unit was prepared in one straightforward step from ${\bf 1a}$ (see Supporting Information). Despite the presence of the bulky aryl substituents and the α -quaternary center, we were pleased to observe unprecedented tolerance on the part of CHMO and all six-membered ketones ${\bf 1}$ were transformed to seven-membered lactones ${\bf 2}$ with very high enantioselectivities (selectivity factors, E > 200) (Table 1).

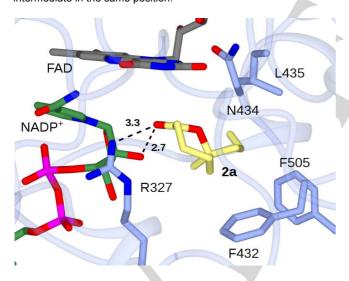
Table 1. Biotransformations of six-membered cyclic ketones bearing α -quaternary all-carbon stereocenters catalyzed by CHMO $_{Acineto}$.

Conditions for analytical scale biotransformations: Ketone 1 mg mL¹, CHMO 0.25 mg mL¹, NADPH 0.7 mM, GDH 0.25 mg mL¹, glucose 5.5 mM, Tris/HCl buffer 100 mM. a Values shown are conversions determined by GC or ¹H NMR analysis of crude reaction mixtures. b Isolated yields in brackets for preparative scale transformations. For a detailed description of the procedure for the preparative scale biotransformations see the Supporting Information. Enantiomeric excesses determined by chiral stationary phase GC or HPLC analysis.

Selective formation of the (R) enantiomer of the lactone products was confirmed for **2a-c** and inferred for the remainder.^[15] For substrates bearing a methyl substituent at the α -quaternary center, conversions up to 50% (the maximum theoretical value for an ideal kinetic resolution) were observed. In stark contrast to chemical oxidation of **1b** to **2b**, no side products resulting from competing oxidation of the alkene in the starting material and product were observed. Thus, the biocatalytic process exhibits complete chemoselectivity. Substitution was tolerated at all positions on the aromatic ring, with halogen, methyl and trifluoromethyl substituents all accepted by the enzyme active site. Substrates **1d** and **1e**, bearing bulky naphthyl and 3-bromo substituents, were transformed

less efficiently by the enzyme and lower conversions were exhibited, however, enantioselectivity remained high. Variation of the reaction pH and use of an alternative biocatalyst, cyclododecanone monooxygenase (CDMO_{Rhodo}) from *Rhodococcus*, did not lead to improved conversions. [17] Ketone 1i, in which the R¹ group was an ethyl rather than a methyl substituent, was transformed inefficiently, although a small amount of product was formed with high enantiocontrol. Following assessment of the process on an analytical scale, transformations were performed on a preparative scale (0.2 mmol) (formation of 2a-c, 2f). Facile separation of the product from the ketone afforded pure samples of the enantioenriched lactone products. For substrates, 1a-c, 1f, high value ketones bearing α - all carbon quaternary stereocenters 2a-c, 2f were obtained in high enantiopurity after the kinetic resolution (*vide infra*).

We also explored the scope of the biocatalytic kinetic resolution with respect to the formation of six-membered lactones. A range of five-membered ketones **3** was prepared and subjected to the CHMO-catalysed transformation (Table 2). Although the biotransformations were typically less efficient than those involving


Table 2. Biotransformations of five-membered cyclic ketones bearing α -quaternary all-carbon stereocenters catalyzed by CHMO_{Acineto}.

Conditions for analytical scale biotransformations: Ketone 1 mg mL⁻¹, CHMO 0.25 mg mL⁻¹, NADPH 0.7 mM, GDH 0.25 mg mL⁻¹, glucose 5.5 mM, Tris/HCl buffer 100 mM. ^a Values shown are conversions determined by GC or ¹H NMR analysis of crude reaction mixtures. ^b Isolated yields in brackets for preparative scale transformations. For a detailed description of the procedure for the preparative scale biotransformations see Supporting Information. Enantiomeric excesses determined by chiral phase GC or HPLC analysis.

six-membered cyclic ketones, in some cases lactone products 4 were formed with selectivity factors (E 17-59) indicative of useful synthetic procedures. For example, cyclopentanones 3c and 3h underwent significant conversion and lactones 4c and 4h were obtained in 96% ee and 88% ee, respectively. Five-membered cyclic ketones 3d, 3e and 3g, containing larger aromatic substituents, showed very little or no conversion to lactone products (Table 2).

Selective formation of the (R) enantiomer of the lactone products was confirmed for **4a-c** and inferred for the remainder.^[15] Analogous seven-membered ketone substrates were incompatible with the biocatalytic process.^[15]

Berghuis and co-workers have previously determined the structure of CHMO_{Rhodo}, a homolog of CHMO_{Actineto}, in its 'tight' conformation in complex with ϵ -caprolactone, the product of BV oxidation of cyclohexanone (PDB code 4RG3)[18] and suggest that this is the conformation of the enzyme in which stereoselectivity of the reaction is determined. CHMO_{Acineto} used here, shares 55% amino acid sequence identity with CHMO_{Rhodo} and the majority of residues within the active site are conserved, allowing the construction of a model of CHMO_{Acineto} such as that previously presented by Reetz and co-workers.^[19] The model was used as the input for an in silico docking experiment with the enantiomers of lactone product 2a. Figure 1 shows the (R)-enantiomer of 2a, the preferred product of reaction, beneath the FAD coenzyme with its alkenyl substituent accommodated in the hydrophobic pocket formed by the side chains of L435, F505, and F432, the latter having been shown through mutation to have a profound influence on the enantioselectivity of CHMO Acineto catalyzed reactions. [20] The pose would also permit the accommodation of larger side chains such as those in the (R)-lactone products 2b and 2c. The role of this region in the accommodation of bulky side chains, such as that of 2-phenyl cyclohexanone, has previously been demonstrated. [19] Interestingly, the 2a lactone carbonyl in the top pose superimposes well with the equivalent atom in the 4RG3-ε caprolactone complex, at a distance of 3.3 Å from the ribose 1- hydroxyl and 2.7 Å from the side chain of R327, which is thought to stabilise the oxyanion in the Criegee intermediate in the same position.

Figure 1. Model of CHMO_{Acineto} in complex with lactone product (*R*)-2a created using Autodock-Vina. ^[21] Backbone and side chains of the enzyme are shown in light blue, carbon atoms of FAD, NADP* and 2a are shown in grey, green and yellow, respectively. Selected interactions are indicated by black dashed lines with distance in Angstroms.

Radical approaches to challenging medium sized carbocycles are highly prized. [22] In particular, radical cyclizations to give cyclooctanes are scarce and are mostly limited to 8-endo cyclization modes. We recently reported a 5-exo-trig radical cyclization approach that converts unsaturated six and seven-membered

lactones to complex seven- and eight-membered cycloalkanols, however, until now the process could only deliver racemic products as enantioenriched starting lactones could not easily be prepared. [12g, 12j] Achieving enantiocontrol in Sml₂-mediated reactions of achiral or racemic substrates is challenging [23] and the use of enantioenriched substrates in diastereoselective processes is a more general approach to access enantioenriched products.

The enantioenriched lactones 2/4 formed by the biocatalytic Baeyer-Villiger reaction were excellent substrates for diastereoselective radical cyclizations mediated by Sml₂–H₂O. Upon treatment with Sml₂–H₂O, lactones 2/4 underwent efficient 5-exo-trig radical cyclization to give seven- and eight-membered cycloalkanols 5 in good yield. Oxidation of the crude product mixtures simplified the diastereoisomeric mixtures and afforded the cycloalkanoid products 6 with up to 6:1 dr. The reaction proceeded with no loss of enantioenrichment and important cyclooctanol motifs were obtained in >99% ee.

The radical cyclization proceeds by electron transfer from Sm(II) to the carbonyl group of the enantioenriched lactones formed by the biocatalytic BV reaction. The resultant radical anions **IV** (see Table 3) undergo intramolecular addition to the alkene acceptor to give hemiketal intermediates that are reduced *in situ* by SmI₂–H₂O to give enantioenriched seven- and eight-membered cycloalkanol products **5** in good yield.

Table 3. Radical cyclization of enantioenriched lactones using Sml_2-H_2O completes an enantioselective approach to cycloheptanols and cyclooctanols.

Conditions: Lactone (1 equiv.), Sml_2 (8 equiv.), H_2O (800 equiv.). Diastereoisomeric ratios were determined from ¹H NMR of crude reaction mixtures. ⁸Isolated yields after 2 steps. Enantiomeric excesses were determined by chiral phase GC or HPLC analysis. DMP = Dess-Martin periodinane

The biocatalytic transformation of α , α -dialkyl cyclic ketones delivers not only enantioenriched lactones **2** but also enantioenriched cyclic ketones **1** recovered from the kinetic resolution (Scheme 2). For example, the biocatalytic transformation to give lactone **2b** (43% isolated yield, >99% ee) also gave ketone **1b** (39% isolated yield,

>99% ee) bearing an α - all-carbon quaternary stereocenter. Pleasingly, Sml₂-mediated radical cyclization of **2b** gave enantiopure cyclobutanol **7a** with complete diastereocontrol in 84% yield. [24] Cyclobutanols **7b** and **7c** could be similarly be obtained from resolved ketones bearing α - all-carbon quaternary stereocenters, **1f** and **3f**. Thus, biocatalytic kinetic resolution of racemic ketones **1** and **3**, when used in combination with metal-mediated radical cyclizations, allows divergent access to important carbocyclic products with very different molecular architectures in enantiopure form.

Scheme 2. Biocatalytic kinetic resolution of *rac-***1b** in a divergent, metal-mediated radical cyclization approach to structurally distinct, enantiopure molecular architectures.

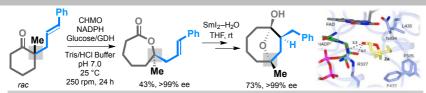
In summary, racemic cyclic ketones bearing α-quaternary stereocenters undergo efficient kinetic resolution cyclohexanone monooxygenase (CHMO) from Acinetobacter calcoaceticus. The new biocatalytic process has been used in combination with new radical cyclizations to access important enantioenriched carbocyclic scaffolds. In particular, lactones possessing tetrasubstituted stereocenters are obtained with high enantioselectivity (up to >99% ee) and are exploited in Sml₂mediated cyclization processes to access complex, enantiomerically enriched cycloheptan- and cycloctan-1,4-diols. In a divergent to structurally distinct molecular architectures, enantioenriched cyclic ketones from the resolution, bearing an α - allcarbon quaternary stereocenter, were used in a Sml₂-mediated cyclization process to give cyclobutanol products (up to >99% ee).

Acknowledgements

We thank the EPSRC (EPSRC Established Career Fellowship to D.J.P.), the BBSRC DTP (Studentship to C.M.), and the ERC (ERC Advanced Grant to N. J. T.).

Keywords: biocatalysis • lactones • samarium • radical • cyclization

- [1] A. Baeyer, V. Villiger, Ber. Dtsch. Chem. Ges. 1899, 32, 3625-3633.
- [2] a) C. Bolm, G. Schlingloff, K. Weickhardt, *Angew. Chem. Int. Ed.* 1994, 33, 1848-1849; b) L. Zhou, X. Liu, J. Ji, Y. Zhang, X. Hu, L. Lin, X. Feng, *J. Am. Chem. Soc.* 2012, 134, 17023-17026; c) A. Cavarzan, G. Bianchini, P. Sgarbossa, L. Lefort, S. Gladiali, A. Scarso, G. Strukul, *Chem. Eur. J.* 2009, 15, 7930-7939; d) C. Paneghetti, R. Gavagnin, F. Pinna, G. Strukul, *Organometallics* 1999, 18, 5057-5065; e) A. Gusso,


- C. Baccin, F. Pinna, G. Strukul, Organometallics 1994, 13, 3442-3451;
 f) N. Yang, Z. Su, X. Feng, C. Hu, Chem. Eur. J. 2015, 21, 7264-7277.
 g) L. Zhou, X. Liu, J. Ji, Y. Zhang, W. Wu, Y. Liu, L. Lin, X. Feng, Org. Lett. 2014, 16, 3938-3941.
- [3] a) P. P. Poudel, K. Arimitsu, K. Yamamoto, Chem. Commun. 2016, 52, 4163-4166; b) D. K. Romney, S. M. Colvin, S. J. Miller, J. Am. Chem. Soc. 2014, 136, 14019-14022; c) M. W. Giuliano, C.-Y. Lin, D. K. Romney, S. J. Miller, E. V. Anslyn, Adv. Synth. Catal. 2015, 357, 2301-2309; d) S. Xu, Z. Wang, X. Zhang, X. Zhang, K. Ding, Angew. Chem. Int. Ed. 2008, 47, 2840-2843.
- [4] B. Mao, M. Fañanás-Mastral, B. L. Feringa, Chem. Rev. 2017, 117, 10502-10566.
- [5] D. Sheng, D. P. Ballou, V. Massey, *Biochemistry* 2001, 40, 11156-11167.
- [6] a) H. Leisch, K. Morley, P. C. K. Lau, Chem. Rev. 2011, 111, 4165-4222; b) G. de Gonzalo, M. D. Mihovilovic, M. W. Fraaije, ChemBioChem 2010, 11, 2208-2231; c) V. Alphand, G. Carrea, R. Wohlgemuth, R. Furstoss, J. M. Woodley, Trends Biotechnol. 2003, 21, 318-323; d) M. Bučko, P. Gemeiner, A. Schenkmayerová, T. Krajčovič, F. Rudroff, M. D. Mihovilovic, Appl. Microbiol. Biotechnol. 2016, 100, 6585-6599; e) G. de Gonzalo, W. J. H. van Berkel, M. W. Fraaije (Ed. K. Faber, W-D. Fessner, N. J. Turner) in Science of Synthesis: Biocatalysis in Organic Synthesis, Thieme, New York, 2015, 187-234.
- [7] a) Y. Minko, M. Pasco, L. Lercher, M. Botoshansky, I. Marek, *Nature* 2012, 490, 522-526; b) J. P. Das, I. Marek, *Chem. Commun.* 2011, 47, 4593-4623; c) J. P. Das, H. Chechik, I. Marek, *Nat. Chem.* 2009, 1, 128; d) S. F. Martin, *Tetrahedron* 1980, 36, 419-460; e) K. Fuji, *Chem. Rev.* 1993, 93, 2037-2066; f) D. C. Behenna, B. M. Stoltz, *J. Am. Chem. Soc.* 2004, 126, 15044-15045; g) M. Seto, J. L. Roizen, B. M. Stoltz, *Angew. Chem. Int. Ed.* 2008, 47, 6873-6876.
- [8] a) A. Y. Hong, B. M. Stoltz, Eur. J. Org. Chem. 2013, 2013, 2745-2759;
 b) Y. Liu, S.-J. Han, W.-B. Liu, B. M. Stoltz, Acc. Chem. Res. 2015, 48, 740-751.
- [9] G. Ottolina, G. de Gonzalo, G. Carrea, B. Danieli, Adv. Synth. Catal. 2005, 347, 1035-1040.
- [10] a) M. Hönig, P. Sondermann, N. J. Turner, E. M. Carreira, *Angew. Chem. Int. Ed.* 2017, 56, 8942-8973; b) M. T. Reetz, *J. Am. Chem. Soc.* 2013, 135, 12480-12496; c) R. O. M. A. de Souza, L. S. M. Miranda, U. T. Bornscheuer, *Chem. Eur. J.* 2017, 23, 12040-12063.
- [11] For example, Stoltz's enantioselective approach to cyclic ketones I does not embrace substrates in which R³ ≠ H. Furthermore, even if I were available in enantioenriched form using such an approach, chemical Baeyer-Villiger oxidation is unselective (see ref. 16). a) D. Behenna, J. T. Mohr, N. H. Sherden, S. C. Marinescu, A. M. Harned, K. Tani, M. Seto, S. Ma. Z. Novák, M. R. Krout, R. M. McFadden, J. L. Roizen, J. A. Enquist Jr, D. E. White, S. R. Levine, K. V. Petrova, A. Iwashita, S. C. Virgil, B. M. Stoltz, *Chem. Eur. J.* 2011, 17, 14199-14223; b) U. Kazmaier, D. Stolz, K. Krämer, F. L. Zumpe, *Chem. Eur. J.* 2008, 14, 1322-1329.
- [12] a) P. Girard, J. L. Namy, H. B. Kagan, J. Am. Chem. Soc. 1980, 102, 2693-2698; b) J. L. G. Namy, P. Kagan, H.B, Nouv. J. Chim. 1977, 1, 5-7; c) X. Just-Baringo, D. J. Procter, Acc. Chem. Res. 2015, 48, 1263-1275; d) L. A. Duffy, H. Matsubara, D. J. Procter, J. Am. Chem. Soc. 2008, 130, 1136-1137; e) D. Parmar, L. A. Duffy, D. V. Sadasivam, H. Matsubara, P. A. Bradley, R. A. Flowers, D. J. Procter, J. Am. Chem. Soc. 2009, 131, 15467-15473; f) D. Parmar, H. Matsubara, K. Price, M. Spain, D. J. Procter, J. Am. Chem. Soc. 2012, 134, 12751-12757; g) D. Parmar, K. Price, M. Spain, H. Matsubara, P. A. Bradley, D. J. Procter, J. Am. Chem. Soc. 2011, 133, 2418-2420; h) M. Szostak, K. D. Collins, N. J. Fazakerley, M. Spain, D. J. Procter, Org. Biomol. Chem. 2012, 10, 5820-5824; i) X. Just-Baringo, C. Morrill, D. J. Procter, Tetrahedron 2016, 72, 7691-7698; j) X. Just-Baringo, J. Clark, M. J. Gutmann, D. J. Procter, Angew. Chem. Int. Ed. 2016, 55, 12499-12502.
- [13] For selected total syntheses of biologically important natural products, see: a) R. A. Holton, C. Somoza, H. B. Kim, F. Liang, R. J. Biediger, P. D. Boatman, M. Shindo, C. C. Smith, S. Kim, J. Am. Chem. Soc. 1994,

116, 1597-1598; b) K. C. Nicolaou, Z. Yang, J. J. Liu, H. Ueno, P. G. Nantermet, R. K. Guy, C. F. Claiborne, J. Renaud, E. A. Couladouros, K. Paulvannan, E. J. Sorensen, Nature 1994, 367, 630-634; c) S. J. Danishefsky, J. J. Masters, W. B. Young, J. T. Link, L. B. Snyder, T. V. Magee, D. K. Jung, R. C. A. Isaacs, W. G. Bornmann, C. A. Alaimo, C. A. Coburn, M. J. Di Grandi, J. Am. Chem. Soc. 1996, 118, 2843-2859; d) K. Morihira, R. Hara, S. Kawahara, T. Nishimori, N. Nakamura, H. Kusama, I. Kuwajima, J. Am. Chem. Soc. 1998, 120, 12980-12981; e) H. Kusama, R. Hara, S. Kawahara, T. Nishimori, H. Kashima, N. Nakamura, K. Morihira, I. Kuwajima, J. Am. Chem. Soc. 2000, 122, 3811-3820; f) T. Doi, S. Fuse, S. Miyamoto, K. Nakai, D. Sasuga, T. Takahashi, Chem. Asian. J. 2006, 1, 370-383; g) A. Mendoza, Y. Ishihara, P. S. Baran, Nat. Chem. 2012, 4, 21-25; h) E. G. Gibbons, J. Am. Chem. Soc. 1982, 104, 1767-1769; i) R. K. Boeckman, D. M. Springer, T. R. Alessi, J. Am. Chem. Soc. 1989, 111, 8284-8286; j) N. J. Fazakerley, M. D. Helm, D. J. Procter, Chem. Eur. J. 2013, 19, 6718-6723; k) S. K. Murphy, M. Zeng, S. B. Herzon, Science 2017, 356, 956-959; I) S. Kawamura, H. Chu, J. Felding, P. S. Baran, Nature 2016, 532, 90-93.

- [14] C. H. Wong, D. G. Drueckhammer, H. M. Sweers, J. Am. Chem. Soc. 1985, 107, 4028-4031.
- [15] See the Supporting Information.
- [16] Oxidation of ketone 1b using mCPBA gives rise to a mixture of Baeyer-Villiger product, the epoxide of the starting material, and the epoxide of the product. See supporting information.
- [17] M. J. Fink, D. V. Rial, P. Kapitanova, A. Lengar, J. Rehdorf, Q. Cheng, F. Rudroff, M. D. Mihovilovic, Adv. Synth. Catal. 2012, 354, 3491-3500.
- [18] E. Romero, J. R. G. Castellanos, A. Mattevi, M. W. Fraaije, Angew. Chem. Int. Ed. 2016, 55, 15852-15855.
- [19] F. Schulz, F. Leca, F. Hollmann, M. T. Reetz, *Beilstein J. Org. Chem.* 2005, 1, No. 10.
- [20] M. T. Reetz, B. Brunner, T. Schneider, F. Schulz, C. M. Clouthier, M. M. Kayser, Angew. Chem. Int. Ed. 2004, 43, 4075-4078.
- [21] O. Trott, A. J. Olson, J. Comput. Chem. 2010, 31, 455-461.
- [22] a) D. L. Boger, R. J. Mathvink, J. Org. Chem. 1992, 57, 1429-1443; b)
 A. G. Myers, K. R. Condroski, J. Am. Chem. Soc. 1995, 117, 3057-3083; c) A. J. Blake, A. R. Gladwin, G. Pattenden, A. J. Smithies, J. Chem. Soc., Perkin Trans. 1 1997, 1167-1170; d) S. Hashimoto, S.-i. Katoh, T. Kato, D. Urabe, M. Inoue, J. Am. Chem. Soc. 2017, 139, 16420-16429.
- [23] N. Kern, M. P. Plesniak, J. J. W. McDouall, D. J. Procter, *Nat. Chem.* 2017, 9, 1198-1204.
- [24] For a review of the use of Sml₂ to form small carbocyclic rings, see: H. Y. Harb, D. J. Procter, Synlett 2012, 23, 6-20.

COMMUNICATION

■ combined biocatalytic-chemical approach to complex, medium-sized cycloalkanols

Racemic cyclic ketones bearing α -quaternary stereocenters undergo kinetic resolution using cyclohexanone monooxygenase (CHMO_{Actineto}) to give lactones possessing tetrasubstituted stereocenters (up to >99% ee). Preparative scale biotransformations were exploited in conjunction with a Sml₂-mediated cyclization process to access complex, enantiomerically enriched cycloheptan- and cycloctan-1,4-diols. In a parallel approach to structurally distinct products, enantioenriched cyclic ketones from the resolution were converted to cyclobutanols bearing a quaternary stereocenter (>99% ee) using a Sml₂ cyclization.

Charlotte Morrill, Chantel Jensen, Xavier Just-Baringo, Gideon Grogan, Nicholas J. Turner* and David J. Procter*

Page No. - Page No.

Biocatalytic conversion of cyclic ketones bearing α-quaternary stereocenters to lactones in an enantioselective radical approach to medium-sized carbocycles