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Abstract
Background: The remaining forestg the extensive contact zone between southern
Amazonia (seasonal rain forest) and the Cerrado (savémmaes are at risk due to
intense land-use and climate change.

Aims: To explore the vulnerability of these transitional féset® changes in land use
and climate we evaluated the effects of fragmentatand climatic variables on forest
structure.

Methods: We measured the diameter and height of 14,185 trees withtdiam&0 cm

at 24 forest plots distributed over an area of 25,000 Kor each plot, we obtained data
on contemporary fragmentation and climatic variables.

Results: Forest structure variables (height, diameter, height:demmetlometry,
biomas$ varied significantly both within and among plotshe height, H:D and
biomass of trees were positively correlated with annwedipitation andragment area.
these forests plots are likely to be vulnerable to dassn intensification anticipated for
the southern edge of the Amazawditionally, the reduction in the fragment area may
contribute to reductions in forest biomass and tree hedglot,consequently ecosystem
carbon stocksGiven the likely susceptibility of these forests, urgemiservation action

is needed to prevent further habitat degradation.

Keywords. allometry; Amazon arc of deforestation; biomass; atenchange; habitat

fragmentation; precipitation; stem diameter; tregliitransition zone

Introduction
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Across the Eartls biomes, environmental conditions are expected to be
more variable close to the edges than in the core &mscb biome, posing potentially
ecological and evolutionary challenges to biota towards thiegeographical edges
(Safriel et al. 1994; Kark and van Rensburg 2006; Kark et al. 20083. may be
particularly the case in regions subject to rapid enviromahehange, of which perhaps
the most extreme example are the forests of the eoudtge of the Amazon rain forest
biome, an area affected by high deforestation ratesidndcs to significant recent and
forecas climate change. Thus, here the advance of the agriduitardier has already
resulted in converting most forest to pasture and croplantkasinty fragmenting the
landscape over the last few decades (Alencar et al. 2004, RO@beira et al. 2008)
The remaining forests are subject to recent climate chamgjading lengthening of the
dry season and increasing incidence of strong droughts iiytaret al. 2011; Gloor et
al. 2015; Feldpausch et al. 2016), trends which are expectetetsify furtker (e.g.
Boisier et al. 2015). The land surface temperature has bising steadily recelyt
especially in the south and east of the Amazon regioréaMuiioz et al. 2013), and
the effects of these climatic changes may be exatsibby changes in land use
(Aragéo 2012; Silvério et al. 2015). Finally, research eleegvin Amazoia clearly has
indicated that the structure of the tropical forest \atiyet is affected by both climate
change (e.g. Phillips et al. 2010; Feldpausch et al.)28id fragmentation of habitats
(e.g. Laurance et al. 1997, 2000; Laurance 2004).

Yet few studies have evaluated structural variation amongpthsts in the
southern border region of the Amazon forest biome ancbivariation with climate and
landscape factors. Exceptions include one analysis of ffeets of the interaction

between droughts and wildfires on tree mortality at omeémental site (Brando et al.
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2014), and a landscape study which showed that habitat fragimentatmbined with
droughts, increased the susceptibility of the forests tqAllencar et al. 2015). We are
not aware of a single study that has evaluated the efiédtabitat fragmentation and
different climate variablescross the region’s forests using direct, on-the-groan
measurement of vegetation structural variables such ess diameter, height, and
biomass.

Habitat fragmentationby decreasing fragment size and increasing forest
edges and numbers of fragments, may modify the forasttste in the remaining
fragments (Fahring 2008laddad et al. 2015). For exampligment edges are subject
to a greater incidence of insolation and increased vglo€iwinds, resulting in higher
temperatures and a drier microclimate than the foréstion (D’Angelo et al. 2004;
Laurance 2004Haddad et al. 2015), which increases tree mortality rates,ijpaihcfor
larger trees (Laurance et al. 2000; Laurance 2004). The d&aibger trees reduces
total biomass, height, mean diameter and basal angecialy in the smaller fragments
and the areas closest to the forest edge, although witk soontality effects also
propagating a few hundred meters into the forest (Laurance Bla@iad et al. 2015
Rocha-Santos et al. 2016). Recently, it has even beersteggbased on interpretation
of pantropical satellite imagery, that in tropical fasethe negative effects on standing
biomass and forest structure penetrate as much as 1.3&fforiests (Chaplin-Kramer
et al. 2015).

In addition to landscape-scale factors, regional clinsatelated to variation
in the forest structure (e.g. Banin et al. 2015). For exanwhere precipitation and
temperature are higher, forests generally have tadlestthat accumulate more biomass

(Koch et al. 2004; Way and Oren 2010; Feldpausch et al. 201%ktR&n2013; Chave
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et al. 2014). However, in the very warmest forests thesfostructural responses are
unclear. There is some evidence that here plants natp$mthesise less and expend
more energy on respiration, so potentially accumugatess biomass (Lloyd and
Farquhar 2008; Lewis et al. 2013). However, the temperatemsitizity of key
respiration processes appears to decline in warmer enwrganAtkin et al. 2015,
Heskel et al. 2016), rather than increasing exponentiallyngdes Qo formulations in
earlier global vegetation models suggested (Cox et al. 20@§jesting that the overall
sensitivity of biomass stocks to high temperatures nbghiveaker than many models
indicated.

Extreme drought events may alter the forest structureudght causs
mortality, principally in the bigger trees, which are masscgptible to damage in their
vascular system (Phillips et al. 2010; Rowland et al. 2015; Berme#l. 2015;
Feldpausch et al. 2016). During drought events, tropical treesal®aygrow lss (e.g.
Worbes 1999; Doughty et al. 2015), and if droughts are prolongegpeated forests
eventually accumulate less biomass (Feldpausch et al. Ro¥@and et al. 2015).

In the context of regional land-use and climatic changesuthern Amazonia,
and the projected high regional climate sensitivity to glazaining (IPCC 2015), it is
therefore extremely important to understand how the foreststeuis affect by abiotic
factors. It may for example help to improve the covesion measures to protect the
remaining forest fragments. In this study, we evaluatedhgheand to what extent,
climatic factors and fragmentation determine variatiorthe forest structure of the
southern Amazon border. &\assembled data from permanent plots establiskexss
the region close to the natural border of Amazonish viite neighboring Cerrado

(savanna) biome, to test hypotheses related to the variatithe iforest structure and
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the factors that determine this variation. We addressedjtstions. First, does habitat
fragmentation affect the forest structure? We e>gubttiat forest cover loss and forest
plots present in smaller fragments and/or nearer the wdg&l have trees with lower
height and smaller diameter stenos with smaller height:diameter (H)Qallometric
relationships and reduced biomasisice work elsewhere has shown mortality rates are
greater in smaller, more edge-affected fragments, espedall bigger trees (e.g.
Laurance et al. 1997, 1998, 2000; Laurance 2004; Chaplin-Kramer2étL&l). Second,
how does the forest structure vary in relation to tihmate? We expeed that the
height and the diameter of stertise H:D ratio, and biomass were all greater in forest
plots that have greater precipitation, and consequersly deficit water since the
greater water availability favours the height growth of titees, accumulating more

biomass (e.g. Feldpausch et al. 2011; Pan et al. 2013; Chalve@t4).

Materials and methods
Study area

We studied 24 forest plots distributed in Swecalled ‘arc of deforestation
(Nogueira et al. 2008) over an area of ca. 25,008 (figure 1 and Table 1). The
regional climate is of théw (tropical with dry winters) and\m (tropical monsoon)
types in the Képpen classification system (Alvares.€2@l3), and originally supported
evergreen or semi-evergreen forest vegetation inaakks. Mean annual precipitation
and temperature range from 1511 to 2353 mm and fromt@47.3 °C, respectively

(Table 1).
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Figure 1. Location of the forests sampled in the sootfenmazon border, between
eastern and northern Mato Grosso and southern Paral, Brazving the approximate
biome boundaries based in IBGE (2004). The classificatidarest and no forest was
based on the PRODES (Amazon Deforestation MonitoringeBo{INPE 2017). All

plots sampled lie within mature, evergreen or semi-evergi@est fragments.

Table 1. Characteristics of plots sampled in differeppitial forest ecosystems at the
southern Amazon border. FA, fragment area; DE, distemtee forest edge; Prec, total
mean annual precipitation; Temp, mean annual temperat&,etotal above-ground
biomass per hectare; PP, private properties; and CU, gatiserunit. In this study, we
used codes (‘Plot code’) to represent the different types of vegetation: FEP, floresta
estacional perenifélia (seasonal evergreen forest), FTP, floestdaional perenifolia

em terra preta de indio (seasonal evergreen forest on agerop black earth); FES,
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floresta estacional semidecidual (seasonal semi-deciduous forest), fkDésta
ombrofila aberta (open rainforest); and FSI, floresta sazonalmente imlinda
(seasonally flooded forest). Equivalent forest plot codes given to indicate
equivalency to those codes used in the ForestPlots.radiadat (Lopez-Gonzalez et al.

2011) where the data have been deposited.

Plot  Forest plot Geographical Local AF DE Prec Temp TB
Code code coordinate (ha) (m) (mm) (°C) (Mg)
FEP-01 FLO-01 -12.8S and -51.9W PP 870 1,030 1613 25,5 111.1
FEP-02 FLO-02 -12.8S and -51.9W PP 2,035 1,000 1621 25.6 144.7
FEP-03 TAN-02 -13.1S and -52.4W PP 8,432 990 1625 24.9 1435
FEP-04 TAN-03 -12.8Sand -52.3W PP 16,901 520 1679 25.1 127.4
FEP-05 TAN-04 -12.9S and -52.4W PP 16,901 329 1662 25 138.3
FEP-06 FRP-01 -11.5Sand -51.5W PP 45,459 3,600 1634 26.9 135.1
FEP-07 POA-01 -11.0S and -52.2W PP 9,789 1,180 1772 26.1 140.1
FES-01 VCR-02 -14.8S and -52.2W PP 4,968 1,350 1511 25.2 196.8
FES-02 GAU-02 -13.4Sand-53.3W PP 3,499 160 1701 24.1 91.7
FES-03 SAT-01 -9.8Sand -50.5W PP 17,624 90 1821 26.7 121.8
FES-04 SAA-01 -9.8S and -50.4W PP 13,039 860 1815 26.8 187.7
FES-05 SAA-02 -9.6S and -50.4W PP 15,680 2,980 1778 26.6 166.3
FOA-01 SIP-01 -11.4S and -55.3W PP 12,066 900 1848 25.1 79.2
FOA-02 ALF-01 -9.6S and -55.9W CU 17,628 5,440 2350 25.5 98.8
FOA-03 ALF-02 -9.6S and -55.9W CU 17,628 5,410 2353 25.6 160.5
FSFO1 PEA-01 -12.1Sand-50.8W CU 21 1 1631 27.3 133.7
FSF02 PEA-02 -12.3Sand-50.7W CU 378 1 1637 27.2 154.7
FSH03 PEA-03 -12.4Sand-50.9W CU 164 1 1621 27.1 1314
FSH04 PEA-04  -12.4Sand-50.7W CU 605 1 1637 27.1 2104
FSHO5 PEA-07 -12.5Sand-50.9W CU 5 1 1621 27.1 226.8
FSHO6 PEA-08 -12.5Sand-50.7W CU 8 1 1632 27 2225
FTP-01 GAU-04 -13.1Sand-53.3W PP 234 150 1795 24.7 145.8
FTP-02 GAU-05 -13.0Sand-52.9W PP 29,560 2,720 1757 24.9 250.2
FTP-03 GAU-06 -13.3S and-53.4W PP 85 80 1729 24.7 176.9

Forest fragments

The largest and best preserved regional fragments nfrenforests were
selected for the study, using Google Earth imagery in ordsptre regional variation
in floristics and physiognomy, and with at least thpbats for each forest type. All
forest fragments are surrounded by extensive cattle-randmuirgpybean fields. The

fragments surveyed varied in size from 5 to 45,459 ha (Table 1)
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Forest structure

In each fragment we established an inventory plot of 1wtach was
subdivided into 25 contiguous subplots of 20 m x 20 m. Thestfopdots were
established between 2008 and 2016 within the private properties aahgarvation
units, locations varied between 1 and 5440 m from the nearest edge fshgment. Six
plots were seasonally flooded (Table 1) and occasiondiictatl by fire; the others
have no recent record of fire and were either on aptigenic black earth (terra preta
de indio) open rain forests, seasonal evergreen ferest seasonal semi-deciduous
forests (Table 1). For this study, we used the latestadlaitensuss between 2013 and
2016.

We identified and tagged all the woody individuals with a digmat breast
height (1.3 m) of > 10 cm, for a total of 14,185 (range = 338-1&8@dard deviation =
31) trees and at least 410 (range = 9-135; standard deviation)ta&&6identified to
species levelWe identified species in the field or by comparison dfections with
herbarium (NX, UFMT, UB and IAN) material of known idegtiand with the help of
specialists. After identification, the material was irpmrated into Herbarium NX, Nova
Xavantina, Mato Grosso (Colecdo Zoobotanica James Adiexa Ratter). We
determined the classification of families based on APG(Ahgiosperm Phylogeny
Group 2009) and reviewed and updated the nomenclature of the agahesLista de
Espécies da Flora do Brasil (http://floradobrasil.jbrj.gov.br/2015).

We measured the diameter of each tree following stdrplatocols of the

RAINFOR network (http://www.rainfor.org/). We measured the totagiteusing a
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Leica DISTO laser measurement device. Data were depositdtk ifrorestPlots.net

forest monitoring database (Lopez-Gonzalez et al. 2011).

Habitat fragmentation

To evaluate the effect of habitat fragmentation oredbrstructure, we
measured distance from each plot to the forest edge,zthefseach fragment and the
forest cover in surrounding landscapes. Whenever posgélmeasured the distance to
the nearest edge in the field. When this was not possikle@stimated this value using
Google Earth, which provided a spatial resolution of appraeina20 to 30m
depending on available imagery, and based on our own detaitadlddge, having
explored the local context of each plot on foot. In definition of forest habitat edge,
we included all other vegetation and land-use such as ptargapastures, and roads at
least 25 m wide, as well as natural grasslands in théosidplain forests.

We calculated the area of the fragment where eadhwals located using
Google Earth and ZONUM software (http://zonums.com/online/kmlArdd@se edge
and fragment data were collected at the closest possitdeo the field sampling and in
no case were they collected more than 2 years aéidashforest census.

We calculated the percentage of forest cover surrourehiot) plot using
buffers of radius size of 1000 m (314 ha), following reconmaaéions of Rocha-Santos
et al. (2016). For th we used the land-based metrics in the Fragstats softthate,
computes descriptors of forest patch and landscape attrifMtg&sarigal and Cushman

2002).

Climate variables
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To evaluate the climate effect on the forest strucweepbtained data or91
bioclimatic variables (Table S1) from the WorldClim 1.4 datapasth a horizontal
resolution of ca. 1 km (Hijmans et al. 2005). We also usé¢d flam the Tropical
Rainfall Monitoring Mission (TRMM) (NASA 2012) to derive theean of the annual
maximum climatological water deficit (MCWD) (Aragéo et al. 20@étween January
1999 and December 2011, including the droughts of 2005, 2007 and 2010 (Figure S2).
To estimate thiswe first calculated MCWD for each year, and then tookrtiean of all
years. MCWD was defined as the most negative value of ciomatal water deficit

(precipitation lower than evapotranspiraji@mong all the months in each year

Data analysis

In each plot, we calculated the minimum, maximum, medand 95
percentile of tree diameter (D), height (H) and tladlometric (H:D) relationship. We
also calculated the weighted Loteyheight values, based on basal area per sybplot
using the equation

> ABi*Hi/ Y AB;,
where AB is the basal area of an individual andi¢its height (e.g. Saatchi et al. 2011).
To evaluate the H:D relationship, independently of distuwbasuch as the damage
caused by recently-opened clearings, we excluded from tHgsagsaall trees with
broken stems or those with more than 50% of the crowielor off.

We also calculated the mean, median, and total bioofaBses per plot.
We estimated the biomass (B) based on the Pantropad¢lmevised by Chave et al.
(2014), which is derived from the equation in Chave et al. (2000&)js,

B = 0.0673 x 4D2H)%°7
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240 whereD is the diameter in cni is the total height of the tree in m, gnds

241 the density of the wood. We obtained wood density values fthe ForestPlots

242 database| (https://www.ForestPlots.pet?We chose this equation to calculate the

243 biomass because it is the most robust approach, giveit thikes into consideration the
244  diameter and height of each tree.

245 We developed a correlation matrof the Kendall’s tau values of the
246 environmental and forest structure variables mentioned abbakle S3). Multiple
247 variables share similar source data, leading to high ctbomlamongst them, so we
248 excluded those with greatest correlations (r > 0.7) toidavepetition of largely
249 redundant forest structure and climate variables (Tables $®4n For all variables,
250 the maximum values and the 95 percentiles were highly ctedelave included only
251 the 95 percentile in order to avoid the influence of outli€isally, we excluded
252 predictor variables that correlated poorly (r < 0.1) with tegetation descriptors
253 (Tables S3 and $4

254 To verify possible differences among all forest plots he tstructural
255 variables (95 percentiles of the B and H:D, and mean B), we applied the Kruskal-
256 Wallis analysis of variance with the Dunnett post hoc tedtaaBonferroni correction
257  (Zar 2010).

258 We evaluated the influence of habitat fragmentation aingatt variables
259 on forest structure using simple correlation and Genedalisear Models (GLM). We
260 also included in the models the forest type for eachsfopéot Simple correlation
261 showed that, six seasonally flooded plots and two plots twagpogenic black earth

262 were unduly influential, with extreme structure and covaryextreme climatic and
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fragmentation conditions. To avoid these outliers drivthg regional results we
excluded them from the GLM and correlation analyses destiabove.

To build the GLM, we first standardised the data and redhothe
collinearities on the basis of Variance Inflation Fagtf¥IFg of less than 10 (Quinn
and Keough 2002). We conducted model selectising the Akaike’s Information
Criterion (AIC), with a model considered to be the be#thad the lowest AIC value
(Barton 2016)To access the spatial autocorrelation in the residoalsach model we
used Moran’s |. Here, no spatial dependence was detected among plditsating that
the data were not spatially structured (Figure S5). Thus, omeidered the plots as
independent samples in our subsequent analyses.

We conductedthe analyses using SAM 4.0 program (Rangel et al. 2010)
and R 2.15.1 (R Core Team 201Zhe applied R packages were vegan (Oksanen et al.
2016), spdep (Bivand et al. 2013), spacemakeR (Dray 2013), MuMito(B2016) and
packfor (Dray et al. 2016We adopeda 5% significance level for all analyses and used

999 randomisations for the permutation methods.

Results
Forest structure

In general, the three open rainforest plots (FOA-01-OFprest plot on
anthropogenic black earth (FTP-01), were significantly ntahan the six seasonally
flooded forest plots (FSI-01-06), three seasonal semi-dacsdforvest (ES-01-02-05
(Figure 2 and Table S6) and like the other 11 forest pld&®{F1-07; FES-03-04 and
FTP-02-03). The H:D ratio varied in a similar fashion to tneeght, with the lowest

ratios (i.e., the lowest heights for a given diamjeteeing recorded in two of the
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287 seasonally flooded forest plots (FSI-05 and FSI-06). Trameter and biomass did not
288 vary systematically among the plots, except for FSIv@l3ch had lower diameter and

289 biomass than the most of others plots (Figure 2).

80 40
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290 -
291 Figure 2. Variation in the vertical structure of forestshat southern Amazon border.
292 Box-plots show subplot-level values in each locatidatigical comparisons are made
293 for among-forest analyses based on the non-parametunsk&-Wallis test (H). The
294 complementary pair-wise analysis of forest structuredsiged in Table Sl = FTP
295 (seasonal evergreen forest on anthropogenic black clllth) FOA (open rainforest),
296 M = FEP (seasonal evergreen forel) = FES (seasonal semi-deciduous ford_1)=
297 FSI (seasonally flooded forest).

298

299 Relationship between forest structure, fragmentation and climate variables
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The structural variables were associated with the pratigait and with
fragment area and distance from the edge (Figure 3 and Zalilree height, allometry
(H:D) and biomass all correlated positively with precigaia and fragment area (Figure
3). Tree height also correlated with the MCWD (Figure 3).eTtBameter did not
correlate with any of the variablef\dditionally, the precipitation and MCWD
correlated positively with the fragment area (P < OKéndals t = 0.44 and 0.60,

respectively).

Table 2. The relationship between environmental variabledaedt structure, using
generalised linear models, of the southern Amazonia &rBsazil. DE, distance to the
edge; PrecWM, precipitation of wettest month; H:D, alloweH:D ratio; FES,

seasonal semi-deciduous forest-plots; FOA, open rainfpheist. Significant effects (P

< 0.05) are shown in bold type.

Factors Estimate Standard t P
Height 95 per centile

Intercept -0.276 0.109 -2.531 0.003

FES -0.008 0.161 -0.050 0.961

FOA 1.392 0.328 4.249 0.001

PrecWM 0.431 0.140 3.082 0.010
Diameter 95 percentile

Intercept -0.356 0.290 -1.228 0.243

FES 0.039 0.445 0.089 0.931

FOA 1.715 0.530 3.237 0.007
H:D 95 percentile

Intercept <0.001 0.174 <0.001 1.000

DE -0.785 0.302 -2.597 0.023

PrecWM 1.260 0.302 4.167 0.001
Mean biomass

Intercept -0.540 0.166 -3.249 0.007

FES 0.244 0.257 0.949 0.361

FOA 2.291 0.303 7.555 <0.001
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Figure 3. Significant (P_< 0.05) relationships between fa&acture and climatic and
fragmentation variables of the southern Amazon bofolerst plots. H95 = height 95
percentile, A95 = allometric ratio (H:D) 95 percentileBM mean biomass (Mg), FA =
precipitation of wettexinth (mm), MCWD =

fragment area (ha), PrecWM =

maximum climatological water deficit (mm).
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Based on the best GLM models for each forest strucamable forest type
and precipitation were most related to tree height (TahleForest type was als®
strongly related to tree diameter and biom#smual mean precipitation and distance
from the edge were important factors for mean plot HEBb{e 2). The percentage of
forest cover around each plot was not selected in the loeilsnand was not correlated
with any forest structure variables. All plots presentedentban 50% forest cover in
surrounding landscapes.

Precipitation and MCWD were not selected in the same maud#tating
that each had similar (but inverse) effects on forest tsireic Thus, all structural
parameters affected positively by precipitation (Table r2) afected negatively by

moisture stress (MCWD) (Table 57

Discussion

Our results show that the forests of the southern bamiee of Amazoia
vary remarkably in their structure, principally in termstoéir tree height and tree
height:diameter ratioMost of the structural variation in these forests \stagistically
related to fragment area and precipitatisnpporting our overall expectations and
largely consistent with our hypotheses. Here we brieflgt foliscuss this overall
variability and its potential ultimate drivers, before ggeding to discuss the results in

more detail.

Structural variability of the forests of the southern Amazon border zone
Our general expectation was that climatic variation inréggon would be a

fundamental determinant of the variability in forestisture here, principally because



345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

18

drought events and seasonality may be more intense aiutes border in relation to
the core area of the Amazonas basin with evergreerseasonal rain forests (Lewis et
al. 2011). In particular, water deficit may Kkill large tré&fcintyre et al. 2015), taller
trees tend to be most affected by these conditions @awdt al. 2015). As these trees
die and break-up or fall, large clearings are openedyufinng the establishment of
species of different ecological groups (Lawton and Putz 1988&).frequent formation
of clearings in these hyperdynamic transitional foremtsdocumented by Marimon et
al. (2014), may thus also contribute to the structural vatmlidund here. Finally, the
forests of the southern border of the Amazon aretdocaithin a mosaic of vegetation
types with many species typical of the adjacent biorRestér et al. 1973), which may

have a direct influence on the structural diversity o$¢hierests.

Seasonally flooded forest plots

The lowest height and H:D allometric ratio in the seadly flooded forest
plots may be explained by thesmaller fragment size and proximity to edges. These
factors as well as higher temperatures and lower preaapitélTable 1) may intensify
the fire effects. Fires in the wider grassland matar penetrate into forest fragments
and increase tree mortality, as observed in a recenmty sin these forest plots
(Maracahipes et al. 2014). It therefore appears likely thatctimbined effects of
reduced fragment area and precipitation and higher terapesatogether with fire and
its potential interactions with droughts (Brando et al. 20btntribute to forest

structure here.

Response of the forest structure to the fragmentation and climate variables
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Temperature appears to be an important factor determining tyie loéithe
trees worldwide, including potentially in tropical foreg¢koch et al. 2004; Way and
Oren 2010; Feldpausch et al. 2011; Lines et al. 2012; Pan et al. PO13)ere the
absence of a clear statistical relationship betweentsteuand temperature (P > 0.05,
Kendals T = 0.31) suggests it is not critical at the southern Amaramsition zone.
Rather, in our study the greater forest heights, H:0b rahd biomass that were
observed with increasing precipitation suggest water supplgeislominant climate
control on forest structure, and is consistent wittnesavork elsewhere in the tropics
(e.g. Alvarez et al. 2017), given especially that tropicamtgldaend to grow faster and
taller as water is more available (Vlam et al. 2014; Givrat al. 2014). In addition to
apparent effects of annual rainfall, we also found thatatblogical water deficit was
associated with reduced investment by the trees in hgighith, consistent with the
hypothesis that tree height is constrained by the availabiliwater (Ryan et al. 2004;
Givnish et al. 2014). A significant positive correlation walso found between
precipitation and tree height along a precipitation gradie Australia, which Givnish
et al. (2014) related to the increase in leaf area and @tghotosynthesis with
increasing precipitation.

The negative correlation between the cumulative watecideind tree
height may be related to the mortality of the largedividuals during extreme drought
events (Phillips et al. 2010). Such droughts have been girelotlerved in the study
region in 2005, 2007, and 2010 (e.g. Brando et al. 2014), and thes@teed tended
to kill larger trees (Phillips et al. 2010; Feldpausch et al. 2Gi6is often the case with
droughts in other tropical forests (Bennett et al. 2015). In Zama, recent strong

droughts appear also to be a major cause of the recentvbidsi increase in tree
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mortality rates (Phillips et al. 2009; Brienen et al. 2016)the near future, more
frequent extreme droughts, especially if combined with wagroif the Amazon region
and thermal peaks in El Nifio events such as in 2015-1@rférnMufioz et al. 2016),
may therefore have profound implications for the forststicture of the southern
Amazon border, located as they are in a region thatasdy naturally close to their
distributional and hydraulic limits. In this scenario, latgges are more susceptible to
damage to the xylem, which can ultimately result in theldef the plant (e.g. Mcintyre
et al. 2015) and eventually lead to forests of lower statMieDOwell et al. 2008;
Rowland et al. 2015). Trees being smaller in drier areasgrdéhiter water deficiency is
directly be related to conservative modifications in higdraulic structure of the plants
under hydrological stress to avoid embolism (e.g. Linesl.e2012 Claeys and Inzé
2013). Thus, as have recently argued in both tropical andet@te zone contexts (e.g.
Stegen et al. 2011; Banin et al. 2012; Mcintyre et al. 2015) likely that trees in
forests subject either to more extreme climatic evemts) more disturbance (including
seasonally flooded habitats), or both, will in generaldtéo be shorter at a given
diameter in order to avoid risks of hydraulic and/or mechafadare, whereas trees in
forests with high rainfall, such as our FOA-01 and FOA-02| h&lve greater heights
and hence greater biomass.

Besides the correlation with the climatic variablesth height and the
biomass of trees were positively correlated with fragimerea. This result may be
related to the incidence of wind in smaller fragments whabe a higlr proportion of
forest edge (D'Angelo et al. 2004; Laurance 2004; Haddad et al. 20h&%e T
disturbances are known to be able to generate high maredipecially of the tallest

trees (Laurance et al. 2000; Laurance 2004), and consequeatly dataset such edge-
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generated disturbances may have aéig@the height and biomass of trees. Elsewhere,
local climatic changes as a result of fragmentatem reduce the density and diversity
of species (Mantyka-Pringle et al. 2012Such effects can also increase the
susceptibility of fragmented forest structure and theirabitet fire (Laurance and
Williamson 2001; Laurance 2004). In the southern Amazon redlmse different
effects are all likely to be relevant, but clearly furthealysis is needed, including long-

term monitoring evaluation of the climatic and dynamiccpsses in these forests.

Conclusions

Our analysis across different locations, spanning a langepthe southern
Amazon zone, suggests climate sensitivity in forest strutteme. Climate change, and
especially any reduction in annual or seasonal precqitais thus likely to have a
significant effect on the forest structure in the seuthborder of the Amazon
Secondly, our results also suggest that the effects ddctien in the annual
precipitation may be further exacerbated in smallemfiexgs. This suggests that habitat
fragmentation may intensify the negative effects aiate change and burning in
forests in the southern Amazon border, resulting inbatamtial risk of increases in tree
mortality. Given the likely susceptibility of the remaig southern Amazon border
forests to environmental change, strong conservatiategies are urgently needed to
guarantee the persistence of these habitats, especinlthefosmaller fragments and

those close to agricultural frontiers.
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Supplementary material

Table S1. Environmental predictors and vegetation descriptedsimshe analyses.

Variable abbreviation Environmental predictors Variable abbreviation Vegetation descriptors

FA Fragment area (ha) MIH Minimum height (m)

DE Distance to the forest edge (m) MAH Maximum height )

FC Forest cover (%) MH Median height (m)

MCWD Maximum climatological water deficit (mm) H95 Height 95 percentile (m)
Temp Mean annual temperature (°C) LH Weighted Lorey’s height
TempMDR Mean diurnal range (°C) MD Median diameter (cm)

Isoter Isothermality (°C) MAD Maximum diameter (cm)
TempSaz Temperature seasonality (standard deviation *100) (°° D95 Diameter 95 percentile (cm)
TempWM Max temperature of warmest month (°C) MIA Minimum allometric ratio (H:D)
TempCM Min temperature of coldest month (°C) MAA Maximum allometric ratio (H:D)
TempAR Temperature annual range (°C) TempWM - TempCM MA Median allometric ratio (H:D)
TempWeQ Mean temperature of wettest quarter (°C) A95 Allometric ratio (H:D) 95 percentile
TempDQ Mean temperature of driest quarter (°C) MB Mean biomass (Mg ha)
TempWaQ Mean temperature of warmest quarter (°C) MEB Median biomass (Mg ha)
TempCQ Mean temperature of coldest quarter (°C) B Total biomass (Mg ha)

Prec Total annual precipitation (mm)

PrecWM Precipitation of wettest month (mm) - -

PrecDM Precipitation of driest month (mm) - -

PrecSaz Precipitation seasonality (Coefficient of Variation) (mr - -

PrecWeQ Precipitation of wettest quarter (mm) - -

PrecDQ Precipitation of driest quarter (mm) - -

PrecWaQ Precipitation of warmest quarter (mm) - -

PrecCQ

Precipitation of coldest quarter (mm)
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Figure S2. Mean of the maximum climatological water de{RICWD) (mm) in the
Amazon basin between 1999 and 2011, in the context of thefr@sbtazonia. Circles
show the forest plots localization.
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Table S3. Kendall tau correlations of the all 37 environnhemich forest structure variables obtained to the forgdtise southern Amazon
border. FA = fragment area (ha), DE = distance toetfge (m), MCWD= maximum climatological water deficit (mmgmp = mean
annual temperature (°C), TempMDR = Mean diurnal range (36)er = Isothermality (°C), TempSaz = Temperatureosedity (standard
deviation *100) (°C), TempWM = Max temperature of warmeshting°C), TempCM = Min temperature of coldest mont®)(°TempAR
= Temperature annual range (°C) TempWMrempCM, TempWeQ = Mean temperature of wettest quarter P&npDQ = Mean
temperature of driest quarter (°C), TempWaQ = Mean termperaf warmest quarter (°C), TempCQ = Mean temperatumldest
guarter (°C), Prec = Total annual precipitation (mm)cRfe = Precipitation of wettest month (mm), PrecDM =ed¢#pitation of driest
month (mm), PrecSaz = Precipitation seasonality fii©ent of Variation) (mm), PrecWeQ = Precipitatiari wettest quarter (mm),
PrecDQ = Precipitation of driest quarter (mm), PrecWa@recipitation of warmest quarter (mm), PrecCQ = Pitatipn of coldest
qguarter (mm), MIH = Minimum height (m), MAH = Maximum gt (m), MH = Median height (m), H95 = Height 95 percertig, LH
= Weighted Lorey’s height, MD = Median diameter (cm), MAD = Maximum diameter (cm), D95 = Diameter 95 percentile (cm), MIA =
Minimum allometric ratio (H:D), MAA = Maximum allometricatio (H:D), MA = Median allometric ratio (H:D), A95 Allometric ratio
(H:D) 95 percentile, MB = Mean biomass (Mg ha), MEB =did@ biomass (Mg ha), TB = Total biomass (Mg ha). Sigaificcorrelatios
(p < 0.05) are shown in bold type.
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FA DE MCWD Temp TempMDR Isoter TempSaz TempWM TempCM TempAR TempWeQ TempDQ TempWaQ TempCQ Prec PrecWM PrecDM
FA 055 061 -0.18 0.28 -0.17  -0.19 0.17 -0.16 0.29 -0.26 0.02 -0.20 -0.01 0.37 0.48 0.00
DE 051 -0.21 0.30 -0.25 -0.13 0.12 -0.20 0.32 -0.33 -0.09 -0.23 -0.10 0.23 044 0.00
MCWD -0.13 0.24 -0.12 -0.35 0.34 -0.05 0.24 -0.27 0.13 -0.16 0.08 0.62 0.56 0.05
Temp -0.82 0.51 -0.42 0.32 0.92 -0.80 0.85 0.75 0.96 078 -0.16 -0.37 0.17
TempMDR -0.64 0.29 -0.17 -0.79 0.96 -0.89 -0.59 -0.85 -062 029 0.50 -0.12
Isoter -041 0.20 0.56 -0.69 0.66 0.62 0.54 0.63 -0.18 -046 0.15
TempSaz -0.72 -0.51 0.29 -0.27 -0.68 -0.39 -0.67 -030 -0.09 -0.24
TempWM 0.39 -0.15 0.18 0.57 0.30 0.55 0.43 0.22 0.34
TempCM -0.80 0.78 0.82 0.89 085 -0.10 -0.35 0.22
TempAR -0.88 -0.59 -0.82 -063 030 0.54 -0.13
TempWeO 0.60 0.88 063 -030 -051 0.09
TempDO 0.71 0.97 0.09 -0.17 0.31
TempWaO 074 -0.19 -040 0.14
TempCO 0.05 -0.21 0.30
Prec 0.56 0.25

PrecWM -0.12
PrecDM
PrecSaz
PrecWweOQ
PrecDOQ
PrecWaQ
PrecCO
MAH

MIH

MH

H95

LH

MAD

MD

D95

MAA

MIA

MA

A95

MB

MEB

B
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Continuation...
PrecSaz PrecWeQ PrecDQ PrecwWaQ PrecCQ MAH MIH MH H95 LH MAD MD D95 MAA MIA MA A9 MB MEB TB

FA -0.32 0.36 0.16 -0.07 0.31 035 023 055 051 044 030 020 0.05 032 042 047 051 031 043 0.20
DE -0.30 0.29 0.23 -0.29 0.33 049 034 050 049 038 038 0.18 0.14 030 033 049 050 031 035 029
MCWD -0.64 0.50 0.38 -0.04 0.48 039 042 057 046 051 046 0.18 0.12 033 0.23 056 056 032 044 0.28
Temp 0.19 -0.49 -0.05 0.15 -0.19 -035 -0.21 -031 -036 -035 -0.23 0.04 -033 -0.11 -046 -0.27 -029 -045 -0.10 -0.22
TempMDR -0.36 0.60 0.16 -0.17 0.30 048 0.22 043 049 046 029 -0.04 042 017 054 042 042 055 0.19 037
Isoter 0.23 -0.56 -0.07 0.37 -0.27 -043 -0.08 -034 -046 -036 -0.16 0.03 -0.39 -0.21 -046 -0.30 -0.33 -045 -0.12 -0.33
TempSaz 0.28 0.03 -0.16 -0.02 -0.18 -0.02 -0.25 -0.19 -0.04 -0.11 -0.17 -0.08 0.16 -0.19 0.14 -0.25 -0.20 0.13 -0.20 -0.13
TempWM -0.33 0.10 0.28 0.03 0.27 0.06 0.18 0.17 0.14 0.14 0.11 0.05 -0.05 0.19 -0.06 0.20 0.16 0.00 0.25 0.22
TempCM 0.15 -0.43 0.00 0.11 -0.13 -034 -0.14 -0.27 -034 -032 -0.19 0.04 -036 -0.06 -043 -0.23 -0.26 -044 -0.07 -0.21
TempAR -0.35 0.63 0.13 -0.19 0.31 050 0.24 042 053 048 031 -003 045 018 053 041 043 059 0.22 0.39
TempWeQ 0.36 -0.62 -0.16 0.29 -034 -049 -029 -046 -048 -047 -034 -0.04 -040 -0.23 -049 -042 -043 -053 -0.23 -0.36
TempDQ -0.05 -0.30 0.10 0.12 0.00 -0.22 -0.01 -0.08 -0.19 -0.14 -0.04 0.09 -0.29 0.01 -035 -0.04 -0.08 -0.34 0.06 -0.12
TempWaO 0.25 -0.51 -0.08 0.19 -0.22 -040 -0.21 -036 -038 -038 -0.25 0.04 -035 -0.13 -049 -031 -033 -046 -0.11 -0.26
TempCQ -0.02 -0.34 0.07 0.15 -0.05 -0.25 -0.02 -0.10 -0.23 -0.18 -0.07 0.06 -0.33 -0.01 -0.37 -0.05 -0.09 -0.39 0.01 -0.13
Prec -0.63 0.59 0.44 0.11 0.55 036 0.24 044 050 050 0.26 0.11 0.19 030 031 039 040 039 036 0.39
PrecWM -0.45 0.81 0.20 -0.06 0.40 052 036 051 078 075 035 003 029 044 034 052 055 053 035 057
PrecDM -0.29 -0.12 0.64 0.07 0.44 0.06 -0.06 -0.03 0.06 -0.01 0.02 0.18 0.05 -0.08 0.02 -0.15 -0.12 0.09 0.08 0.02
PrecSaz -0.50 -0.62 0.12 -0.78 -038 -036 -052 -043 -046 -0.37 -0.11 -0.12 -0.26 -0.19 -051 -047 -0.27 -0.28 -0.38
PrecwWeQ 0.22 -0.09 0.41 042 0.28 054 065 061 0.26 0.04 029 037 042 052 052 050 029 051
PrecDO 0.11 0.75 0.25 0.11 0.27 032 0.28 0.16 0.15 0.05 0.13 0.12 0.20 0.20 0.21 0.21 o0.22
PrecwaQ -0.13 -0.20 -0.32 -0.23 -0.06 -0.07 -0.30 -0.09 -0.08 -0.16 -0.06 -0.25 -0.20 -0.02 -0.12 -0.04
PrecCO 040 033 042 049 041 030 0.22 0.15 025 0.18 035 035 034 034 029
MAH 0.25 042 068 068 055 -0.03 044 024 033 038 040 054 0.14 o048
MIH 044 032 042 052 0.08 0.18 034 -0.06 047 051 0.26 0.29 0.18
MH 046 056 031 0.16 0.15 056 038 080 089 0.27 047 0.38
H95 078 042 0.07 039 029 035 040 045 066 031 0.55
LH 052 -001 041 045 0.28 051 058 057 0.27 0.60
MAD 0.01 031 0.19 000 035 035 039 0.16 0.25
MD 0.27 0.06 0.09 -0.04 0.06 0.19 058 -0.22
D95 -0.01 0.15 0.03 0.14 0.70 0.28 0.16
MAA 0.18 055 061 0.06 0.28 0.28
MIA 030 031 032 024 031
MA 087 0.12 030 0.32
A95 0.24 039 0.37
MB 0.35 0.39
MEB 0.07

B
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Table S4. Pre-selected environmental and forest structuedlesr used in the analyses of the forest-plots o$dliehern Amazon border.
FA = fragment area (ha), DE = distance to the edge k@)= forest cover (%), Temp = mean annual temperaturg P@cwM =
precipitation of wettest month (mm), MCWD= maximum cliolagical water deficit (mm), MH= median height and H95 p@%centile,
MD = median diameter and D9595 percentile, MA = median allometric ratio (H:D) ai@l5 = 95 percentile, MB = mean biomass (Mg),

and TB = total biomass.

Forest plots Environmental predictors Vegetation descriptors

P FA DE FC Temp Prec WM MCWD H95 D95 A95 MB
FEP-01 870 1,030 99 25.5 291 -435.02 20.0 33.6 1.19 0.24
FEP-02 2,035 1,000 100 25.6 289 -435.02 20.1 36.6 1.34 0.25
FEP-03 8,432 990 98 24.9 285 -434.01 19.8 40 1.18 0.27
FEP-04 16,901 520 74 25.1 292 -428.93 20.0 37.8 1.26 0.25
FEP-05 16,901 329 100 25.0 291 -428.93 20.0 37.8 1.29 0.25
FEP-06 45,459 3,600 100 26.9 298 -411.82 22.0 41.4 1.19 0.32
FEP-07 9,789 1,180 100 26.1 309 -397.35 20.5 354 1.40 0.25
FES-01 4,968 1,350 78 25.2 274 -468.04 204 404 1.00 0.31
FES-02 3,499 160 69 241 283 -433.5 18.3 39.4 1.32 0.27
FES-03 17,624 90 58 26.7 293 -388.22 21.0 354 1.27 0.25
FES-04 13,039 860 88 26.8 289 -388.22 20.8 39.3 1.17 0.31
FES-05 15,680 2,980 100 26.6 278 -387.33 19.3 33.8 1.16 0.24
FOA-01 12,066 900 98 25.1 311 -420.38 253 448 1.37 0.39
FOA-02 17,628 5,440 100 25.5 390 -342.12 278 426 1.42 0.43
FOA-03 17,628 5,410 50 25.6 390 -342.12 28.1 42.3 1.37 041
FSI -01 21 1 - 27.3 273 -440.57 13.6 32.3 0.93 0.14
FSI -02 378 1 - 27.2 277 -454.52 15.0 35.2 0.92 0.19
FSI -03 164 i 273 -457.47 14.0 24.4 0.99 0.12
FSI -04 605 i 278 -454.52 15.7 28.1 1.02 0.15
FSI -06 5 i 274 -457.47 13.9 40.3 0.75 0.19
FSI -07 8 1 - 270 278 -444.82 15.6 45.0 0.77 0.3
FTP-01 234 150 38 24.7 308 -436.02 26.8 51.9 1.14 0.48
FTP-02 29,560 2,720 71 24.9 302 -429.99 22.0 34.7 1.16 0.29

FTP-03 85 80 30 24.7 294 -433.5 24.0 45.3 1.09 0.52
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Figure S5. Spatial autocorrelation of the residuals of @aatiel, based iMoran’s I
index for: A = height, B = diameter, C= allometric oafH:D), and D = biomass of the
forests plots in the southern Amazon border.
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Table S6. Comparison of the forest structure variabletheo forests in the southern
Amazon border, based on the Kruskal-Wallis nonparametiatysis of variance (H).
MH= median height and H95 = 95 percentile, MD = median diamand D95 =95
percentile, MA = median allometric ratio (H:D) and A99®5 percentile, MB = mean
biomass (Mg), and TB = total biomass. Values on differamsliwithin the same
column followed bydifferent letters are significantly different based on Dunnett’s post

hoc test with the Bonferroni correction.

Forests H95 D95 A95 MB
FEP-01 19.3 afg 31.5 acd 1.17 aefghi (.25 adef
FEP-02 19.3 afg 33.1 abed  1.27 afg 0.25 abdef
FEP-03 19.0 fg 37.5 ab 1.10 deghi (.27 abdef
FEP-04 19.0 fg 33.9 abcd  1.20 afghi 0.25 abdef
FEP-05 19.7 afg 35.1 abd 1.21 afgh 0.26 abdef
FEP-06 20.4 afg 38.1 ab 1.12 defghi (.33 abf
FEP-07 19.9 afg 32.8 abed 1.36 a 0.25 abdef
FES-01 17.6 def 33.8 abcd  0.94 bed 0.30 abdef
FES-02 18.0 cdef 359 ab 1.26 afg 0.28 abef
FES-03 20.1 afg 34.4 abcd  1.19 afghi 0.26 abdef
FES-04 19.6 afg 38.2 ab 1.13 defghi (.32 abf
FES-05 18.2 ef 31.9 acd 1.12 defghi (.25 adef
FOA-01 240 a 38.8 ab 1.29 afg 0.39 ab
FOA-02 25.7 a 39.4 ab 1.39 a 0.44 ab
FOA-03 24.8 ag 38.3 ab 1.31 af 0.41 ab
FSI01 13.1 be 30.5 acd 0.84 be 0.18 cde
FSI-02 14.2 bcde  31.6 acd 0.85 be 0.20 cdef
FSI-03 13.1 bed 245 c 0.97 bed 0.12 c
FSI-04 14.3 bede  27.0 cd 0.98 bede 0.16 cd
FSI-05 119 b 35.2 ab 0.66 b 0.23 acdef
FSI-06 13.4 bcd  40.5 ab 0.61 b 0.32 abf
FTP-01 23.5 ag 43.2 b 1.06 cdehi  0.47 b
FTP-02 19.7 afg 33.1 abd 1.11 deghi Q.29 abef
FTP-03 21.1 afg 42.8 ab 1.02 bcdei Q.52 abdef
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Table S7. Generalized linear models of the factors thiaeimée forest structure of the
vegetation in forest plots of the southern Amazon bordemp = mean annual
temperature, MCWD = maximum climatological water deficitDH: allometric H:D
ratio, FES = seasonal semi-deciduous forest-plots, FOApen rainforest-plots

Significant effects (p < 0.05) are shown in bold type.

Factors Estimate Standard t P
Height 95 per centile

Intercept 2.462 1.229 2.003 0.070

FES -0.206 0.177 -1.161 0.270

FOA 1.848 0.262 7.060 0.000

MCWD 0.007 0.003 2.340 0.039
H:D 95 percentile

Intercept 8.630 2.679 3.221 0.007

MCWD 0.021 0.007 3.230 0.007

Temp -0.497 0.230 -2.159 0.052




