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Abstract 

Background: Microalgae accumulate lipids when exposed to stressful conditions such as nutrient limitation that can 

be used to generate biofuels. Nitrogen limitation or deprivation is a strategy widely employed to elicit this response. 

However, this strategy is associated with a reduction in the microalgal growth, leading to overall poor lipid productivi-

ties. Here, we investigated the combined effect of a reduced source of nitrogen (ammonium) and super-saturating 

light intensities on the growth and induction of lipid accumulation in two model but diverse microalgal species, 

Phaeodactylum tricornutum and Nannochloropsis oceanica. We hypothesized that the lower energy cost of assimilating 

ammonium would allow the organisms to use more reductant power for lipid biosynthesis without compromising 

growth and that this would be further stimulated by the effect of high light (1000 µmol  m−2  s−1) stress. We studied 

the changes in growth and physiology of both species when grown in culture media that either contained nitrate or 

ammonium as the nitrogen source, and an additional medium that contained ammonium with tungsten in place of 

molybdenum and compared this with growth in media without nitrogen. We focused our investigation on the early 

stages of exposure to the treatments to correspond to events relevant to induction of lipid accumulation in these two 

species.

Results: At super-saturating light intensities, lipid productivity in P. tricornutum increased twofold when grown in 

ammonium compared to nitrogen free medium that increased further when tungsten was present in the medium in 

place of molybdenum. Conversely, N. oceanica growth and physiology was not compromised by the high light inten-

sities used, and the use of ammonium had a negative effect on the lipid productivity, which was even more marked 

when tungsten was present.

Conclusions: Whilst the use of ammonium and super-saturating light intensities in P. tricornutum was revealed to be 

a good strategy for increasing lipid biosynthesis, no changes in the lipid productivity of N. oceanica were observed, 

under these conditions. Both results provide relevant direction for the better design of processes to produce bio-

fuels in microalgae by manipulating growth conditions without the need to subject them to genetic engineering 

manipulation.
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Background
In the current global scenario of climate change and 

increasing energy demand, it is ever more relevant to 

conduct research towards development of sustainable 

and economically efficient ways of energy generation. 

Microalgae have great potential as a biofuel feedstock 

and are considered a realistic sustainable alternative to 

the production of biodiesel from oil crops, waste cook-

ing oil and animal fat. Several reasons justify microalgae 

use in biofuel generation, such as high growth rates in 

comparison with terrestrial plants, high biomass and oil 

yields and ability to grow in non-arable lands and water 

resources unsuitable for agriculture [1–3]. Microalgae 

constitute a very diverse group of prokaryotic and eukar-

yotic photosynthetic microorganisms that can grow rap-

idly and in very different environments, including those 

with extreme conditions such as frozen surfaces or waters 

with very high salinity [4]. The taxonomic diversity of 

these organisms is one of its most attractive qualities, as 

it implies the possession of a great variety of metabolic 

pathways that can potentially be exploited not only for 

the production of biofuels, but also for products of value 

in the nutraceutical, pharmaceutical and aquaculture 

industries [5–7]. However, research conducted in the 

field has been restricted to a few microalgae model spe-

cies, with most microalgae diversity still unexplored and 

with even fewer studies investigating the physiological 

response of different species under similar culture con-

ditions. Given the taxonomic divergence and the diver-

sity of associated evolutionary lineages and habitats of 

species broadly classified as microalgae, a cross-species 

comparison would be immensely beneficial in developing 

algae biotechnology. Such investigations would enable us 

to build the conceptual framework for developing strat-

egies towards the effective use of microalgae for biofuel 

production.

Microalgae produce energy storage molecules that can 

be used in the biofuel industry, i.e., lipids and carbohy-

drates, when exposed to stressful conditions such as 

high salinity or nutrient limitation [4, 8–10]. One of the 

most widely employed strategies to stimulate microal-

gae energy storage is nitrogen limitation or deprivation 

in the growth medium, which has been reported to give 

the highest triacylglycerol (TAG, the most important 

lipid biofuel precursor) yields in a wide range of microal-

gae species [11, 12]. However, this strategy has the asso-

ciated problem of causing a reduction in the growth of 

microalgae, leading to a decrease in the biomass yield, 

and therefore of lipid productivity. To increase microal-

gae lipid production and at the same time overcome its 

negative effect on growth, recent research has focused on 

the development of two strategies. On the one hand, the 

knowledge of the metabolic pathways involved in energy 

storage and their regulation has provided the basis for 

genetic engineering of microalgae into strains with higher 

lipid productivities [13–16]. On the other hand, to avoid 

the societal and scientific controversy associated with the 

commercialization of genetically engineered strains and 

the possible environmental risks [17–19], studies have 

also been conducted towards increasing the lipid produc-

tivity by manipulating the culture media conditions [9, 

10, 20, 21]. For instance, the diatom Phaeodactylum tri-

cornutum growing in a reduced form of nitrogen such as 

ammonium has been shown to produce the same amount 

of lipids as in the absence of nitrogen without compro-

mising the growth rate [22]. In addition, the use of high 

light intensities has been described to increase lipid pro-

duction under nitrogen limited conditions, although this 

effect seems to be species-specific [23–27]. Adverse con-

ditions that hamper microalgae growth such as nitrogen 

deprivation cause an energy imbalance as a consequence 

of the accumulation of photosynthetic reductant power, 

which can ultimately lead to photo-oxidative damage of 

photosystems I (PSI) and II (PSII) [15, 28, 29]. To avoid 

this, TAG biosynthesis is stimulated to act as an alter-

native sink for the excess reductant power [2, 30]. It is 

hypothesized that the stress associated with increasing 

light intensity under conditions of nitrogen deprivation 

would add a higher pressure on an already damaged pho-

tosynthetic pathway, leading to an increase in the energy 

imbalance, which in turn would stimulate an even higher 

TAG production [26, 31–33].

The genus Nannochloropsis is considered one of the 

most promising microalgae groups for the production of 

biofuels, because of its ability to accumulate lipids up to 

65–70% of its dry weight [7, 34, 35]. This is higher than 

those obtained by other species, such as the diatom P. 

tricornutum [36]. It is also an important source of the 

omega-3 long-chain polyunsaturated fatty acid eicosap-

entaenoic acid, which is very valuable in the aquaculture 

industry [37–39]. Microorganisms of this genus belong 

to the Eustigmatophyceae, which is phylogenetically very 

distinct from green algae or diatoms and instead closer 

to groups such as the Chrysophyceae and Xanthophyceae 

within the phylum Ochrophyta [40]. They tend to live in 

coastal ecosystems and have small size (approx. 3 µm). In 

addition, species of this group, such as Nannochloropsis 

gaditana or N. oceanica, are emerging model organisms, 

due to their high growth rates and the development of 

tools for their genetic manipulation [13, 41]. This group 

also has distinct characteristics in its photosynthetic 

pathway. For instance, it has a large chloroplast encircled 

by four membranes whose pigment composition is com-

posed only of chlorophyll a and no chlorophyll b or d, 

with violaxanthin and vaucheraxanthin as the predomi-

nant carotenoids involved in the xanthophyll cycle [42, 
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43], and where the ratio of PSII to PSI is 1:1 contrasting 

with the 2:1 and 1:2-3 ratios of diatoms and cyanobacte-

ria, respectively [28, 44].

In the present study, we aimed to investigate the com-

bined effect of ammonium, a reduced source of nitrogen, 

and high light intensities in the lipid accumulation of the 

microalga N. oceanica. The results obtained were com-

pared with the response by the diatom P. tricornutum, 

which possesses a very active xanthophyll cycle involving 

the carotenoids diadinoxanthin and diatoxanthin,  a dif-

ferent PSII:PSI ratio of 2:1 [28], and for which its growth 

in ammonium has been shown to produce lipid yields 

similar to nitrogen depletion in the medium without 

compromising growth, at lower sufficient light intensities 

[22]. In addition, we examined different photosynthetic 

properties to assess how the energy imbalance generated 

translated into lipid accumulation. The two chosen spe-

cies represent taxonomically diverse but closely grouped 

genera with relative genetic similarities, compared to 

the more commonly examined green algae and plants. 

Besides, the mechanism of NPQ in Nannochloropsis sp. 

has been shown to resemble that of diatoms [45]. To the 

best of our knowledge, this is the first attempt at a spe-

cies comparison of the physiological changes experienced 

by these two microalgae under the combined effect of 

ammonium and high light. The information obtained 

from this comparative study would be of high value for 

the microalgal biofuel industry, because it would allow 

the design of more effective industrial exploitations in 

which the lipid productivity of these two organisms 

would be maximized by manipulating their culture con-

ditions without the need for genetic engineering, and 

would also enable devising strategies for biofuel produc-

tion from other microalgae species.

Results
Changes in the growth curve of N. oceanica and P. 

tricornutum

Both the organisms were first grown in high light 

intensities in f/2 medium containing either nitrate or 

ammonium as the nitrogen source, in a first phase to 

acclimatise them in the respective nitrogen medium 

(Fig. 1). Cells in the active growth phase (optical density 

 (OD595 nm) of ~ 0.6) were then washed and transferred to 

fresh media [nitrate to nitrate replete (N+) and nitro-

gen free (N−) and ammonium to ammonium (A) and 

ammonium with tungstate (A+W)], and allowed to grow 

in a second phase for 3 days (Fig. 1). Optical density was 

used to measure growth, as it enabled usage of a small 

sample volume for measurements and it showed good 

correlations to cell abundance and dry cell weight meas-

urements, for the two species established with larger 

sample volumes. The cultures were harvested after 3 days 

of growth in phase 2 to ensure that physiological changes 

relevant to induction of lipid accumulation were moni-

tored and minimise compounding effects such as influ-

ence of cell shading from photoinhibition at higher cell 

densities and nutrient remineralisation in the medium. 

Besides, the standard differential physiological response 

expected in the N+ and N− conditions was evident in 

the 3  day cultures. N. oceanica reached higher optical 

densities and cell abundances after 3 days in the second 

phase compared to P. tricornutum, when grown in the 

N+ and N− treatments (Fig.  2 and Table  1), but both 

species showed a nearly twofold decrease in growth rate 

in N− compared to the N+ treatment (ANOVA analysis 

with Bonferroni post hoc test, p value < 0.05). However, 

differences were observed in cell abundances and growth 

rates achieved by the two species under the other treat-

ments tested. As can be seen in Table 1, P. tricornutum 

presented similar growth rates and cell abundances in the 

A and A+W treatments, which were slightly lower than 

in N+ and not significantly different to those in the N− 

treatment. In contrast, the cell abundances of N. oceanica 

in the A and A+W treatments were quite similar to that 

in the N+ treatment, although the biological variability 

of replicates failed to point out significant differences 

between their growth rates and those of the N+ and 

N− treatments. In addition, both species also showed 

differences in the evolution of the optical density over 

time (Fig.  2), with values very similar in P. tricornutum 

up to 48 h for the N−, A and A+W treatments and for 

these three treatments and the N+ in N. oceanica. The 

N− treatments at 72 h showed deviations from the other 

treatments for both the species, indicating the effects of 

nitrogen limitation.  

Biochemical composition and carbon and nitrogen 

assimilation of N. oceanica and P. tricornutum

In Fig. 3, we can observe important differences in the bio-

chemical composition after 3 days of growth between the 

two species. Higher chlorophyll a (chl a) concentrations 

were achieved in general in N. oceanica, with the signifi-

cantly higher values observed in the N+ (0.06 ± 0.01 pg 

 cell−1) and A+W treatments (0.06 ± 0.01 pg  cell−1), and 

the lowest (0.02 ± 0.003  pg  cell−1) in the N− treatment 

(Fig. 3A), the latter being a threefold change when com-

pared to the N+ treatment. P. tricornutum chl a concen-

trations were very similar between the N+, N− and A 

treatments (0.035 ± 0.01  pg  cell−1). However, a statisti-

cally significant increase of chl a in the A+W treatment 

(0.053 ± 0.01 pg  cell−1) was also observed.

N. oceanica presented lower protein contents than P. 

tricornutum and the protein content in N− and A treat-

ments seemed to be lower than the N+ treatment in both 

species (Fig.  3B), although these differences were not 



Page 4 of 15Huete‑Ortega et al. Biotechnol Biofuels  (2018) 11:60 

statistically significant. Interestingly, in both species, the 

A+W treatments showed significantly higher concentra-

tions of total protein than the A treatment (almost 1.5 

times more), with values even higher than the N+ replete 

treatment.

P. tricornutum achieved higher cellular yields of total 

fatty acids than N. oceanica (Fig. 3C), with values twofold 

higher in N−, A and A+W treatments, compared to the 

N+ treatment, at the 3  day harvest stage. In contrast, a 

different behaviour was observed for N. oceanica which 

showed higher cellular yields only in the N− treatment 

(2.0 ± 0.1  pg  cell−1) that was twofold higher when com-

pared to the other treatments, and with the lowest cellu-

lar yields determined in the A treatment. However, when 

lipid productivity was calculated, N. oceanica showed 

higher productivities than P. tricornutum in all the treat-

ments with the exception of the A+W (Fig. 3D) in which 

Fig. 1 Experimental flow diagram. Each of the species was cultivated in two phases. In phase I, the cells were acclimatised to the nitrogen source 

and high light intensities, before transferring actively growing cells to the respective experimental medium, as indicated, in phase II. This was 

followed by sampling for analysis of the parameters as indicated. All the cultivations in both the phases were carried out in triplicates
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the diatom achieved highest productivities (17  mg  L−1 

 day−1), higher than in the N− treatment.

Finally, N. oceanica showed in general higher contents 

of particulate organic carbon (POC) and particulate 

organic nitrogen (PON) than P. tricornutum, indicat-

ing that this species was better at assimilating carbon 

and nitrogen than the diatom, under the tested condi-

tions (Table  1). As expected, the N− treatment seemed 

to significantly affect nitrogen assimilation in both spe-

cies, although the reduction in PON was higher in N. oce-

anica. The A and A+W treatments also seemed to cause 

a decrease in the nitrogen assimilation when compared 

to the N+ treatment, although this was not statistically 

significant. The N− and A treatments showed higher 

carbon content in N. oceanica, while POC contents in P. 

tricornutum were very similar across all the treatments. 

As a result, the POC to PON ratio (C/N ratio) (Fig. 3E), 

a proxy for the degree of intracellular limitation, was 

approx. 10 in the N+ replete treatment in both species 

and increased by 2.5- and 1.5-fold in the N− treatment in 

N. oceanica and P. tricornutum, respectively. The changes 

in the C/N ratio observed in the A and A+W treatments, 

when compared to the N+ treatment, were also similar 

for the two species, showing a modest and statistically 

insignificant increase in P. tricornutum, but a statistically 

significant increase in N. oceanica.

Fig. 2 Growth measured by optical density at 595 nm. N+ (black circle), N− (red circle), A (green inverted triangle) and A+W (blue triangle) 

conditions of A P. tricornutum and B N. oceanica 

Table 1 Cellular characteristics of N. oceanica and Phaeodactylum tricornutum 

Maximum growth rate (µmax), cell abundance, particulate organic carbon (POC) and particulate organic nitrogen (PON) are compared for the two species in the 

four conditions tested [nitrate (N+), nitrogen free (N−), ammonium (A) and ammonium with tungstate (A+W) conditions]. Mean (± standard error) values are given. 

Analysis of the variance followed by Bonferroni post hoc test (p value < 0.05) was carried out to estimate the significance of the differences between treatments, being 

(a) significant difference when comparing to the N+ treatment, (b) significant difference when comparing to the N− treatment

Species P. tricornutum N. oceanica

Treatment N+ N− A A+W N+ N− A A+W

Cell abundance 
(×106 cells 
 mL−1)

20.4 6.25 11 10 48.1 24.5 5.64 36.1

µmax  (day−1) 0.35 (± 0.02) 0.21(a) (± 0.02) 0.29 (± 0.03) 0.29 (± 0.02) 0.42 (± 0.01) 0.29(a) (± 0.03) 0.38(b) (± 0.03) 0.36(b) (± 0.02)

POC (µg mg−1) 328.4 (± 21.7) 310.6 (± 24.2) 345.5 (± 32.1) 288.9 (± 7.9) 503.2 (± 7.9) 590.1(a) (± 8.8) 576.2(a) (± 1.0) 534.8 (± 18.6)

PON (µg mg−1) 32.8 (± 1.6) 20.3(a) (± 0.9) 28.5(b) (± 1.0) 26.5(a, b) (± 1.0) 48.4 (± 0.6) 23.0(a) (± 1.0) 43.1(b) (± 0.6) 45.2(b) (± 2.2)
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Fig. 3 Biochemical composition and maximum photosynthetic PSII efficiency estimated at the end of the experiment (day 3). Phaeodactylum 

tricornutum (black bars) and N. oceanica (red bars) comparisons for A cell-specific chlorophyll a concentration (pg  cell−1), B cell-specific total protein 

concentration (pg  cell−1), C cell-specific total fatty acids (pg  cell−1), D lipid productivity (mg  L−1  day−1), E Carbon to nitrogen ratio and F maximum 

photosynthetic PSII efficiency (Fv/Fm) for the two species in the four conditions [nitrate (N+), nitrogen free (N−), ammonium (A) and ammonium 

with tungstate (A+W) conditions]. Mean (± standard error) values are given. Analysis of the variance followed by Bonferroni post hoc test (p 

value < 0.05) was carried out to estimate the significance of the differences between treatments, being (a) significant difference when compared 

with the N+ treatment, (b) significant difference when compared with the N− treatment and (c) significant difference when compared with the A 

treatment
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Photophysiological changes of N. oceanica and P. 

tricornutum

The maximum efficiency of PSII in dark-adapted state, 

Fv/Fm, a sensitive indicator of the maximum quantum 

efficiency of the PSII, was always slightly higher in N. oce-

anica than in P. tricornutum (Fig. 3F). In both species, the 

N− treatment caused a significant decrease in the pho-

tosynthetic efficiency when compared to the rest of the 

treatments, and in P. tricornutum, this decrease was also 

observed in the A and A+W treatments when compared 

to the N+ treatment. In contrast, N. oceanica photosyn-

thetic efficiency in the A treatment was not significantly 

different to N+, but slightly higher than in the A+W 

treatment.

Differences between the two species in the response 

of the photophysiological parameters under increas-

ing light intensities were also observed at the end of the 

experiment (Fig. 4). For instance, qP, a proxy of the pro-

portion of PSII reaction centres that are open, decreased 

rapidly with increasing actinic light intensities in all the 

treatments of P. tricornutum (Fig. 4a), indicating that in 

this species PSII activity was saturated at light intensities 

higher than 400–500  µmol photons  m−2  s−1, independ-

ent of the source of nitrogen. In contrast in N. oceanica, 

PSII reaction centers remained in a more open state in 

all treatments, except in the N− treatment (Fig. 4d). This 

suggests that N. oceanica experienced a relatively lower 

excitation pressure than P. tricornutum. Differences 

between both species were also observed in the NPQ 

and ETR evolution. NPQ and ETR are considered to give 

a measure of the energy dissipation by heat and that of 

gross photosynthesis, respectively. The NPQ response in 

P. tricornutum did not start until aprox. 200  µmol pho-

tons  m−2  s−1 irradiance (Fig.  4b) and showed more dif-

ferences between the treatments. The highest NPQ was 

observed in the N+ treatment and the lowest in the 

A+W one. In contrast in N. oceanica, NPQ increased 

steadily from the first actinic light intensity in N+, A and 

A+W treatments (Fig. 4e), and it was much higher and 

steeper in its response in the N− treatment. In general, 

NPQ values were higher in P. tricornutum compared to 

N. oceanica, for all the treatments. Photosynthesis rates, 

indicated by the ETR evolution, were much higher in N. 

oceanica (Fig.  4d–f) and both species coincided in the 

light intensity at which the saturating rates were achieved 

(optimum light, Table 2). Both species also showed their 

highest and lowest Pmax in the N+ and N− treatments, 

respectively (Table  2), although N. oceanica was able to 

conduct photosynthesis at higher light intensities than P. 

tricornutum.

Discussion
High light intensities and ammonium with tungstate 

increase lipid productivity of P. tricornutum

In this study, a super-saturating light intensity 

(1000 µmol photons  m−2  s−1), over threefold higher than 

that employed in a similar set up by Frada et al. [22], was 

used. This was done with the idea of testing the hypoth-

esis that high light intensities might further stimulate 

lipid biosynthesis by increasing the energetic imbalance 

caused by changes in the ATP and NADPH levels inside 

the cell. It was reasoned that this would be caused by 

increasing the excitation pressure on the PSII (that is a 

higher degree of PSII reduction), especially under nitro-

gen limitation conditions, which in turn would increase 

the reductant power (NADPH). The increased reductant 

power would then lead to the activation of energy dissi-

pation mechanisms such as NPQ (via increases in cyclic 

electron flow) or lipid biosynthesis [26, 31, 32, 46].

Super‑saturating light intensities under nitrogen starvation 

conditions inhibited growth in P. tricornutum but lipid 

productivity remained unchanged

The absence of nitrogen affected the growth of P. tricor-

nutum significantly, with a reduction in the maximum 

growth rates that were nearly halved compared to the 

ones achieved in the presence of nitrate as a nitrogen 

source. This is similar to earlier observations made at 

such super-saturating light intensities [46]. The maxi-

mum growth rates achieved in the absence of nitrogen 

were remarkably similar between reports, whether at 

sufficient light intensities [15, 22, 47], or at higher super-

saturating light intensities ([46], and this report, Table 3). 

However, the maximum growth rates observed in our 

study for nitrogen replete conditions (independent of the 

use of nitrate or ammonium as the nitrogen source) were 

reduced to nearly a third of that at sufficient light inten-

sities [22]. This indicated that the super-saturating light 

intensities used are not optimal from a growth perspec-

tive, along expected lines.

This could also be inferred from the chl a content and 

cellular C/N ratio in nitrogen deplete compared to replete 

conditions. Previous studies have reported a decrease 

in the chl a concentrations under nitrogen scarcity in 

many microalgae species [29, 48, 49], and in our study, 

the chl a content in the N− treatment was similar to 

that described previously. This appears to be irrespective 

of the light intensity used, whether it is sub-saturating 

[50], sufficient [22], or super-saturating light intensities 

[46]. This reduction in chl a concentrations would be 

explained by the need for scavenging nitrogen inside the 

cells, redirecting it to other more important metabolic 
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Fig. 4 Rapid light response curves estimated by chlorophyll a fluorescence. N+ (black circle), N− (red circle), A (green inverted triangle) and A+W 

(blue triangle) conditions of A–C Phaeodactylum tricornutum and D–F N. oceanica. Mean values ± standard error. qP, photochemical quenching; 

NPQ, non-photochemical quenching; ETR, electron transport rate. Data not normalized
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pathways, as pigments have high requisites for nitro-

gen [48, 51–53]. In nitrogen replete conditions, the chl 

a content was much lower under super-saturating light 

intensities (this report) compared to the ones reported 

at sufficient light intensities [22] (Table  3). This would 

suggest a reduced requirement of chl a in excess light, as 

has been described before for other species in which the 

acclimation to high light intensities involved the reduc-

tion of light harvesting proteins to maintain the photo-

synthetic carbon assimilation [54, 55]. The cellular C/N 

ratio was also observed to be higher in the N+ condition 

under super-saturating light intensities compared to the 

earlier study in sufficient light intensities [22] (Table  3), 

whilst they were comparable for the two light intensities 

in nitrogen deplete conditions.

The lower growth rates for all treatments, reduced chl a 

levels, increased C/N, and the photophysiological meas-

urements conducted at the end of the experiment would 

point towards cellular photoinhibition. For instance, the 

number of open photosynthetic reaction centres, qP, 

and the gross photosynthesis rates, measured as ETR, 

decreased to zero levels at 533 µmol photons  m−2  s−1 for 

all treatments, and the maximum efficiency of the PSII 

values (Fv/Fm) measured for all of them were also lower 

than those reported previously for the same species [15, 

22] (Fig. 4 and Table 3). In addition, the super-saturating 

light used in this study might have also damaged the PSII, 

as qP was not able to recover its original values after the 

RLC measurements (ΔqP were > 0.01 in all the cases) and 

the NPQ evolution was quite high under high actinic 

light intensities, indicating a very active xanthophyll cycle 

that was even significant in the N+ treatment.

Despite the effect of super-saturating light intensities 

on cellular growth, the cellular lipid content (measured 

here as total fatty acids (Fa)) showed a similar response 

in these conditions to those at sufficient light intensities, 

when comparing N+ and N− treatments [22] (Fig.  3C 

and Table  3). The values were comparable and a nearly 

twofold increase in cellular Fa content was observed, 

although it was marginally higher at the higher light 

intensities. However, the decreased growth rates in the 

nitrogen starved conditions, and subsequently decreased 

biomass yield reported here as cell abundance, resulted 

in a reduction in the lipid productivities, which showed a 

60 and 66% reduction in N− treatment compared to N+, 

under sufficient and super-saturated light intensities, 

Table 2 Light saturation curve parameters fitted to the rapid light curve and qP recovery (ΔqP) after rapid light curve

Mean (± standard error) are listed

Species P. tricornutum N. oceanica

Treatment N+ N− A A+W N+ N− A A+W

Maximum photosynthesis (Pmax) 9.81 (± 0.64) 7.36 (± 0.21) 9.20 (± 0.21) 9.20 (± 0.64) 16.18 (± 0.92) 7.48 (± 0.12) 14.72 (± 0.64) 15.08 (± 0.21)

Optimum light (µmol m−2  s−1) 213 (± 2) 125 (± 6) 167 (± 3) 169 (± 16) 342 (± 8) 152 (± 2) 304 (± 8) 316 (± 6)

Maximum photosynthetic 
efficiency (α)

0.13 (± 0.01) 0.16 (± 0.01) 0.15 (± 0.01) 0.15 (± 0.01) 0.13 (± 0.01) 0.13 (± 0.01) 0.13 (± 0.01) 0.13 (± 0.00)

r coefficient 0.94 0.97 0.96 0.97 0.95 0.94 0.95 0.95

∆qP 0.10 0.03 0.08 0.03 0.0006 0.006 0.009 0.005

Table 3 Cellular characteristics of  P. tricornutum reported in  (I) Frada et  al. [22] (300  µmol photons  m−2  s−1) and  (II) 

Wagner et al. [46] (1000 µmol photons  m−2  s−1)

Maximum growth rate (µmax), cell abundance, chlorophyll a (chl a), total fatty acids (Fa), total fatty acids productivity (Fa productivity), carbon to nitrogen ratio (C/N), 

and photosynthetic maximum efficiency of PSII (Fv/Fm) are compared for P. tricornutum in the four conditions (nitrate (N+), nitrogen free (N−), ammonium (A) and 

ammonium with tungstate (A+W) conditions), as reported in [22] and [46]. Mean (± standard error) values are given. n.d., means no data available

(I) (II)

N+ N− A A+W N+ N−

Cell abundance (×106 cells  mL−1) 2.3 0.8 3 0.8 n.d n.d

µmax  (day−1) 0.97 (± 0.10) 0.21 (± 0.04) 0.87 (± 0.05) 1.02 (± 0.03) 0.35 0.18

Chl a (×10−2 pg  cell−1) 20.82 (± 1.84) 4.08 (± 0.30) 45.92 (± 6.9) 23.21 (± 10.5) n.d n.d

Fa (pg  cell−1) 2.39 (± 0.10) 4.21 (± 0.33) 4.33 (± 0.60) 3.35 (± 0.17) n.d n.d

Fa productivity (mg  L−1  day−1) 1.83 1.12 4.33 3.13 n.d n.d

C/N 7.11 14.64 6.62 6.90 n.d n.d

Fv/Fm 0.61 (± 0.10) 0.26 (± 0.04) 0.58 (± 0.10) 0.58 (± 0.06) n.d n.d
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respectively; the increased light intensity contributing to 

a greater reduction. The lipid productivities achieved in 

our investigation were an order of magnitude higher than 

that reported by Frada et al. [22], primarily as a result of 

the cell abundances reached in our investigation, which 

were an order of magnitude higher.

The use of ammonium as a source of nitrogen in P. 

tricornutum maximized lipid productivity in the presence 

of super‑saturating light intensities

A previous study showed the use of a reduced form of 

nitrogen (ammonium) to be effective in increasing cel-

lular lipid levels without compromising growth in P. 

tricornutum [22]. We attempted to extend this finding 

at super-saturating light intensities, reasoning that the 

higher light intensity used would accentuate the effect 

of the ammonium leading to higher lipid levels and pro-

ductivities. Whilst the growth rates under sufficient 

light intensities were comparable for the A and A+W 

treatments with the N+ condition [22] (Table  3), these 

were lower in A and A+W treatments compared to the 

N+ condition under super-saturated light conditions 

(Table 1). In addition, the excess light used in this inves-

tigation resulted in markedly lower cellular chl a values 

and higher C/N ratios in A and A+W (Fig. 3A, F), com-

pared to a previous report for sufficient light intensities 

[22] (Table  3). Finally, the maximum efficiency of PSII 

(Fv/Fm) was lower for the A and A+W conditions com-

pared to the N+ treatment under super-saturating light 

intensities (Fig.  3F), whilst no differences between the 

three treatments were observed under sufficient light 

(Table 3). As described above for the N+ and N− treat-

ments of this study, all these results were likely due to the 

photoinhibition of the photosynthetic pathway by the 

excess light, a situation in which the cellular machinery 

would be cutting down resources for photosynthesis and 

re-routing carbon and reducing equivalents towards lipid 

biosynthesis. However, despite the photoinhibitory effect 

of the light intensities used in this study and contrasting 

with that observed for sufficient light [22], chl a content 

was not reduced in the A+W treatment and it was even 

significantly higher than in the rest of the treatments 

(Fig. 3A). In addition, W also appeared to somehow influ-

ence the regulation of protein synthesis positively, as indi-

cated by the increase in cellular protein concentrations in 

the A+W treatment that contrasted with the absence of 

significant changes in the A treatment (Fig. 3B). W tends 

to replace Mo in the enzyme active sites, and, although 

traditionally has been used as a biochemical inhibitor of 

nitrate reductase (NR) [56–59], it is not clear if the activ-

ity of other enzymes such as the xanthine dehydroge-

nase or the aldehyde oxidase are not affected [60]. As far 

as we know, no effect of W in the chl a biosynthesis or 

the protein synthesis pathways have been reported, but 

our result would indicate that some enzymes involved in 

their regulation might be affected and that, somehow, the 

W inhibitory effect might interfere in the cellular acclam-

atory mechanisms to light stress. However, further stud-

ies addressing this hypothesis should be conducted to 

confirm it.

Despite the reduced growth rates obtained under 

super-saturated light intensities in our study, a signifi-

cant increase in cellular lipid content and lipid produc-

tivities were observed in both ammonium treatments 

when compared to the N+ treatment (Fig. 3C, D), which 

coincides with that described in previous studies for suf-

ficient light intensities [22] (Table 3). However, our study 

contrasted with that of Frada et  al. [22] in the fact that 

lipid content and productivities showed the maximum 

values in the A+W treatment. Nitrate reduction acts as 

a sink of photosynthetically generated reductant power 

inside the cells [2, 30, 46] and, under high light, NR and 

nitrite reductase are up- or down-regulated depending 

on the nitrogen source. For instance, in diatoms under 

high light and in the presence of nitrate, both enzymes 

are up-regulated, acting as a mechanism to dissipate the 

excess of photosynthetic energy that could lead to photo-

oxidative damage [61–63], while the opposite trend is 

observed in the presence of ammonium [63–65]. In the 

latter case, lipid biosynthesis would act as an alternative 

mechanism for the sink of the excess of photosynthetic 

energy, which would explain the increase in the lipid pro-

duction observed in the ammonium treatments, as has 

been noted earlier [22]. However, the degree of stimula-

tion in lipid productivity observed for those treatments 

was lower in super-saturating light intensities compared 

to sufficient light conditions due to the photoinhibi-

tion effect on growth, suggesting that an intermediate 

high light level would elicit a more effective productive 

response.

In conclusion, our results suggest that it might be pos-

sible to combine the use of higher than saturated light 

and a reduced form of nitrogen such as ammonium 

instead of nitrate to improve lipid productivity in P. tri-

cornutum, without compromising growth. In addition, 

elucidating the role of W in the presence of ammonium 

might help in developing strategies that would result in 

increasing lipid productivities using microalgae.

High light intensities and ammonium as a source 

of nitrogen did not stimulate lipid biosynthesis in N. 

oceanica

N. oceanica showed very similar responses to those of P. 

tricornutum in the N− treatment. As described in previ-

ous studies of this genus [44, 66], the maximum growth 

rate in the N− treatment nearly halved when compared 
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to the N+ treatment. This observation also coincided 

with (a) the expected significant decrease of the chl a 

content and the maximum quantum efficiency of PSII, (b) 

an increase in the NPQ response under increasing irradi-

ances, and (c) a C/N ratio 2.5-times higher, as reported 

previously for similar studies [44, 48, 67]. However, in 

contrast with P. tricornutum, neither N+, A nor A+W 

treatments seemed to be photoinhibited by the high light 

intensities used and they were able to reach similar cell 

abundances at the end of the experiment (3  days). For 

instance, the maximum quantum yield of PSII was high 

and very similar between the treatments; a high propor-

tion of the reaction centres remained open until quite 

high light intensities, closing completely at approx. 

900  µmol photons  m−2  s−1; and the gross photosynthe-

sis rates (ETR) were almost twofold higher than those 

achieved by the N− treatment and did not decrease until 

higher light intensities (Fig. 4D–F). In addition, the NPQ 

responses to irradiance were very similar between these 

treatments and importantly lower than the N− treat-

ment, indicating that cells were not under light stress 

[26, 44, 55]. All these results would concur with previous 

reports of the ability of Nannochloropsis to acclimate to 

very high light intensities [26].

The N− treatment also stimulated a twofold increase 

in the cellular lipid levels when compared to the N+ 

treatment, although this stimulation was not as high as 

the almost fourfold higher lipid content reported for 

this genus under nitrogen deprivation and similar time 

scales, but under much lower light intensities (100 µmol 

 m−2  s−1) [44, 68]. In addition, lipid productivities were 

not significantly different between all the treatments, 

although in the N− treatment, it was slightly higher than 

the rest. Therefore, no further stimulatory effect of lipid 

biosynthesis due to the energetic imbalance caused by 

the high light stress was observed, which would agree 

with previous studies done in N. gaditana [26]. In addi-

tion, although photophysiologically, N. oceanica seemed 

to be less affected by the high light intensities, in contrast 

to P. tricornutum, the use of a reduced form of nitrogen 

in the presence of high light did not stimulate lipid bio-

synthesis. In fact, a negative effect on this energetic stor-

age pathway by the use of ammonium was observed. For 

instance, lipid biosynthesis did not increase in the A+W 

treatment when compared to the N+ treatment, and it 

was also significantly lower in the N. oceanica cells grown 

in the A treatment. This also coincided with changes in 

the biochemical composition, which involved a signifi-

cant decrease in the chl a content, lower concentrations 

of total proteins and a significant increase in the C/N 

ratios and carbon content when compared to the N+ 

treatment. Despite the known ability of N. oceanica to 

grow in ammonium [69], all these results would indicate 

that the available reductant power not used in the nitrate 

assimilation would be diverted to pathways other than 

lipid biosynthesis, causing some kind of resource re-allo-

cation inside the cells that occurred without affecting the 

growth rate and the biomass accumulation. An investi-

gation at a higher light intensity and on the changes at 

the metabolic level associated with growth in the A and 

A+W treatments could perhaps give a better insight into 

the type of response shown by N. oceanica. This remains 

to be investigated.

Inactivation of nitrate reductase in P. tricornutum and N. 

oceanica might reveal species‑specific differences 

in the linkage between photosynthesis and lipid 

biosynthesis pathways

In the present study, W instead of Mo was used to chemi-

cally inactivate the nitrate reductase enzyme, as in the 

absence of Mo, W tends to occupy the active site of this 

enzyme [56–59]. Therefore, the use of W instead of Mo 

in the presence of nitrate would render enzymatically 

similar results as the N− treatment, while in the pres-

ence of ammonium (A+W treatment), this would imply 

the chemical rescue of the cells from nitrogen starva-

tion, leading to similar results to those obtained for the 

A treatment [22]. However, very different responses of 

those expected were observed at the high light intensities 

tested, which also depended on the species. In P. tricor-

nutum the A+W treatment showed higher lipid biosyn-

thesis than the A treatment, despite the fact that growth 

rates and cell abundances were similar in these two treat-

ments. These observations would coincide with previous 

studies [22], which suggested that the A+W treatment 

would be an exaggerated version of the A treatment. 

It has been reported that the creation of knock-down 

mutants in P. tricornutum for the NR increases TAGs 

production with a reduction of the growth rate by only 

30% [15, 70]. The explanation for this would be that the 

inactivation of the NR, whether by the ammonium pres-

ence or by the use of W, would cause an increase in the 

glutamate/glutamine (GLU/GLN) ratio and a change in 

the redox state of the plastoquinone pool that would lead 

to a signalling cascade resulting in redirecting photosyn-

thetically fixed carbon into lipids [15, 47, 70]. In contrast, 

in N. oceanica the opposite effect was observed, with 

lipid contents in the A and A+W treatments similar to 

those measured in the N+ treatment. This would indicate 

that the interplay between the photosynthetic and lipid 

biosynthesis pathways described for the diatom may not 

necessarily translate to Nannochloropsis, although further 

analysis experiments in which the cellular redox state, 

the activity and expression of NR and the GLU/GLN 

ratio changes in this microalga growing in ammonium, 
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nitrate or ammonium with W media or in NR knock-out 

mutants would be needed to confirm this hypothesis.

Conclusions
In summary, in the present study, we aimed to investi-

gate the combined effect of ammonium, a reduced source 

of nitrogen, and super-saturated light intensities in the 

accumulation of lipids in the microalgae P. tricornutum 

and N. oceanica. This comparative study allowed us to 

identify for the first time relevant differences in the phys-

iology of these organisms regarding their acclimation 

ability to high light intensities and the degree of linkage 

between the photosynthesis and lipid biosynthesis path-

ways. While P. tricornutum growth was photoinhibited, 

lipid productivities under nitrogen starvation remained 

unchanged when compared to previous reports under 

sufficient light intensities, and a stimulation of lipid bio-

synthesis equivalent to that of the nitrogen starvation 

was observed when the organism was grown in ammo-

nium. This lipid productivity was even higher when tung-

state was substituted for molybdate in the ammonium 

treatment. Conversely, N. oceanica growth and physiol-

ogy was not compromised by the high light intensities 

used in our study, and the use of ammonium instead of 

nitrogen starvation did not elicit an increase in the lipid 

productivities, but instead had a negative effect that was 

even more marked when tungstate was substituted for 

molybdate in the medium. These results point towards 

relevant differences between the two species in a way that 

suggests that NR plays a role in the linkage between the 

photosynthetic and lipid biosynthesis pathways, although 

further investigations with different light intensities and a 

detailed analysis of the oxidative stress and the NR activi-

ties and expression levels in the presence of ammonium, 

nitrate or ammonium with tungstate or in NR knock-out 

mutants would be necessary to obtain a better under-

standing of the response. Nevertheless, the results from 

this comparative study point at the direction of rationally 

optimising cultivation conditions for microalgal biofuel 

productions, and developing an appropriate understand-

ing of the response by different species. This would ena-

ble the design of more effective industrial exploitations 

in which the lipid productivity of these organisms would 

be maximized by manipulating their culture conditions 

without the need for genetic engineering.

Methods
Experimental approach

N. oceanica (CCAP 849/10) and P. tricornutum (CCAP 

1055/1) were obtained from the Culture Collection of 

algae and Protozoa (CCAP, Oban). The experiment con-

sisted of two phases (Fig. 1), in which axenic cultures of 

N. oceanica and P. tricornutum were cultivated in flasks 

aerated with 0.22 µm-filtered moist air that were located 

inside a Sanyo Incubator (Panasonic model MLR-351) 

maintained at a constant temperature of 25  °C. In the 

first phase, cultures were grown to acclimatise them to 

the respective nitrogen source (nitrate or ammonium 

at 0.88  mM) and high light. To prepare the inoculum, 

the required volume of stock culture was harvested and 

subsequently washed with the respective medium (f/2 

medium containing nitrate or ammonium as the nitrogen 

source), and re-suspended by gently pipetting in 500 mL 

of the same medium to an initial  OD595  nm of approx. 

0.15. Cultures were then acclimatised to the experimental 

conditions by growing them in triplicate for 4  days and 

under continuous high light intensity (1000  µmol pho-

tons  m−2  s−1) supplied by Osram Lumilux Cool White 

L36W/840 fluorescent lamps. Culture growth was fol-

lowed by measuring  OD595  nm in a spectrophotometer 

(model ULTROSPEC 2100 PRO UV–Vis). At the end of 

the first phase, mean (± standard error) optical densities 

were 0.68 ± 0.03 and 0.57 ± 0.01 for N. oceanica and P. 

tricornutum, respectively.

In the second phase, cultures grown in the media with 

nitrate were harvested, and divided in two before wash-

ing and re-suspending them as described above: half of 

the centrifuged cells were washed and re-suspended in 

250  mL of fresh f/2 medium with nitrate (at an initial 

concentration of 0.88  mM) as a source of nitrogen, and 

half of them were re-suspended in 250  mL of fresh f/2 

medium without nitrogen. Cultures grown in the media 

with ammonium were also harvested and divided in 

two as described, half of the cells were re-suspended in 

250 mL of fresh f/2 medium with ammonium as a source 

of nitrogen (at an initial concentration of 0.88 mM), and 

the other half were re-suspended in 250 mL of fresh f/2 

medium with ammonium as a source of nitrogen and 

with the trace metal molybdenum substituted by tung-

sten (tungsten is a metal that occupies the place of the 

molybdenum in some enzymes such as N+ reductase) 

[57, 71]. After resuspension, cultures were grown in trip-

licate for 3  days under the same continuous high light 

intensity (1000  µmol photons  m−2  s−1) and growth was 

followed by measuring  OD595 nm. The maximum growth 

rate achieved was calculated in all the treatments as the 

maximum of the growth rate measured as ln(C2/C1)/

(t2 − t1) between the monitored time points (t1 and t2).

Determination of biochemical and elemental composition

At the end of the experiment, on day 3, 10  mL sample 

was taken from each replicate treatment to determine the 

final biochemical composition by centrifuging at 4500g, 

room temperature, for 5 min in an Eppendorf centrifuge 

model 5810. Pellets were washed with phosphate buffer 

(0.01 M) and kept at − 80 °C until subsequent analyses. 
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Always working in the dark, chlorophyll a (chl a) samples 

were re-suspended in 2  mL of chilled 90% acetone and 

disrupted employing a bead-shaker (Genie) for 5 cycles of 

2 min. Extracts were then centrifuged at 10,000g for 2 min 

in a Sorvall Legend Micro 17 Microcentrifuge and the 

absorbance of the supernatants at 630, 647 and 664 nm 

wavelengths determined in an ULTROSPEC 2100 PRO 

UV–Vis spectrophotometer to estimate the total chlo-

rophyll a concentration using the following equations as 

reported in [72]: chlorophyll a (µg mL−1) = 11.8668 × abs 

(664  nm) − 1.858 × abs (647  nm) for N. ocean-

ica and chlorophyll a (µg  mL−1) = 11.4902 × abs 

(664 nm) − 4.504 × abs (630 nm) for P. tricornutum.

Total protein concentration was estimated by the 

Microbiuret method after doing an alkali extraction 

at 80 °C for 10 min in 3 mL of 0.5 N NaOH as reported 

in [73]. Total fatty acids concentration using palmitic 

acid as standard was estimated following the method 

detailed in [74]. Particulate organic carbon (POC) and 

nitrogen (PON) were determined in pre-weighted freeze 

dried samples in an Elemental Analyzer Flash 2000 using 

l-isoleucine as a standard. Finally, cell abundance was 

determined in samples fixed with Lugol in a Neubauer 

haemocytometer using a Zeiss Axiostar Plus Microscope.

Photophysiological measurements

Chlorophyll a variable fluorescence was used to deter-

mine the changes in the photophysiology of N. oceanica 

and P. tricornutum under the different treatments. Sam-

ples concentrated to a final  OD595 nm of 3 were analysed 

in an Imaging PAM M-Series Chlorophyll Fluorescence 

System from Walz. The protocol employed to conduct 

the measurements was as follows: 600 µL aliquot samples 

were dark-adapted for 30  min before determining the 

maximum efficiency of PSII or maximum quantum yield 

(Fv/Fm) using a saturating light intensity of 100 µmol pho-

tons  m−2  s−1 in the presence of a modulating light (ML) 

intensity of 15  µmol photons  m−2  s−1. Subsequently, 

rapid light response curves (RLC) were conducted by 

increasing actinic light intensity every 30 s and measur-

ing the light response of the quantum yield 
(

Fv

/

Fm

)

 or 

Y(II), the photochemical quenching (qP), the non-pho-

tochemical quenching (NPQ) and the relative electron 

transport rates (ETR). ETR evolution was modelled by 

a Waiting-in-Line model as reported by [75] to estimate 

the maximum photosynthesis rate, Pmax (measured as 

ETR), the optimum light intensity (Eopt), and the maxi-

mum photosynthetic efficiency (α). After the RLC, sam-

ples were kept in the dark under the presence of ML for 

5 min before measuring the qP again. The qP difference 

before and after the RLC is used as a proxy of photoda-

mage to the photosystem II (PSII) [76]. Three technical 

replicates for each measurement were taken.

Statistical analysis

The statistical differences between the treatments for 

the physiological parameters determined were analysed 

by performing an analysis of the variance (ANOVA) fol-

lowed by the Bonferroni t-test using the SigmaPlot soft-

ware version 13.
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