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Abstract

Mineral carbonationn ultramafic mine tailingss generally acceptetb bea safe and long
term means of trapping and storing £8@thin the structursof mineralsbutit poses theisk

of releasng potentialy hazardous metakontaminantsfrom mineral wastes b the
environment. ®ckpiles of reactive, finely pulverisedltramafic mine tailingsare ideal
natural laboratories for thebsenationand promotion of thearbonation of Megilicate and
Mg-hydroxide waste minerals via reaction with aispheric or industrial CO However,
ultramaficmine tailings commonly contaifirst-row transition metals (e.g., Cr, Co, Cu, Ni)
in potentiallytoxic concentrationsvithin the crystal structures of Mgjlicates,sulphides, and
oxides. Thesetransitionmetalsare likely to be mobilised bgnineral carbonatiomeactions,
which require mineral dissolution to supply cations for reaction with cadtowoodsreef
Chrysotile Mine, New South Wales, Australignsitionmetals {.e., Fe, Cr, Ni, Mn, Co, Cu)
are most concentrated within minor oxides (magnetite and chromite) and tlaye a
(awaruite Niz-sFe and wairauite CoFg in serpentine tailingshowever mobilisation of
transition metals appears to ocpuedominantlyduring dissolution oserpentine rad brucite,
which are more abundant and reactive phases, respectivelgre, we present new
synchrotron xray fluorescence mappirgata that providénsights into the mobility of fst-
row transition metalsHe, Cr, Ni, Mn, Co, Cu) during weathering and carbonation of
ultramafic mine tailingsollectedfrom the Woodsreef Chrysotile Minghese datandicate
that the recently precipitated carbonate minerdigdromagnesite [MgCQOz)a(OH)z-4H0]
and pyroaurite[MgeFex(COs)(OH)16: 4HO] sequestertrace metals from the tailings at
concentrations 010sto 100sof ppm, mostlikely via substitution foiMg or Fewithin ther
crystal structurg or by the physicaltrappingof small (umscale)transitionmetatrich grains

(i.e., magnetite, chromite, awaruite)hich are stabilisel within alkaline carbonate cemest
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Trace transition metals are presentedatively high concentrations in the bulk tailings (i.e.
~0.3 wt. % NiO and G©s) and theyare largely retained withinthe unalteredmineral
assemblage. The weating productghat occurat the surface of the tailingand form a
cement between grains of partially dissolved gangue minerals immobilisgitrametals on
spatial scales of micrometres and at comparable concentrations to those obsehed i
unalteed tailings. The end result that trace metals are not present at detectable levels
within mine pit waters.Our observations of metal mobility during passive carbonation
suggestthat mineral products ofccelerated carbonatidreatments are likely to gaester
trace metals. Thusccelerated carbonation uslikely to pose an environmental risk in the
form of metalliferousdrainage sdong as the neutralisation potential of ttelings is not

exceeded

Understanding both trackansition metalgeochemistry and mineralogy within materials
targeted for mineral carbonation could allow optimisation of treatment procGassekesign
for recoveryof valuable metals.In ex situ reactorsemploying acid préreatmentstrace
metals mobilisedrom reactive phases such as serpentine and brcwmitiel potentiallybe
recovered using ptdwing methods, whilerecalcitrant metatrich accessory minerals,
including magnetite, awaruite and chromite, could be recovesedtreated residue material
by conventionalmineral separation processes. Recovery of valuable metals\(j.€r and
Co) as byproducts of accelerated mineral carbonation technologies etsatdgrovide an

important economic incentive to suppbrbader adoptioof this technology.

1. Introduction
The increasingconcentration ofinthropogenicCO; in the atmospherss likely driving long
term changes to Earth’'s climagelallett, 2002; IPCC, 2005, 2013). As such, there is a
growing need to develop mitigation technologid®th to reduce anthropogenic C®

emissionsandto capture atmospheri€cO, from the airfor longterm storage in atableform.
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Mineral carbonationwhich wasfirst proposed as a mitigation strategy for £&missionsy
Seifritz (1990) capturesCO, within the structures of environmentally benign carbonate
mineralsby enhaning natural silicate weatheringgromoting he safe longterm storageof
COz. Importantly, this is the onlproposedCO; storagetechnologythat isconsidered to be
permanentover geological timescalesgiven that many arbonate mineralare known to
persist at the Earth’s surfaf 100G of yearsor longer(Lackner et al., 199%)elkers et al.,

2008; Olajire, 2013; Seifritz, 1990).

Natural carbonation of mine tailings in Australia, Canattee U.S.A., and Norway(99 —
6200 gCO/m?y; Beinlich and Austrheim, 2012; Gras et al., 2017, Lechat et al., 2016;
Levitan et al., 2009; Oskierski et al., 2013; Pronost et al., 2012; Turvey et al., 2017, Wilson et
al., 2006, 2009a,b, 2011, 201@)curs at rates that argpically orders of magnitude greater
thanaverage C@uptakeassociated witlsilicate weathering0.7 —62.1 g CQ/m?ly, Power

et al., 2013, units converted from Ludwig et al., 1998)e enhanced reactivitpf mine
tailingsis largely due taheorders of magnitudancrease irmineralsurface area that results
from crushing during ore processi(i¢/ilson et al, 20093. The greatestptakeof CO;, by
mine tailingsyet reportedoccurs atthe Mt Keith Nickel Mine in Western Australjavhere
nearly 40,000 of atmosphericCO, are sequesterednnually via natural reaction of the
tailings with the atmospheregpresenting an 11% offset thie mine’s annual greenhouse gas
emissiongWilson et al., 2014)This enhanced reactivityf mineral wastesnakeshistorical

and operatingnine tailings storage facilitiegrovide ideal settings for observingransition

metal mobiliy duringpassive mineral carbonation reactions on timescales of years to decades

Ultramafic rocksare commonly mined for Cr, NiCuplatinum group element sides
diamondsialc, and (historically) chrysotile asbestos. Tleeg alsothe preferred feedstock
materialfor mineral carbonatiobecause thegontainhigh abundancesf silicate minerals

with high Mg contents {e., olivine [(Mg,Fe}»SiO4] and serpentine [Mgi-Os(OH)4]}, and
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minor amounts ohighly reactive phases suchlasicite [Mg(OH}»] (Goff and Lackner, 1998;
Lackner, 2003; Oelkers et al., 2008; Power et al., 2@icite forms via the hydration of
olivine during serpentinisation and is usually present as a common but minor component of
ultramafic tailings(1-15 wt. %; Harrison et al., 2, O’Hanley and Offler, 1992 The lack

of strongSi-O bondswithin brucite means that it hag@activity thatis orders of magnitude
greater tharthat of Mgsilicates,meaning thathe abundance difrucite exer strong control

on mineral carbonation rateander ambient conditions (Harrison et al., 20R2wer et al.,
2013).In addition, theserpentine polymorphghrysotile andikardite consist of a sheet of
silica tetrahedra bonded to an octahedral®t sheetthat is commonly referred to as the
‘brucite-like’ layer (e.g., Wicks and O'Hanley, 1988). This ‘brucii&e’ layer is more
reactiveand dissolves fastéhanthe accompanyindgsi-rich tetrahedral layer (Park and Fan,
2004, Rozalen and Huertas, 2013), increasing the reactivity of serpantinenhancing
release of Mg forCO, sequestration Dissolution of these minerals in meteoric water
(containing dissolved atmospheric €& carbonic acid, pH ~5.5%leases MY cationsand
increases alkalinity. Mg cations in solution subsequentitgact with dissolvedCQOs? to
precipitate as hydrated carbonate minerals such as hydromadgit€ Oz)4(OH).- 4H:0]

and nesquehonitdMgCQOs:3H0), with Mg:CQO, ratios and hydration statethat are
dependent on local environmental conditions (Ballirano et al., 2013; Davies and Bubela, 1973;
Hanchen et al., 2008; Morgan et al., 2015; Wilson et al., 20@age carbonic acid in
meteoric water is a weak acidié leaching or the addition of acid generating materiah&s
beenwidely employed toaccelerate CQuptake in ultramafic materials becausendreass

the rate ofsilicate mineral dissolutioand theavailability of Mg?* cations for reactioite.g.,
Maroto-Valer et al., 2005; Park and Fan, 2004; Power et al., 2010; Teir et al., 2007b)
Following acid leaching, ptdwing methods can then be used to increase pH to alkaline

conditionsto allow precipitation ofcarbonate mineral(Park and Fan, 2004)n highly
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reactive mineral wastes, particularly where brucite is present, minessdludtion under
ambient conditions can providsufficient alkalinity to induce carbonate precipitation
(Harrison et al, 2013; Power et al.,, 201Bpwever, ultramaficocks commonlycontain
several wt. % Fe as well &sv concentrationg< 1 wt %) of otherfirst row transition metals

(e.g, Ni, Mn, Cr, Cq Cu). These are typically foundithin the crystal structures of Mg
silicate,Mg-hydroxide, sulphide, and oxidrinerals as well awithin alloy mineralssuch as
awaruite(Ni2-3Fe) andwairauite (CoFe) (Challis and Long, 1964; Goff and Lackner, 1998;
Kmetoni, 1984; Margiotta et al., 2012; Natali et al., 2013; Schreier, 1987; Sciortino et al.,
2015). First row transition metals may be mobilised by digBoh of their mineral hosts
during either natural weathering reactiongterartificially accelerated reactiornibat can be

used to enhance mineral carbonatiates (Margiotta et al., 2012; Oelkers et al., 2008;
Olajire, 2013; Olsson et al., 2014a%chreier, 1987; Teir et al., 2007 &8ecausefirst-row
transitionmetals can be toxic to biota @evatedconcentrationszoncern has been raised that

the release of metalliferouwatersfrom mineral carbonatiorfacilities or geoengineered
landscapes could adversely affeettural systemgOlsson et al.2014b) Consequentlythe
potential mobilityof trace metalsduring carbonation reactionis an essentiatonsideration

for implementation ofx situ mineral carbonatiomechnologges, in situ enhanced weathering

of ultramafic landscapes onineralwastes, andn situ CO; injection into rock formations
(Hamilton et al., 2016; Kirsch et al., 2014; Marcon and Kaszuba, 2013; Marcon and Kaszuba,
2015; Oelkers et al., 2008; Olajire, 2013; Olsson et al., 2014a; Olsson et al., 2014b;ISeal et a

2010; Thomas et al., 2013; Thomas et al., 2016).

Previous studies hawepored elevatedconcentrations of trace metals (particularly 8
and carcinogenic €% in soils and watersssociated with serpentinit¢slargiotta et al.,
2012; McClain and Maher, 2016Vlorrison et al., 2015; Schreier, 1987; Schreier and

Lavkulich, 2015) Uptake of these trace metdlg Fe-hydroxide and claynineralshasbeen



148 documented inserpentinites(Morrison et al., 2015)but the influence of hydrated Mg
149  carbonate mineral®n trace metal mobilitywithin ultramafic environmentss relatively
150 unexplored.This is acritical knowledgegap given thathydrated Mgcarbonate minerals are
151  commonlypresentin high abundancepip to 14.6 wt% hydromagnesitgOskierski et al.,
152  2013)] inpassivelycarbonatednine tailings and thereforenay providean importansink for

153  potentially toxictracemetals

154 Hamilton et al. (2016) demonstratethat Mgcarbonate minerals and -B&yhydroxide
155  phases sequester transitimetalsduringtheir formationin laboratoryexperimentsiesigned
156  to emulatehe Mg- andtransitionmetatrich conditionsproduced duringccelerateanineral
157  carbonation However, the mobility ofpotentially toxic trace metals duringnaturally
158  occurringmineral carbonatiom ultramafic landscapdsas notyetbeen extensively explored
159  Here we investigatg1l) the mineral sources of tra¢ensition metalsand themobility of
160 these metalduring weathering, anq2) the sequestratiof trace transition metak by
161  carbonate mineraknd associatealterationphasest theWoodsreef Chrysotile Minen New
162  South Wales, Australid his studyprovides arameworkfor understandinghe fundamental
163  geochemical processes, and associatedronmental risksthat accompanthe carbonation
164 of transitionmetd-rich ultramafic rocks. This is essential information forboth the
165 development oflow-temperaturetechnologiesfor enhancing carbon mineralisation using
166  acidictreatmentsandfor the geosequestratioaf industrial CQ during injection intomafic
167  to ultramafic formationsln addition, an understanding of transition metal mineralogy and
168  mobility during mineral carbonation reactions is used to identify potential oppteatufor

169  recovery of metals from ultramafic mine wastes.

170 2. Materialsand methods

171 2.1. Site description



172 Thechrysotile deposit at Woodsreef lies within the Great Serpentinite Belt, inotitbeBn
173  New England Fold Belof northeastrnNew South Wales, Australidhe ultramafic rocksit
174  Woodsreehave been variablyerpentinised and ctain partially serpentinised harzburgis
175  well asmassiveand schistose serpentinite (Glen and Butt, 198§ nmassive serpentinite
176  hasformed frompartially serpentinised harzburgite Hye transformation of forsterite and
177  pyroxenemineralsinto serpentingghasesand magnetit¢Glen and Butt, 1981; O'Hanley and
178  Offler, 1992; Oskierski et al., 2013)arge bodies and small keis of partially serpentinised
179  harzburgite still remain within the massive and schistose serpentimiteésh host the

180  chrysotile[MgsSizOs(OH)4] deposit (Glen and Butt, 1981).

181  The Woodsreef Chrysotile Mine is locategpproximately500 km northwest of Sydney in
182 New South Wales, Australi@ig. 1) The now derelict siteccupiesapproximately 400 ha,
183 and hosts foumine pits, now partially filled with water. The most recent and productive
184  period of chrysotile asbestos mining at Woodsreef was conducted by Chrysotileaiorpor
185 between 1971 and 1983. This mining produs@d,000 t of chrysotile75 Mt of waste rock
186 and 24.2Mt of dry-milled tailings (Assargiotis, 2013; Merrill et al., 1980; Oskierski et al.,
187  2013;Woodsreef Taskforce, 201IMhe Woodsreetailings have since beelnvestigatedas a
188  potentia resource for nickel (Ni), chraium (Cr), magnetite, magnesium and siliganetoni,
189  1984; Laughton and Green, 2002; Sylvester and Stagg, .22@&ivecaronation of tailings
190 at Woodsreef halseen occurringver the past three decadéskierski et al., 2013; Turvey
191 et al.,, 2017) resuting in the sequestration ofn estimatedl, 400t of CQO, within the
192  hydromagnesite crustscatedin the upper 2 cmof the tailings pileand up to 70,000 t of
193  CO stored within pyroaurite at depth, although questions remain about source of carbon in

194  this phase (Oskierski et al., 2013).

195 2.2. Sample Collection
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Hand samples okerpentiniteore and waste rockrom the mine pits and surrounding
stockpilesweretargeted to capture both the starting composition of tailings at Woodsreef
the products of mineral carbonatioimhesesamplesinclude serpentinite[n=6, including
massive serpentinite (n=2) andrpally serpentirsed harzburgitgn=4). Samples ofoulk
tailings (n=2), andvertical and horizontal carbonate crutsming within the tailingsstorage
facility (n=5)were also collectedsample descriptions and GPSamlinatesare provided in
TableS1.Water samples wer@socollectedfrom each of théour mine pis, passedhrough
0.2 um syringe driven filterand preserved to pH < 2 by additioneofew drops ohitric acid
(50%) for later analysis oimajor catios (Ca&*, Mg?*, Na', K*) by Inductively Coupled
PlasmaAtomic EmissionSpectrometry ICP-AES) and anios (CI" by discreteanalyser
HCO;s by titration, S@Q* by ICR-AES). The pH ofthe pit lake water was measured in the

field using acalibrated pH metgiThermo Scientific Orion 5 Star

2.3. Elemental analysis

The concentrations of a suite of dissolveté elemest(As, Ba, Be, Ca, Co, Cr, Cu, Mn, Ni,
Pb, V, Zn, Fewithin themine pit water samplesere determined usingductively Coupled
PlasmaMass Spectrometry (ICRIS) at the ALS Group Environmental Division
laboratories(Brisbane,Queensland Bulk elemental analysief solid phase samplesas
completed using X+ay Fluorescence XRF), and total C and S concentrations were

determinedusing aLECO instrumeniat SGS Australia (Newburn, Western Australia)

2.4. X-ray diffraction analysis

Solid phasesampledfor X-ray diffraction XRD) were pulverisedising a ring millprior to
the addition of al0wt. % fluorite (Cak) internal standardnd micronisingunder anhydrous
ethanolin a McCrae Micronising Mill using agatgrinding elementsThe samples were

thendried, disaggregated amdckloaded into cavity mount®r analysisusinga Bruker D8
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Advance Eco Xray diffractometerfitted with a Curadiation sourcendoperated at 40 kV

and 25 mA, in the Monash-Ky Platform Data were collectedver 2-80° 260 with a step

size of 0.02° 20 and a count time of 2 s/step. Mineral phases were identified using the ICDD
PDF2 database and the DIFFRACplus EVA Version 2 software package (Bruker AXS,
2004).Rietveld refinement&Bish and Howard, 1988; Hill and Howard, 1987; Rietveld, 1969)
were completed using Topagersion 5 (Bruker AXS, 2004) The Rietveld refinement
methodology outlined bywilson et al. (2006)was usedfor quantification of mineral

abundances in these serpentiiog-samples.

2.5. Scanning electron micr oscopy

Ten samples of waste rock and tailings were set in epoxy aesicut into 30 um thick
polished thin sections The least weathered serpentinites and partially serpentinised
harzburgiteswere selectedo capture the composition of the original source rodksn
sections werealso produced from a range of tailings samples to reflect variability in the
extentof carbonationat WoodsreefThin sections werearboncoatedand analysed using
scanning electron microscopy and energy dispersivegay spectroscopy SEM-EDS)
employing aJEOL 7001F Field Emission Gun Scanning Electron Microscope {&EK3)

with backscattered electron (BSHE)ages collected at 330 kV at the Monash Centre for

Electron MicroscopyMonash University, Clayton, Australia.

2.6. X-ray fluor escence microscopy

Representativeazbonate crussamples(13WR2-4and 13WR2-8)analysed by SEM were
preparedasthin sectiols on quartslidesfor trace element analysis usiXgray fluorescence
microscopy (XFM)at the Australian Synchrotron, Clayton, Australi@ynchrotron Xray

Fluorescence Microscopy (XFM) allows rapid quantitative elementalysinabver large

areas (such asgeologicalthin section) at high resolutiomging pixel sizes as small a2

10
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pnm) with ppbdevel sensitivity(Paterson et al., 201Ryan et al., 201¢ In addition,the XFM
beamline at the Australian Synchrotrazan generate X-ray Absorption Near Edge
SpectroscopyXANES) maps, whichareused here to investigate the speciation of Cr within

weathered carbonate crusts from Woodsreef Mine.

Fast preliminary scans were conductdgth an incident monochromatic-ky beam of 8.5
keV focused to ~2.0 um using Kirkpatri€laez mirrors a step size o2 um, anda dwell
time of 40msec/pixel Following this theenergy of theX-ray beam was reduced to 12.9 keV
to enable better detection of the trace matalanall areas of interestientified during the
preliminary scan®f entire thin sectionsThese areasf interestwere mappedusinga step
size of lumand a dwell time of 1000 msec/pixel aptimisecounting statisticsElemental
abundancaelatawere collected using Maia detector(Ryan et al., 2010; Ryan et al., 2014)
andthe full spectrumof data were processed using the GeoPIXE software pro(Rgam

2000).

Cr K-edgeXANES analysis was undertaken oweregion of interest withira carbonate crust
sample(13WR2-8) ovelanenergy rangef 5.96 to 6.12 keMWvith a step size ot um and a
dwell time of 8 ms. GeoPIXE was used fwocessthe resultingdataand toassess spatial
variatiors in oxidation statewith spectra comparedgainstpublished standard®erry and

O’Neill, 2004; Low et al., 2015; Vogel et al., 2014).

3. Reaults
3.1. Fidd site observations

Chrysotile was observedas exposedveins andforming slickensidesin serpentiniteand
partially serpentinised harzburgite in the mine pit wallsl in cobbles from thevaste rock
and tailingspiles at the Woodsreef Nhe (Fig. Sla,b).Partially serpentinised harzburgite

commonly present deernelswithin a serpentinite matrix (Figs19 that isdark in colour and

11
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has a waxy texture (Fig1c). The serpentinitsurroundingharzburgite pods appearshave
weatheredby crackingperpendicular to the surface of the paoh&l shedding a carbonated
alteration halo (FigS19. A number oflarge boulders appezd to be disintegratingmost
likely as a result oexpansive forces and reactidnven crackinggeneratedoy carbonate
mineral precipitationBeinlich and Austrheim, 2012). Whitarbonate mineralsdentified
by their characteristieffervescencavhen exposed to HClvere prevalenton weathering
surfaces and inracks(Fig. S1d). Heavily carbonated crustsithin the tailings pileform as

both vertical ridges on weathering facgsg. S1e) andcashorizontalcemented surfacd§ig.
S1f).

3.2.Trace metal analysis

The ICP-MS analysis of the mine pit waterdicatesthat concentrations oNi, Cr, Mn, Co
and Cuare below instrumeral detection limis (< 0.001 mg/l) in all sampleswith the
exception of the sample taken from Lake 2 (Fig.vilhich contains 0.00&hg/L Cu (Table

S2). The pH of pit water ranges from 8.9 to ®ith an average valugf 9.2 (TableS2).

Bulk rock XRF resultsindicate thatNi, Cr, and Mnare presentin all rock and tailings
sampledhat were analyseavith Co beingdetectablen all but a fewsamplegdetection limit
was0.01 wt. % as CoQTableS3). AverageNi concentrationgas NO) are 0.29wt. % in
serpentinitavaste rock (considered the least weathered sampl@§wt. % in bulk tailings,
and 0.25 wt. % inailings carbonatedailings crusts.AverageCr concentrations (a€r.0s)
are highest in serpentinitat 0.36 wt. %, with an intermediatealue 0f0.34 wt. % inbulk
tailings, and lowest in carbonatemtusts(0.32 wt.%). Mn concentrationgas MnO)are0.10
wt. % in serpentinite0.12 wt. % inbulk tailings, and 0.0 wt. % in carbonated crust€o
concentrationgas C®) areconsisterly low in all samples and randgem <0.01to 0.02wt. %

with the highest concentrations occurringn serpentinitesamples In general, transition

12
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metalsare present at similar abundasae all sample typesbutaverage valueare slightly
more concentrateth the lessweatheredserpentinite waste rockompared to bulk tailings
and carbonate crust samplétwever, significant variations are present between samples,

reflecting theheterogeneity in lithology and mineralogy observed at the site.

3.3. Mineralogical results

Serpentinemineralsdominate the tailings atVoodsreef (67-9%t. %). Hydromagnesite,
pyroaurite[MgeFe(COs)(OH)16: 4H0], magnetitgFe;0a4), chromite[(Mg,Fe)CrQO4], brucite
[Mg(OH)], forsterite(Mg2SiQs), andenstatite(MgSiOs) are present as minor mineralsnd
both calcite and quartare present at trace abundanddghough we give the formulae for
ideal endmember compositions of these minerals, it should bednibtat their elemental
compositions are variable and subject to substituRatict olivine is heavily fracturedand
SEM-EDS analysis indicateghat thisolivine is Mg-rich, andis confirmed to be forsteritic
using XRD Hydromagnesite and pyroauriee most abundant in carbonated samples (up to
14 wt. % and ® wt. % respectively The relative abundances dfl) the serpentine
polymorphs,chrysotile and lizarditéantigorite is rare at Woodsreef; O’Hanley and Offler,
1992) and (2) the spinelsnagnetite and chromiteould not bedeterminedusingXRD as a
result of their structural and compositional similarffyjurvey et al., 2017). blvever, we
were able to confirm thpresencef eachof these four phases by textural observations,(e.qg.
chrysdile fibres) and elemental analysasing SEMEDS. Quantitative mineraldgal results

are provided inrableS4.

SEM-EDS analysis revémthatCr is presentat the greatest concentrationchromite grains,
many of which are intergrown with serpentingésemblea myrmekitic texture (Fig2a) or
arerimmed with overgrowths ofmagnetite Magnetite isabundant as dispersed graaryd
veinswithin serpentingFig. 2b). Some grains were found to contain smallpgh inclusions

of Co-Fe and NiFe alloys.Follow up SEMEDS analysis revealethe presence of thli-Fe

13



317 alloy mineral, awaruite,in partially serpentinised harzburgitéhis mineral contains
318 approximately70 wt. % Ni and 3wt. % Cg andis commonly disseminated as <pm
319 inclusions throughout serpentine in very figmained crosscutting veirs (Fig. 20). The rare
320 CoFe alloy is likely waiauite (CoFe), which is found in association with awaruite in
321 serpentinites(Chalis and Long, 1964)Hydromagnesiteis found extensively in the
322 carbonatd tailings and is characterisedby a fibrous to platy crystal morphologyit is
323 commonlyseen precipitang directly on weathered serpentine grains amémall crevices
324 associatedwith the disaggregation of gran(Fig. Z, d). Hydromagnesitealso forms
325 extensive cementthat trap and aggregatgrains of other minerals, such as serpeeatin
326 magnetite ancdwaruitewithin carbonated crust samples from the tailings surfaag 2e).
327  Pyroauriteis particularly abundantvithin carbonated chrysotile vesnsample1l3WR14),
328 where it formsan extensive groundmass (Fig. 2c), aedcharacterised by layered
329  morphology(Fig. 2f), andayellow-red huewhen viewedn plane polarised lighCr, Mn and
330 Ni aredetectablen trace amounté<l wt. %) in some serpentingrainsusingeDS, however,
331 theyare notobservedn hydromagnesite above the detection ligfitthis techniqueTrace
332  Mn is commonly detected in pyroauriteshereastrace Cois observedin magnetite and

333  awaruite (3 wt. %).
334 3.4. Synchrotron XFM analysis

335 The wo regionsselectedor detailed synchrotron XFM mappimgpresentwo representative
336 styles of carbonate mineralisatiahWoodsree{l) cementatiomt grain surfaces withipore
337 spacesn the tailings, and2) acrust at the surface of the tailingggure3a shows aelectron
338 micrographof a reactive weathering fronat the grain boundarpetween serpentine and
339  hydromagnesiten a carbonated crust sample (13W&2XFM element maps (Fig.a3f)
340 show the distribution of key metals of interest, and Si within this redidransect isdrawn

341 across this boundary (Figf)3and elemental concentrations frone synchrotron XFM data
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are averagedalong the width of thetransect (Fig. 3g). Most notably, elevated Si
concentrations areestricted tothe serpentingrain (6.4 wt. % in the serpentinegegion as
opposed td.6wt. % in the carbonate regipiable ). It is important to note that the Si peak
detected in the Xay fluorescence spectra could only be partially fitted, and as suchpdata f
this element should only be considered toskentquantitative.Stoichiometric srpentine
(chrysotile and lizarditels expected to contaimp t020.3wt. % Si [in pure MgSi>Os(OH)4],
indicating that our fit gives an underestimate of Si abundaRegardless, theelative
difference in Si concentrations betwesatpentine and hydromagnesgssignificantbecause

it representsin order of magnitudéecrease isi concentrationacrosghe reaction front.

In comparisorto Si,Fe andracetransition metal§Mn, Cr, Ni, Co)are present at comparable
abundances in both regiondable 1 Fig. 3. These metalsare presentwithin the
hydromagnesitéhat nucleated at the surface of the serpentine gtamerage@abundances of
1.6 wt. % (Fe), 370 ppm(Mn), 102 ppm(Cr), 917 ppm(Ni), and 155 ppm(Co). The same
elements are present®8 wt. % (Fe), 295 ppm (Mn), 115 ppr(Cr), 889 ppm(Ni), and 123
ppm (Co) in the adjacent serpentine gra{fable 1). The high contrast between Si
concentrationsoincident withless dranatic differencs intransitionmetal concentratiorsre
observed botln Figure3 and ina carbonate cement thgptansa gapat the tailings surface
(Fig. 4; Table 2). In the latterexample, the carbonate cement appears to have precipitated
acrossaspace between graias the surface of the tailingas opposed to direct precipitation
at a serpentine grain boundary. This is consistent with the process of cafoomatéeon via
evaporation anavicking (Wilson et al., 2011)wherebyMg-rich fluids, in which the Mg is
sourced fom serpentine and brucite dissolutiare drawn to the surfackby evaporation
driven capillary rise Mineral precipitationoccurs when Mg and dissolved G& are
sufficiently concentratedia evaporation to induce hydromagnesite saturgiidilson et al.,

2011).
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Fe and fiace transition metal@vin, Ni, Cr, Co) appear to exhibit two styles of distribution
within the two forms ohydromagnesitenineralisation described abovél) homogeneoug
dispersed within both serpentine atatbonate phased concentrations 0£00s to 1000s of
ppm, and (2)concentrated in discretgm-scaleregions The highest concentrations of Ni
(3.4 wt.%) andCo (1.8 wt.%) occurin discreteregions less thah umin size and coincide
with elevated concentrations of Fegortedat up to 68.5wt. % for regions containinghe
largest 10 — 20pm sized grainsof magnetit¢. Because XFM is a transmission technique
that samples the entire volume of a specimen, concentratiotieese discretetm-scale
points are averaged over th804m deep thin section, thus actual concentrations of Ni, Co
and Fewithin thosesmall grains are likely higherOur SEM-EDS results which are more
appropriate for sampling surface featuramfirm that threqim-scale grains exposed at the
surface of the sample are high in Feboth Fe and Ni, indicating the presence of magnetite
and awaruiteAs suchthe<5 pm-scale grainwisible within the whole sample depth in XFM
are also interpretedo be trapped magnetite aralvaruite grains (Fig. X, e, f). Fe
concentrationsvithin the serpentine grain shown in Figurél¥ wt. % Fe, in Tabld), and

the silicate minetdaregion highlighted in Figurel (1.0wt.% Fe, in Table R are slightly
lower although not dissimilar tmeasurementsf Fe abundance ilizardite [1.6 —2.3 wt.%

Fe using electron microprobe, O'Hanley and Dyar (1993)] and chrysatBe-{ 23 wt. %
Fe* and 11 — 1.4wt. % Fe*; using atomic absorption spectroscopy, Glen and Butt (1981)

in sampledsrom Woodsreef.

The presence of Cr within hydromagnesite cemeatsevenly distributed lowevel
concentrationsandin discreteum-scale concentrationsdicates that mobilisation of @nto
solution andiberation ofsmall chromite particles occurringwithin the weathexd tailings.
Cr K-edge XANES analysis reveals Cr is present a& @r chromite, serpentineand

pyroaurite whereasCr®* is not detected in the scanned aféig.(S2).
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Pyroaurite also containtgace metals at 100s to 1000s ppm lexicentrations (107 ppm Cr
440 ppm Ni, 784 ppm Co, 0.3 wt. % Mn and 8.2 wt. % Fe). However, uncegreairsis
about the formatioomechanismof pyroauriteat Woodsreefisit can form via reaction of
brucite atmospheric Cg butit was also detected in fresh tailings at Woods(&&insky
1983) suggesting it could be a hydrothermal alteration prodeyatoaurite is prone tthe
exchangeof interlayer anions, such as €Q (Bish, 1980; Miyata, 1983 and stablearbon

and oxygen isotopic data for pyroausiteh samples reported by Oskiersgkial. (2013) give

an ambiguous signature that could result from (1) mixing of an atmospheric sourdeoof ca
with a metamorphic source of carbon, (2) formation of pyroaurite from a modern @rgani
carbon sourcéalthough no such source is present intgiéngs at Woodsreefor (3) kinetic
depletion of *3C during either exchange of atmospheric .COr metamorphic C@ in
pyroaurite or formation of sedimentary pyroaurite from atmospheric £&©Osuch, although
pyroaurite is identified as a host for trace metals in the Woodsreef tailings, ntleau
whether these trace metals were inherited in pyroaurite that was originaity ifothe ore or
were sequestered during carbonation in the tailingsmoshg. Therefore, this study focuses
on hydromagnesitas a model phase for examining trace metal uptake in the products of

passive mineral carbonation by air capture.
4. Results
4.1. Mineralogical hosts of trace metals

Weathering has formed a Mmrbonateaich crust at the surface of tWoodsreetftailings,

but the bulk of the tailings at depth appear tddss altered, thus the tailings are considered
an attractive target material for promoting mineral carbonation reactions (Men egl.,
2015, 2016, 2017; Oskierskt al., 2013; Turvey et al., 2017). We find that the bulk of trace
transition metals within the tailings remain within the original mineral assemblage, of

silicates, oxides and alloys, with sometals having been mobilised and tresguestered
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417  within alteration minerals (hydromagsite andpossibly pyroaurite) in surface crusts, and
418 none detected in mine pit waters. XRF analyses of bulk sasipdegthat CeOs and NiO are
419 both present at concentrations €3.3 wt. % in the Woodsreef Minilings (Table S3).
420 Amongst the metalsvestigated Cr is of particularenvironmentalconcern because tan
421 form the toxic carcinogen Cf in its most oxidised stat@Kotas and Stasicka, 2000). Our
422 SEM-EDS analyseshowthat Cr is predominantly hosted in chromitéhereassynchrotron
423 XFM majping revealsthat Cr isalso distributed homogeneousigt low concentrations
424  (approximately 10@pm)within grains ofserpentingpossiblyby substitdion for Mg within
425 the crystal structures of lizardite andrysotile This is unsurprising given that\ariety of
426 divalent and trivalent cations, includirfgg?*, F€*, Cr?*, Cr¥*, Ni?*, Mn?*, and Co?*, can
427  readily substitute forstructural Mg?* in serpentineminerals (Anbalagan et al.,2008;
428 Anbalagan et al., 2010; Cralley et al., 1968; Morgan et al., 1973; O'Hanley and Dyar, 1993,

429  1998; Ristic¢ et al., 2011; Schreier, 1987).

430 Our XFM results confirm thaNNi is also distributed throughout serpentine minerals at low
431 levels however, wealsocommonly observ@mscale inclusions ahe NiFe alloymineral,

432  awaruite within partially serpentinised harzburgite, consistent with observations made by
433  O'Hanley and Dyar (1993Awaruite forms from Ni mobilised bgerpentinisation of olivine

434  at low temperature and low watirrock ratios(Sciortino et al., 2015).
435 4.2. Trace metal mobility during passive mineral carbonation

436  Hydromagnesitand other hydrated Mgarbonate mineraksre commorweathering produst
437  of serpentineminerals forsterite and brucite(Harrison et al., 2015; Wilson et al., 2011,
438  Wilson et al., 2009a), all of whicére presentwithin the Woodsreetailings (Oskierski et al.,
439  2013; Slansky, 1983; Turvey et al., 201&n early investigation of tailings mineralogy did

440 not detect hydromagnesite in the tailingsMoodsreef (Slansky, 1983Joday evidence of
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serpentinite weathering to produce carbonate crusts is observed at addege the fieldas
rocks and boulders disintegrate due to the expansive forces of carbonate minertariprma
and in textural observations and mineral associations viewed in thin section®).(Sigall
grains of minoroxide minerals such as magnetite and chronaite,alloy minerals such as
awaruite (Fig. 8),in contrast, do not appear to be significantly alteredihmyt are liberated
by weathering of serpentine amttorporated as inclusions the extensive hydromagnesite
cementsthat have developed withithe suficial tailings material These hydromagnesite
cements formed recently (since 1983) once tailings were deposited in the stoilageafad
they are known to have been produé®sn a modern atmospheric G8ource(Oskierski et
al., 2013; Turvey et al., 2017%erpentine minerals, forsterite and brucite are still preisent
the tailings therefore,it is likely that wethering reactions will continue to sequester
atmospheric Cowithin hydromagnesite into the future. Howewfilson et al (2014) found
that the nucleation of hydromagnesite on the surfaces of mineral grains, and dorrofti
thick (mmscale) efflorescentemens at tailings surface slowscarbonation reactions by

passivating reactive surfaces dimiting CO; ingress into deeper tailings.

The most likely sourcef the Mg in the hydromagnesitéorming in theWoodsreetailingsis
from the dissolution oferpentine minerals, brucite and traceounts oforsterite(Oskierski

et al., 2013)Brucite is the most solubleof these phases under acidicneutral conditions
(i.e. rainwater;Palandri and Kharaka, 20Q4hus,it is likely that mineral carbonatioat the
site isattributableto carbonatiorof this minor phaseas has been observed previously at the
Mount Keith nickel mine(Wilson et al., 2014)As such, bucite dissolution couldbe a
significantsource oimobilisedtrace metalsgivenit forms a solid solution with a wide range
of divalent metal cationdncludingFe, Ca, Ni, Co, Mn, Zn, Cd (Brindley and Kao, 1984)
Serpentinite hosted brucite commonly contains hagincentrations ofsubstituted Fe

(Mumpton, 1966 ndNi (Grguric 2003) with the distributioncoefficientfor Ni partitioning
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between brucite and serpentineingereported as63 to 1 under conditions typical of

serpentinisatioriPerruchot, 1973).

In contrast to brucitdizardite and chrysotiléypically havea much higher surface ar@aea

et al., 2012)andare the mosabundanphaseg>67 wt. %) at Woodsregtherefore they are
also likelyto contribute cations for mineral carbonatidrine transitionmetals of interest in
this study (Fe, Cr, Ni, Mn, Co) substitute for Mdn the more reactivebrucite layer within
thestructures oSerpentinaninerals(Anbalagan et al., 2008; Anbalagan et al., 2010; Risti¢ et

al., 2011)meaningthey ardikely to be leache@longwith Mg duringpassive weatheringr
engineering solutions faccelerated leachingf tailings Si forms strong bonds with oxygen
within the serpentinestructure, andis expected to be relatively immobilender the
circumneutral conditions that occur during weathering of serpen{mige, McCutcheon et
al., 2015, 2017)0Our XFM dataindicate thaiSi is restricted tserpentine graswhereasre
andtracetransitionmetals(Cr, Ni, Mn, Cg are incorporated inthydromagnesiteementsat
comparable concentrations although slightly lowerthan those found in unweathered
serpentine Tables 1, 2; Figs. 3, 4). The Fe and trace metals releasddring dissolution of
brucite or serpentine are unlikely to remain soluble under the circumneutral to alkaline
conditions expected iWoodsreefmine waters(Stumm and Morgan, 1996As such, they
likely have not travelled far from the source. This may explain whyace metal
concentrdons are generally higher imoth the pyroaurite (which likely formed via
carbonation of brucite, although this is not certain), and the hydromagnesitetceme
precipitated at aespentine grain boundary (Fig. 3, Table 1), compared tdother metal
concentrations found inhydromagnesite surface cemgnivhich we suggesformed via
evapoconcentration and wickied Mg-rich porefluids. A small amount of trace metals may
alsobe lost in runoff waters, although wenerallydo not observe detectable concentrations

within the mine pit lakeéTable S2)
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Weathering of otheminor mineral phases such as forsterite, enstatite, magnetite and
chromite likely occurs much more slowly given their slower reaction rateslower
abundaces(Palandri and Kharaka, 2004por this reason, these gangue phasebably do

not contribute appreciablg and transition metatationsto alteration pases compareit
brucite and serpentin@lthough dissolution rate constants are not known for awaruite and
wairauite, kinetic testsconducted by Kandji et al. (2018how thatawaruite is stiale in
weathering cells for 6 months and does not reléisender the tested conditionk. is
therefore unlikely that Nis being appreciablymobilisedfrom awaruiteat Woodsreef during

passive weathering.

Tracemetal concentrations may be particularly elevateslirfaceand groundvaters around
ultramafic environments and chrysotiieposits and in some cases concentratiexseed
local water quality thresholdg¢Fantoni et al., 2002; Margiotta et al., 2012; McClain and
Maher, 2016; Natali et al., 2013; Schreier, 1980y instance, up to 73 pg/L Trhas been
reported in ground wateassociated with an ophioliia Italy, where the local permissible
value is 5 ug/LCr®* (Fantoni et al., 2002)The trace metals of interest in this stuag not
detectedn the pit lakesa Woodsreef(Table S2), indicaing that eithertrace metals are not
being mobilised from the surrounding waste rock storage piles, ordbayt remain
dissolvedfor long enoughor at sufficient concentration to loetectable in nearby water
bodies. The generallack of trace metals in the pit lakesuggest that sequestratiorby
secondary mineral precipitates, suchhgslromagnesiteand possibly pyroaurite, playan

importantrole in limiting trace metal mobility inunoff waters at Woodsreef

4.3. Mg-car bonate minerals sequester trace metalsin ultramafic minetailings

Iron and tace metal¢Cr, Ni, Mn, Co) aresequesteredithin the coatings ohydromagnesite

that form within pore spaces at the surfacesefpentinggrains (Fig. 3 and as evaporative
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crusts at the surface of tialings storage facilityat Woodsree{Fig. 4). The distribution of

Fe within hydromagnesiech cemend appears to be aseful indicator of the extent trface
metal mobilisation during weathering and carbonation reactiassFe andracemetals are
spatially associated, with different concentrations corresponding to hoiger@ig. 3, 4).
Elevatedconcentrationsup to wt.% levél of Cr, Ni and Co are measurgddistinct,<5 pum-
scaleregionsthat arealso associated with higher Fe concentratiomsstlikely represenng
theincorporation of oxide and allayineralgrains such as chromitenagnetite awaruiteor
wairauite as inclusions within carbonate cemeniikis could also represent precipitation of
secondary Faydroxideor oxidemineralswhich arewidespread in the environment and are
also common produst of mineral carbonatiorand weathering reactiongHamilton et al.,
2016;Mumpton and Thompson, 1966; Park and Fan, 2004; Schwertmann and Tag®y,
Fe-hydroxide and oxide phasesan incorporate trace metals (Cr, Ni, Mn, Co, Cu) by
substitution, surface sorption, -poecipitation, or recrystallisatiofManceau et al., 2000;
Schwertmanrand Taylor,1989; Trolard et al., 1995Thesephasesare known tglay a role

in sequestering trace transition metals from solution dwinlatedmineral carbonation
experimentgHamilton et al., 2016)therefore is ipossiblethat this also occurs naturally in

the Woodsreefailings.

In addition trace metals appear to Hestributed at low concentrations (10s to 100ppm)

within hydromagnesitdand pyroaurite), suggesting they have been incorporated into the
crystal structure of the minerahostlikely via substitutiorfor Mg (or Mg andFein the case

of pyroauritg. Common carbonate minerals such as calcite, dolomite and magnesite are
known to incorporate a variety of trace metals by substitution for Ca ooy, any of the
incorporation mechanisms described ab@@alugaru et al., 2016; Wunsch et al., 2013;
Zachara et al., 1991)race metal concentratiomgthin carbonate cements are comparable

with those detected in silicatgineralgrains,which are considere@longwith brucite, to be
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540 the dominant sourseof mobilisedtransition metals This indicatesthat (1) sequestration of
541 metals occurs effectivelgver a spatial scale oflt6 pmand (2)any lossof transitions metals
542 to runoff water islikely to be small under the environmental conditions observed at

543  Woodsreef.

544  Despite these sangd having been collected fronsarficial environment in contact with the
545  atmosphere, the oxidised Cspecies was not detected by Ge#ge XANES analysis. This
546 is an important finding, since elevated levels of higblic, carcinogeit, and mobile C&
547 are oftenreported in serpentite-dominated environmentgMcClain and Maher, 2016;
548 Morrison et al., 2015; Oze et al., 2007Mhe crushedWoodsreef tailingshave a highy
549 reactivesurface area andre exposed to oxic conditionpyoviding an ideal environment to
550 promote weathering reactionldere, it is likely that any Cr released byhe weathering of
551  brucite, serpentineand possibly chromite has been and continues to imemobilised by
552 incorporation intohydromagnesitecements(e.g., Table 1, 2;Fig. 3b). Extended Xray
553 absorption fine structure (EXAF3nalysiscould posdily be used to shed light otihe
554 relative importance of specific mechanisms of trace metal uptake in these sangbless su
555 ad/alsorption or ceprecipitation Nonetheless, our observations demonstrate that
556 hydromagnesite cements forming at the Woodsreef Mine ttege metalslimiting their

557  mobilisation into the surrounding environment.

558  Thesefindings are consistent withthose ofHamilton et al. (2016)who demonstrated that

559 transition metalgup to 100 mg/L of aqueous Cr, Ni, Mn, Co or Gug¢immobilised during

560 the precipitation of neguehonitein simulated mineral carbonation experimentnder

561 alkaline conditions, Mgarbonate minerals should remain stable hosts for these trace metals,
562  as they are known to persist at Earth’s surface conditions for thousandssqfGreat et al.,

563 1987). Retentionof trace metals within nesquehoniteas beendemonstratedafter

564  recrystallisatiorof nesquehonitéom colloidal particles to mrscale crystal§Hamilton et al.,
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2016), although further work shouldviestigate metal retention on longer g¢iracalesand

during decomposition of Mgarbonate minerals to less hydrateubre stabl@hases

4.4. Outlook for metal mobility during passive and artificially accelerated carbon

miner alisation

The capacity for Mgarbonate minerals to sequester trace metghsrticularly relevant to
accelerated mineral carbonation projects, where metal leaching is expectedharedrby
acid treatments or reaction with low pH €€reamgMarcon and Kaszuba, 2013; Oelkets e
al., 2008; Olsson et al., 2014a; Olsson et al., 20H#éld and pilot scale accelerated mineral
carbonation projects are beginning trials worldwida. &amplegx situ mineral carbonation
reactorsinclude the pilot scale Mineral Carbonation International projectvhich uses
serpentine from the Great SerpentinBelt (where Woodsreef is located) as feedstock
material(Brent et &, 2015) and aproject basedt an undisclosed cement plamtQuébec,
Canada, which alsoses serpentinitetailings materialKemache et al., 2017 Iceland,in

situ CO; injection has been trialledh mafic to ultramafic formationgMatter et al., 2011,
Matter et al., 2016; Okamoto et al., 200Bjoposedin situ treatments include suific acid
leachingof mine tailingsto inducemineral carbonatioriPower et al., 2010yicCutcheon et
al., 2015, 2016, 2017)pr geoengineering scenariasxcluding theapplication of ultramafic
mineralsin major river catchments and along coastlifldartmann et al., 2013; Schuiling
and de Boer, 2013Here, we find thaMg-carbonate mineralhydromagnesite anglossibly
pyroaurite) are likely to be effective sinks for potentially toxic trace metals released by

accelerated mineral carbonatiornthese scenarios

Ronso et al., (2013propose that trace metal recovery could be incorporated into mineral
carbonation technologs, serving aual purpose of adding value to the mineral carbonation

process, and making low grade and otherwise unfeasible ores potentially ecohbenic
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Woodsreef Mine tailings have been considered in the past as a potential Ni and Cefesourc
and while chromite recovery was considered feasible, no-drighe Ni minerals were
identified, thusthe processing of serpentine to extract Ni was considered unfedsible
Kmetoni, (1984. Here, we find thaNi is most concentrated imclusions ofawaruiteand Cr

is most concentratedithin chromite Only low (100s ppm)oncentration®f Ni and Cr are
diffusely distributed by substitution for Mg within serpentine. Given that much of itla N
Woodsreef appears to hested in alloy mineralés6 — 83% of estimated total Nj)despite

the high abundance strpentine, the potential for Ni recovery may be more optimistic than

previously assumed.

The 24.2 million tonnes of tailings at Woodsreef have a bulk Ni content of 0.2 wt. %,
yielding an estimated8}400 t of contained Ni metal. Mineralogical analyses conducted in
this study indicate that these tailings contain-697 wt. % serpentine. In addition, the Ni
content of serpentine grains in tailings analysed by XFM range between@IOppm Ni.

From hese ranges of mineral abundance and Ni content, we can estimate that serpentine
accounts for 8,308 21,500 t of Ni. Comparing this to our estimate of total Ni in the tailings,
26,900 40,100 t of Ni remains unaccounted for by substitution into serpentine alone, and is
therefore likely hosted in awaruite and as trace components in other minor phases such a
brucite, pyroaurite and magnetite. If we assume that all of this Ni i®rgr@s awaruite
(which stochiometrically contains 5887 wt. % Ni), we wold expect this mineral phase to

be present at an abundance of-O(L3 wt. % in the tailings. As such, it is not a surprise that
awaruite is not detected in XRD patterns, where detection limits are ondigreodr0.5 tol

wt. % for most mineral phases under the conditions of data collection used in this study.

Processing of Woodsreef tailings other ultramafianaterial for mineral carbonation could
release Ni byacidleaching serpentinand liberatingalloy minerals and spinel3race metals

leached by the dissolution of serpentine and brucite could potentially be recasergd
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614  stepwise pH swing method (Azdarpour et al., 2015; Park and Fan, 2004; Teir et al.,,2007a)
615 wherebytrace metalsre initially precipitatedwith Fe-oxidesat circumneutl pH beforethe

616 pH is raisedto induce Mg-carbonate mineral precipitation. In addition, crushing, or
617 mechanical activation, is often used to increase reactive surface area to accelerake min
618 carbonation reactiond.i and Hitch, 2016; Park and Fan, 2004). This-ppeatment would

619 likely assist in liberating inclusions of oxides such as magnetite and chrondtpossibly

620 alloys of Ni and Co, although the small size and disseminated distribution of these all
621  would likely limit their liberation bymechanical préreatmentMagnetic separatiohasalso

622 beenrecommended as a pireatment to enhance the effectiveness of serpecdirenation

623 because removal of magnetite mitigathe passivating effect dfe-oxide precipitation on

624  grain surfacegHuijgen and Comans, 2003; Veetil et al., 2015)abuiteis a Ni resource of

625 growing interest to the minerals indus{Britten, 2017; Mudd and Jowitt, 2014; Sciortino et
626  al., 2015), andends itself to gravimetric and/or magnedigparatior(Britten, 2017). Thusfi

627 the Woodsreemine tailings were used asfeedstock in a mineral carbonation reactor, acid
628 leaching of serpentine couloe coupled with the abovmentionedseparation method®

629 recover metals ofconomicvalue fromthe Ni-, Cr-, and Cerich accessory minerals
630 magnetite chromite,awaruite,and wairauite, which are more resistant to acid leachingn

631 silicate minerals and bcite Therefore, gtractionof metal resourcethat are otherwise not
632 economically viablecould provide an additionahcentiveto implementCO, sequestration

633  usingserpentingich material{Park and Fan, 2004; Romao et al., 2013).

634 5. Conclusions

635 Naturally forming Mgcarbonate cements are an important affective sink for trace
636 transition metals mobilised during weathering of ultramafic mine tailings. Trace raetals

637 immobilised within these cements both by incorporation into thecdMbonate mineral,
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658

659

660

661

hydromagnesitdjkely by substitutionfor Mg, and by physicalrapping of metatich grains
that are liberated during mineral processing and weath€eFimg indicates that imineral
carbonation otiltramafic materialsvere to be accelerated, metalliferous drainage is unlikely
to pose an environmental riskurthermoregx situ mineral carbonation processesuld be
optimisedfor trace metal recoverywhich mayprovide additionalvalue tofuture reactor

projects.
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1002  Table 1. Elemental abundances generated in GeoPIXE for reggested within serpentine

1003 and hydromagnesiia Figure 3.

Element | Si* Fe Mn Cr Ni Co Cu
Units | wt. % | wt. % | ppm | ppm | ppm | ppm | ppm
Serpentine 6.4 16 | 370 | 102 | 917 | 155 | <0.07
Hydromagnesite 0.6 1.3 295 | 115 | 889 | 123 | <0.07

1004

1005 *Si peak could only be partially fitted; therefore, these data should be tesasetniguantitative.

1006

1007 Table 2. Elemental abundances generated in GeoPIXE for regions highlighted in green i

1008  Figurede, f.

Element | Si* Fe Mn Cr Ni Co Cu

Units| wt. % |[wt.% | ppm | ppm | ppm | ppm | ppm
Serpentine 3.1 1.0 | 329 | 281 | 510 74 | <0.07
Hydromagnesite | <0.013| 0.5 | 114 76 294 11 | <0.07

1009

1010  *Si peak could only be partially fitted; therefore, these data should be tessechiquantitative.
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Figure Captions:

Figure 1. Map of Woodsreef Mine site showing sampling locatidrabelsbeginning with
an “L” indicate water sampldocationsfrom the four pit lakes. @id phase tailings were

collected at all other sample locatio®ampledescriptionsare listed inTables S1landS2.

Figure 2. BSE-SE micrographs showingt) Chromite (Chr) in serpentine () in sample
13WR5-3 B) Disseminated awaruite (Awim a serpentine groundma@s3WR15). C) EDS
analysis of awaruite graimdicated in panel B. PHydromagnesite (Hmg) nucleation on
chrysotile (Ctl) with pyroaurite(13WR1-4). B Hydromagnesit&eementation okerpentine
and awaruitegrains in carbonated crust sample 13WR2F) Pyroaurite (Pau) and

hydromagnesitearbonate ament between disaggregated serpentine grains (13WR1-4).

Figure 3. A) BSESEM micrographof weathered serpentine graand hydromagnesite
precipitate in sample 13WRZ. B — F) XFM element concentration maps afserpentine

grain undergoing carbonation to form hydromagnesite. Si is mapped in green, and the
distribution of each trace metal of interest, Cr, Ni,, @0 and Feis mapped in purple in B, C,

D, E and F respectively. Note the low level diffuse concenti@ts throughout the
carbonated regignand alsopmscale higher concentratior(gspecially Ni, Co and Fe)
representing trapped grains of minerals such as magnetite and awaruitet & )eRmental
abundances, averaged across the width of the transect, from A to B through serpentine into

hydromagnesite (as indicated in F).

Figure 4. Carbonate surface cement in sample 13WIR2&) Photomicrograplof carbonate

cement spanning space between grains at the tailings surface. BJEB%Eicrograph of
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1036

1037

1038

1039

1040

1041

this areadoes not show cemented region of interest as it is below the surface of the thin
section. C)Association between Si and Feom XFM data The region representing
serpentine is highlighted in the tatlipse and the region representing hydromagneisite
highlighted in the ellipse belavid) XFM image showinghe distribution ofFe in red,Si in

green and Ni in blue. D) dgjion selected in Gerpentine) is highlighted greenon Fe XFM

map. E) Region selected @ (hydromagnesifeis highlighted ingreen onSi XFM map.Si

concentrations should be treated as sguaintitative.
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