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Abstract: The recently proposed cognitive control hypothesis suggests that the performance of cognitively loading but non-

visual tasks such as cell phone conversation selectively impairs driving tasks that rely on top-down cognitive control while 

leaving automatized driving tasks unaffected. This idea is strongly supported by the existing experimental literature and we 

have previously outlined a conceptual model to account for the key underlying mechanisms. The present paper presents a 

mechanistically explicit account of the cognitive control hypothesis in terms of a computational simulation model. More 

specifically, it is shown how this model offers a straightforward explanation for why the effect of cognitive load on brake 

response time reported in experimental lead vehicle braking studies depends strongly on scenario kinematics, more 

specifically the initial time headway. It is demonstrated that this relatively simple model can be fitted to empirical data 

obtained from an existing meta-analysis on existing lead vehicle braking studies.  
 

1. Introduction 
It is commonly assumed that the performance of 

non-visual but cognitively loading tasks (such as cell 

phone conversation) while driving delays responses to 

critical events. However, as reviewed in [1, 2] this 

effect appears to depend strongly on the type of 

response task used in the experiment. More 

specifically, cognitive load (CL) reliably impairs 

response performance on non-practiced, artificial, 

response tasks such as the Detection Response Task 

(DRT; [3-8]) or speeded and/or instructed responses to 

a lead vehicle’s brake light onset [9-19]. However, CL 

appears to leave response performance more or less 

unaffected for more natural tasks, such as reacting to 

rapidly closing, visually looming (optically expanding) 

objects. For example, Muttart et al. [20] conducted a 

lead vehicle braking simulator study with the brake 

lights of the braking lead vehicle turned off and as 

long as the braking event was not cued by an upstream 

event (and the response thus solely driven by looming), 

no effects of CL were found on braking performance. 

Similarly, Baumann et al. [21] conducted a driving 

simulator study investigating the effect of CL on 

drivers’ ability to use a predictive cue (a warning road 

sign) to guide their responses to an obstacle hidden 

behind a curve, and found that CL delayed response 

performance in the cued condition but not when the 

cue was absent (in which case participants had to 

respond solely to the looming obstacle). Mantzke and 

Keinath [22] found that CL increased response times 

for the DRT, but not to suddenly appearing pedestrians. 

Similarly. Finally, Engström [1, Paper III] investigated 

braking and steering reactions to an oncoming vehicle 

which suddenly turned across the drivers’ path, and 

found no response delays due to CL for the first, truly 

surprising, scenario. To the knowledge of the present 

authors, no existing study (using ecologically realistic 
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stimuli) has demonstrated a negative effect of CL on 

braking responses to unexpected looming.  

Engström et al. [2] proposed that these results 

may be explained by the cognitive control hypothesis 

stating that: cognitive load selectively impairs driving 

sub-tasks that rely on cognitive control but leaves 

automatic performance unaffected. Cognitive control 

here refers to higher-level “executive” resources 

needed to deal with novel tasks and/or tasks with 

inconsistent stimulus-response mappings [23]. An 

inconsistent mapping means that a specific stimulus is 

not consistently associated with a specific response, 

thus making the task unpredictable and inherently 

difficult, and dependent on cognitive control for 

successful performance. Tasks that are consistently 

mapped may initially require cognitive control (such as 

when learning to ski) but become increasingly 

automatic and effortless with practice. Therefore, on 

the assumption that cognitive control is a limited 

resource, the concurrent performance of a secondary 

cognitive tasks also relying on cognitive control would 

be expected to impair driving performance, but only 

those aspects of driving that rely on cognitive control1.  

This idea is generally supported by the 

experimental literature on CL in driving. As reviewed 

above (and in further detail in [2]), CL has reliably 

been found to delay DRT responses [3-8] as well as 

responses to the brake light onset of a lead vehicle [9-

19]. While the DRT is consistently mapped, it is an 

artificial task that is novel to most study participants 

and hence relies on cognitive control to be performed. 

                                                 
1 This line of reasoning may, at first, appear 

circular: Cognitive control is needed to perform non-
automatized tasks while automaticity is conceptualized in 
terms of task performance without the need for cognitive 
control. However, the circularity is broken by the 
independent hypothesis that automaticity develops though 
repeated exposure to consistent stimulus-response 
mappings. Thus, the degree of automaticity of a task (and 
hence dependence on cognitive control) may be predicted 
(at least in principle) based on task characteristics and 
amount of exposure. 

By contrast, braking in response to brake light onsets 

is a naturally occurring, and thus well-practiced, task. 

However, in everyday driving, braking in response to 

brake lights is inconsistently mapped since drivers do 

not always have to brake when seeing a brake light 

onset. In addition, in several of the studies reviewed 

above, participants were explicitly instructed to brake 

as soon as the lead vehicle started braking [9], or when 

they detected the lead vehicle’s brake light onset [10, 

15, 19]. This clearly constitutes an unnatural task that, 

due to its novelty, is expected to rely on cognitive 

control and should thus be negatively affected by CL.  

By contrast, braking responses to strong 

looming cues (representing the optical expansion of 

the lead vehicle in the driver’s retina) can be assumed 

to be largely automatic, since this involves a strongly 

consistent stimulus-response contingency. That is, 

drivers typically have to press the brake pedal when 

they experience an object looming towards them at a 

high rate since they will otherwise collide. This 

argument is further supported by studies showing that 

looming automatically captures attention in a bottom-

up fashion [24] and elicits automatic avoidance 

responses in human [25] and monkey [26] infants. 

Moreover, our recent analysis of real rear-end crashes 

and near-crashes indicated that the timing of drivers’ 

braking responses could be largely explained in terms 

of visual looming cues (reflecting situation kinematics) 

while the timing relation between drivers’ reactions 

and lead vehicle brake light onsets was more variable 

[27].  

The same general pattern of results, where CL 

selectively impairs non-automatized aspects of driving, 

has also been demonstrated for other aspects of driving 

performance such as lane keeping [28], speed selection 

[29, 30] and gap acceptance at intersections [31] (again 

see [2] for a detailed review). 
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We have previously [1, 2, 32] proposed a 

conceptual model of cognitive control and the 

development of automaticity, intended to provide a 

mechanistic account of the above pattern of results. 

The model is based on the Guided Activation Theory 

(GAT), originating in cognitive neuroscience [33-36]. 

GAT suggests that automaticity is determined by the 

strength of neural pathways in the brain, which is 

gradually established through exposure to consistently 

mapped tasks. In this model, the key function of 

cognitive control is to boost activity in weaker 

pathways (governing non-automatized, non-practiced 

and/or inconsistently mapped tasks), and potentially 

override activity in stronger pathways governing more 

automatized tasks, when needed to achieve current 

goals. On the assumption that the cognitive control 

bias can only be (or, alternatively, is preferably-; see 

[35, 37]) allocated to one task at a time, CL imposed 

by a secondary (non-driving) task will selectively 

impair aspects of driving relying on cognitive control 

(such as the DRT or speeded/instructed responses to 

brake lights), as suggested by the cognitive control 

hypothesis. 

In a previous paper [38], we developed a 

simulation model with the purpose to illustrate the 

mechanism proposed in the conceptual model 

described above more explicitly. The model addressed 

a specific phenomenon reported in a meta-analysis of 

studies investigating the effect of CL in lead vehicle 

braking scenarios [39]. This analysis was motivated by 

the observation that existing lead vehicle (LV) studies 

(as opposed to DRT studies) have reported highly 

variable average response times (ranging from 550 – 

3500 ms) as well as variable response delays attributed 

to cognitive load (ranging from 50 – 1500 ms). The 

meta-analysis in [39], further described in the 

following section, found that this variability could be 

largely explained by the initial time headway (i.e., the 

time gap between the vehicles at the moment the lead 

vehicle starts braking) used in the respective studies. 

Studies with larger initial time headways found larger 

effects of cognitive load and vice versa.  

The results from our simulation model reported 

in [38] showed that a driver reaction model based on 

the principles outlined in [2] (implementing the 

principles of the cognitive control hypothesis) could be 

fitted to the empirical data from the meta-analysis in 

[39] thus offering a mechanistic explanation for this 

phenomenon. This initial model was intentionally 

simple and mainly intended as a proof of concept. The 

present paper extends the previous paper [38] in three 

principal ways. First, a more detailed description of the 

empirical data from the meta-analysis in [38] is 

included (see the next section). Second, while the 

parameters of the previous model were manually tuned, 

the present model was fit to the empirical data by 

means of maximum likelihood estimation. Third, while 

the initial model was deterministic, the present 

simulation included noise which enables predictions of 

response time distributions. 

2. Empirical data 
As mentioned above, Engstrom [39] conducted a 

meta-analysis of a set of existing studies investigating 

the effect of CL on drivers’ response times in lead 

vehicle braking scenarios. The studies included in the 

study are described in Table 1. 
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Table 1. Overview of studies included in the meta-analysis (adopted from [39]). BRT=Brake Response Time; 
ART=Accelerator Response Time  

Study Type of 
study 

Scenario Cognitive task Response 
metric 

Additional 
experimental 
conditions 

Alm and 
Nilsson [9] 

Simulator Lead vehicle braked 
intermittently during car 
following with  deceleration rate 
4 m/s2. Initial distance headway 
controlled at 75 m. Speed was 
self-paced. 

Working Memory 
Span Test  
 

BRT Young/Old 
drivers 

Brookhuis et al. 
[11] 

Field Lead vehicle braked 
intermittently during car 
following (deceleration rate not 
reported). Speed instructed to 95 
kph and distance headway to 40 
m (averages not reported). 

Forced pace 
memory test via 
mobile phone 

BRT - 

Lee et al. [13] Simulator Lead vehicle braked 
intermittently during car 
following with deceleration rate 
2.1 m/s2. Initial time headway 
controlled at 1.8 s. 

Speech control of 
email system 
 

ART Simple/complex 
driving 
environment 

Salvucci and 
Beltowska [15] 

Simulator Lead vehicle  braked at  3, 6, 9 or 
12 s during a 20 second driving 
epoch (the braking initiation point 
was randomised between trials). 
Speed and headway was 
controlled. Speed increased from 
zero to 120 kph during the 20s 
interval. Initial distance headway 
was always 20 m. 

Silent rehearsal of 
lists of digits 

BRT 5 or 9 items for 
rehearsal  

Strayer and 
Drews [17] 

Simulator Lead vehicle braked 
intermittently during car 
following. Deceleration rate not 
reported. Speed and headway 
self-paced.  

Phone 
conversation on 
topics chosen 
from a list by the 
subject 

BRT  Young/old drivers 

Strayer et al. 
[16] 

Simulator Lead vehicle braked 
intermittently during car 
following. Deceleration rate not 
reported. Speed and headway 
self-paced. 

Phone 
conversation on 
topics chosen 
from a list by the 
subject. 

BRT Low/high traffic 
density 

 

 

As described in Table 1, some of the studies 

included additional experimental conditions in addition 

to the manipulation of cognitive load. Moreover, [11] 

did not report RT values for CL and baseline (BL), 

only the response delay due to CL. This resulted in, a 

total of 10 conditions where RT under CL was 

compared to BL RT (see [39] for details). Based on the 

information available in the respective papers, the 

initial time headway (i.e., the time headway when the 

lead vehicle started to brake) was estimated for each 

study condition. Since the reporting of kinematic 

conditions was somewhat incomplete in several papers, 

some assumptions and approximations were necessary 

(again, see [39] for details). Figure 1 reproduces the 

plot in [39] of the average brake response time 

reported in the different study conditions as a function 

of (estimated) initial time headway for cognitive 

loaded and non-loaded drivers respectively. Included 

in the plot are also estimated regression lines for the 

CL and BL conditions respectively. The resulting 

regression equations relating initial time headway 

(THW) to response time (RT) for the CL and BL 

conditions were:  
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RTBL=445×THW+286  (1) 
 

RTCL=882×THW-112  (2) 
 
 

The R2 values for the CL and BL model were 0.88 and 

0.89 respectively indicating that the main part of the 

RT variance was explained by THW in both cases. 

  

 

Fig. 1. Average RTs for the different studies and study conditions listed in Table 1 for the cognitive load (CL) and 
baseline (BL) conditions respectively. Blue diamonds represent baseline and yellow squares represent cognitive 

load. The blue solid and yellow dashed lines represents the linear regression models for the BL and CL 
conditions respectively, defined in Eq 1-2. The figure was reproduced based on [39]. 

 
 

Furthermore, the analysis showed that the effect 

of CL on response time (i.e., the difference in RT 

between the CL and BL conditions) was not fixed but 

depended strongly on the initial time headway reported 

in the respective papers. As can be seen from Figure 1, 

this is because the dependency of RT on THW is 

stronger in the CL condition, as indicated by the 

steeper slope. A regression analysis on the effect (i.e., 

the response delay) attributed to CL in these studies 

indicated an R2 value of 0.79, indicating that 79% of 

the variance in the response time difference between 

CL and BL conditions could in fact be attributed to the 

initial time headway. 

3. Modelling  
The observed dependency of BRT effects of CL 

on scenario kinematics found in [39] and reviewed in 

the previous section dovetails nicely with the cognitive 

control hypothesis outlined above: In the absence of 

cognitive load from a secondary task, cognitive control 

can be allocated to support the non-automatized task of 

braking as fast as possible in response to the brake 

light onset. However, cognitively loaded participants, 

with depleted cognitive control resources, will be 

impaired in their ability to respond to the brake light 

and thus have to rely on automatized responses to 

looming cues, once they appear. The point in time 

when sufficiently strong looming cues appear in a 

specific lead vehicle braking scenario depends on the 

scenario kinematics, in particular the initial headway. 
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This offers an explaination for why the effect of 

cognitive load on brake RT increases with increased 

headway. This section describes the simulation model 

developed to provide a mechanistic account of this 

phenomenon. 

 

2.1 Driver reaction model 
The present model is based on the evidence 

accumulation framework developed by Markkula [40, 

41] and also incorporated key principles from the GAT 

model mentioned above [33-36]. Similar 

computational implementations of the GAT model 

have previously been developed for laboratory tasks 

such as the Stroop task [34, 35].  In the model, the 

driver’s braking response to a braking lead vehicle is 

driven by two sources of sensory evidence: (1) the 

brake light and (2) visual looming. These two sources 

of evidence are integrated over time to a response 

threshold at which the braking action is initiated. 

Crucially, the sensory evidence is weighted by the 

strength of the respective neural pathways governing 

responses to brake lights and visual looming 

respectively. In line with the GAT model, this 

weighting represents the degree to which the response 

is automatized. In the lead vehicle braking case, 

responses to looming are assumed to be governed by a 

strong pathway established through repeated exposure 

to consistent looming-braking mappings. By contrast, 

responses to the brake light onsets are governed by a 

weaker pathway, due to the inconsistent mapping 

between brake lights and braking in everyday driving, 

as discussed above. Thus the brake light input only 

yields a weak input to the accumulator unable to 

trigger a braking response by itself. In order to trigger 

a braking response in the absence of looming, the 

brake light onset thus needs to be boosted by cognitive 

control. This model is conceptually illustrated in 

Figure 1.  

 

 
 

 
Figure 2 Conceptual illustration of the simulation model (see text for explananation) 
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Visual looming was here quantified as the rate 

of change of the angle, ș, subtended by the lead 

vehicle at the retina (i.e., the optical expansion rate ߠሶ , 
or visual looming). The brake light input was 

represented by a stimulus input b, constantly set to 1 

from the moment of lead vehicle brake onset. These 

two inputs were scaled by two connection weights wL 

and wb respectively (representing the strength of each 

pathway and, hence, the degree of automation) before 

being input to the response unit, which was 

implemented as a simple accumulator of the form2 

 ௗሺ௧ሻௗ௧ ൌ ݓܮሺݐሻ  ܾݓ  ܿ   ሻ   (3)ݐሺߝ

  
where the accumulator activation was limited to be ܣሺݐሻ  Ͳ, L(t) represents the looming perception, here 

given by ߠሶ(t). The constant c represents top-down bias 

from cognitive control which is only available in 

conditions without cognitive load (i.e., when cognitive 

control is not allocated to a secondary cognitive task). ߝሺݐሻ represents Gaussian noise with ߝሺݐሻ̱ܰሺͲǡ   .ሻߪ

The cognitive task is represented in Figure 2 but 

was only included in the simulation in terms of its 

effect on cognitive control (i.e., disabling the 

allocation of cognitive control to the braking task, thus 

c = 0). A braking response is generated when the value 

of the activation A(t) exceeds the threshold ܣ, set to ܣ ൌ ͳ.  

 
 
2.2 Lead vehicle braking scenario simulation 

The kinematics of the lead vehicle braking 

scenarios were implemented so that the initial values 

of subject vehicle (SV) initial speed, the LV initial 

speed, LV deceleration rate and initial time headway 

                                                 
2 The original model in [38] included some 

additional parameters but these were here removed to obtain 
fewer free parameters. With the exception of the noise term, 
the present model is mathematically equivalent to that in 
[38]). 

could be controlled. The scenario kinematics were then 

translated into the optical variables ș and ߠሶ  by means 

of the following equations  ࣂ ൌ  ڄ ࢊࢂࡸࢃሺࢇ࢚ࢉ࢘ࢇ ሻ 
(4) 

 

ሶࣂ  ൌ െࢋ࢘࢜ࢂࡸࢃȀሺࢊ  ࢂࡸࢃ ሻ . 
(5) 

 

 

WLV is the width of the lead vehicle, d is the bumper-

to-bumper distance between the two vehicles and vrel is 

the relative velocity. Eq. 4 is obtained from the 

geometry of the situation, and Eq. 5 by differentiation 

with respect to time. The initial speeds of the SV and 

LV were both set to 85 kph and the LV deceleration 

rate to 4.9 m/s2 (0.5g). In the empirical studies, the 

actual initial speed varied somewhat between studies 

and the lead vehicle deceleration rate was often not 

reported (see [39] and Table 1). However, since we 

were mainly interested in the effects of initial time 

headway, we kept speed and lead vehicle deceleration 

rate constant in the simulation at 85 kph and 0.5g 

respectively (this speed represented the mid-range of 

speeds in the included studies and the 0.5g 

deceleration value was assumed as a deceleration rate 

representative of a typical critical lead vehicle braking 

scenario).  

 
2.3 Parameter fitting 
Eq. 3 was used for model fitting with L(t) represented 

by ߠሶ(t). Performing a complete fitting of this stochastic 

model to the meta-analytic data in Figure 1 would be 

highly non-trivial, even assuming that enough 

information about response time variabilities could be 

reconstructed from figures in the original papers. 

Therefore, the approach taken here is more 

approximate in nature, and aims not to produce a 

conclusive and exact fit of Eq. 3 to human data, but 

rather to show that Eq. 3 can qualitatively reproduce 

the general patterns observed in [39] and reproduced in 
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Figure 1. Therefore, as a structured approach to get a 

reasonable estimate of suitable parameters for the 

model, Eq. 3 was fitted to the average BRTs from the 

meta-analysis, as follows: Each observed average BRT 

was classified, based on the THW, into one of six 

simplified scenarios, differing only in terms of THW, 

shown in Table 2. For each such scenario, a looming 

trace ܮሺݐሻ was generated, which was used to stimulate 

the driver reaction model. Note, again, that this ܮሺݐሻ 

will not be an exact replication of the looming time 

histories experienced in the original studies, both 

because the simplified scenarios do not match the 

original studies in terms of speeds and deceleration 

rates, and due to between-participant variability. 

Table 2 Scenario parameters in the simulation 

Parameter  Values 

Initial time headway {1, 1.5, 2, 2.5, 3, 3.5} s 
SV initial speed 85 kph 
LV initial speed 85 kph 

LV deceleration rate 0.5 g 
LV width 1.8 m 

 

Parameter fitting was conducted by searching a 

uniformly spaced grid for the model parameters  listed 

in Table 3. Note that ܿ  was always set to zero. The 

best parameters for both of the two models were 

generated by maximum likelihood estimation, based 

on [42]: For each tested model parameter configuration, 

200 simulations of the model with noise was run for 

each of the six simplified scenarios, thus generating a 

numerical probability distribution of BRT for each 

scenario. The likelihood of the model parameter 

configuration was calculated as the product of the 

probabilities of all of the observed average BRT values 

according to these probability distributions. Again note 

that this is an approximate approach, since the 

observed BRTs are averages rather than individual 

observations; but it is still deemed sufficient for the 

present more qualitatively oriented purposes. The 

resulting maximum-likelihood parameter values are 

shown in Table 3.   

 

Table 3 Fitted model parameter values  

Parameter Values ݓ 174 ݓ -0.1 ܿ (Baseline) 0.41 ܿ (CL) 0 0.3 ߪ 

 

4. Results 
Figure 3 shows examples of simulation output 

for a scenario with an initial THW of 2.5 s (and other 

kinematic parameters set as defined in Table 2). The 

top panel shows the looming (angular rate, ߠሶ) signal produced by this scenario and the two lower 

panels show the resulting accumulator activation 

signal for a non-loaded driver and a cognitively loaded 

driver respectively. The black lines in the activation 

plots represent accumulation in a deterministic 

simulation with zero noise, while the grey lines 

represent some examples from simulations with noise, 

yielding some variability in RTs. As can be seen, for 

the non-loaded driver, the accumulator reaches the 

response threshold relatively early, resulting in brake 

response times around 1.4-1.8 s. This relatively fast 

response is possible because the accumulator is largely 

driven by the brake light signal with the help of top-

down cognitive control bias. However, for the 

cognitively loaded driver, unable to deploy cognitive 

control, the response is driven mainly by looming, and 

thus comes significantly later, at around 1.6-2.2s. It 

follows that, for cognitively loaded drivers, the 

response time will be strongly dependent on the initial 

headway since this is a key factor determining the 

shape of the looming curve (see Eq. 3). For non-loaded 

drivers, able to respond to the brake light signal, this 

kinematic dependency should be smaller, but still 
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present since the accumulator is still partly driven by 

looming.  

 

 

 

 
 

Fig. 3.  The upper graph represents the looming signal 
(angular rate, ࣂሶ  ) generated by a lead vehicle braking 
scenario with an initial time headway of 2.5 s, a lead 
vehicle deceleration of 0.5 g and equal initial speeds of 85 

kph. The two bottom graphs show the accumulator 
activation that integrates to the response threshold (bold 
dashed line), driven by brake light and looming input, 
for a non-loaded and cognitively loaded driver 
respectively. In the two bottom graphs, the black lines 
represent evidence accumulation with zero noise while 
the grey lines represent accumulation with noise added.  

 

Figure 4 shows the RTs generated by the 

simulation for different initial time headways with and 

without cognitive load. The shaded areas represent the 

standard deviation of the model’s response times. 

Figure 4 also includes the average values and 

regression lines from the empirical data [39] plotted in 

Figure 1.  

As can be seen, the simulation model 

qualitatively replicates the key finding in [39] and 

Figure 1, where the effect of CL on response time 

increases with initial time headway, due to a greater 

dependency on initial time headway (reflected by the 

steeper slope) for cognitively loaded drivers for which 

responses are assumed to rely primarily on looming. A 

further novel prediction yielded by the present 

stochastic model is that the RT variability should 

increase with increased initial time headway.  
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Fig. 4 Simulation results vs. observations obtained from empirical data in Figure 1 and [38]  

 

5. Discussion 
The general goal of the present research was to 

demonstrate how our conceptual model of effects on 

cognitive load on driving outlined in previous work [1, 

2, 32] could be implemented in a mechanistically 

explicit simulation model. Our initial deterministic, 

manually tuned, simulation model presented in [38] 

was here expanded to a stochastic model fitted to the 

empirical data by means of maximum likelihood 

estimation. The resulting simulations presented above 

offer a precise account of why the effect of cognitive 

load on responses to a braking lead vehicle depends 

heavily on the initial time headway, as indicated by the 

meta-analysis in [39]. According to the model, the key 

mechanism leading to this effect is that cognitively 

loaded drivers, depleted of cognitive control resources, 

have to rely on automatic responses to looming, and 

the time until looming cues appear depends strongly 

on initial time headway. By contrast, non-loaded 

drivers are able to deploy cognitive control to boost 

responses directly to the brake light onset. Hence, their 

responses will be less dependent on the scenario 

kinematics (here initial time headway). However, as 

indicated by the empirical data and replicated by the 

simulation, the response times of  non-loaded drivers 

are still to some extent dependent on the scenario 

kinematics, albeit to a lesser degree than for the 

cognitively loaded drivers. According to the model, 

this is because the evidence accumulation is still 

driven partly by the looming cues.  

A further prediction from the present stochastic 

model is that the RT variability should increase with 

increased initial time headway. The mechanism 

underlying this effect is that, for longer initial time 
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headways, the looming cues driving the accumulation 

will grow slower. As a consequence, the accumulation 

will be slower, thus allowing for more random drift 

before reaching the response threshold. Unfortunately, 

the reporting of RT variability in the studies included 

in the meta-analysis was incomplete, so this prediction 

could not be tested against the present data (this was 

also the reason why the model was only fitted to 

average RT and not RT variability). It would clearly be 

very interesting to test this prediction in further 

empirical work. 

As also discussed in previous publications [1, 2, 

39], the kinematics-dependency of cognitive load 

effects has important implications for the interpretation 

of results from existing studies on the effect of CL on 

braking performance in lead vehicle scenarios. 

According to the present model, the effect of CL on 

RT observed in experimental lead vehicle braking 

studies occurs since drivers in these experiments are 

tasked to respond as fast as possible to anticipated 

brake light onsets. Doing so constitutes a novel, non-

practised, task relying on cognitive control and hence 

impaired by cognitive load. As explained by the model 

presented here, cognitively loaded drivers thus have to 

rely on automatized responses to looming cues, the 

timing of which depend on scenario criticality.  

However, many (if not most) real-world critical 

lead vehicle braking scenarios are typically unexpected 

even to a non-loaded driver. Hence, non-loaded drivers 

would not be able to pre-allocate cognitive control in 

anticipation of the response like they could in an 

experiment with instructions to brake upon the brake 

light onset after repeated scenarios. The present model 

implies that, in such unexpected real-world critical 

events, RTs for non-loaded drivers will be driven more 

by looming than brake light onsets, and thus depend 

more strongly on scenario kinematics than responses 

obtained in an experiment with anticipated events. 

That is, the blue line in Fig.1 and Fig. 4 (representing 

non-loaded drivers) would be steeper and thus more 

parallel to the yellow line (representing cognitively 

loaded drivers).  

The suggestion that drivers’ response times in 

real-world lead vehicle conflicts are mainly determined 

by scenario kinematics is also strongly supported by 

the detailed analysis of naturalistic crashes and near 

crashes in [27]. Thus, the effect of CL on RT would 

generally be expected to be both smaller and less 

kinematics-dependent in the real world than in 

experimental studies (although RTs for non-loaded 

drivers would be expected to be more kinematics 

dependent compared to experimental studies). 

In fact, the present model further implies that an 

experimenter can control the effect of CL on RT in a 

lead vehicle braking scenario a priori simply by 

adjusting the scenario kinematics (e.g., the initial time 

headway). The present simulation model (or even the 

regression model in Eq. 1-2) could be used to predict 

what the effect of CL on RT would be in a given 

scenario.  

The important general conclusion from what has 

been said above is that, if the present model is correct, 

the effects of CL on response times reported in most 

existing experimental studies cannot be directly 

generalized to the real world  This suggest that a great 

deal of caution is warranted when interpreting the 

results from experimental studies on CL (in particular 

lead vehicle braking studies), and when using these 

results to guide human machine interaction design or 

driver distraction policy making [see 1, 2 and 39 for 

more extensive discussions of this point]. 

A further specific implication is that RT effects 

that have been attributed to age may at least partly be 

caused by the longer headways typically adopted by 

older drivers. Of the studies included the meta-analysis, 

both Alm and Nilsson [9] and Strayer and Drews [17] 
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compared younger and older drivers and both studies 

found that the older drivers adopted longer headways 

and reacted more slowly to the braking lead vehicle. 

The present model suggests that the slower reactions 

may be mediated by the longer headways adopted by 

the older drivers rather than solely attributed to 

cognitive factors associated with ageing. 

 A model closely related to ours have been 

developed by Ratcliff and Strayer [43], who fitted a 

single-boundary diffusion model to (among other 

response variables) driver’s braking responses in lead 

vehicle braking scenarios. The modelling was based on 

data from two driving simulator studies. The first 

(Experiment 1) was conducted to support the 

modelling in [43] while the second data set 

(Experiment 2) was originally reported by Cooper and 

Strayer in [44].  

A key difference to the present model is that 

Ratcliff and Strayer’s model assumes that the driver 

reacts to a discrete stimulus that occurs at the lead 

vehicle brake onset (e.g., the brake light onset). Hence 

by contrast to the present model, their model does not 

take into account reactions driven by looming cues and 

the inherent kinematic dependency of such reactions. 

Thus, their model predicts kinematic-independent 

average RTs with some stochastic variation (where the 

shape of the RT distribution is governed by the model 

parameters). This general prediction is clearly at odds 

with both the empirical data presented here [Figure 1, 

and originally in 39] and the analysis of driver 

reactions in real naturalistic rear-end crashes and near 

crashes reported in [27] which both demonstrate a 

strong kinematic dependency of RTs in lead vehicle 

braking situations (a dependency which, as shown here, 

increases with cognitive load).  

Interestingly, Ratcliff and Strayer report rather 

different average RTs for their two data sets, 798 ms 

vs. 1060 ms for Experiment 1 and 2 respectively (for 

the BL driving conditions (only Experiment 2 involved 

a CL condition) but this difference is never discussed 

in the paper. Based on the present model, a possible 

explanation for this difference in average RT would be 

that the scenario kinematics differed between the 

studies, in particular with respect to the initial time 

headway. A complete description of the lead vehicle 

braking scenarios is not provided in Ratcliff and 

Strayer [43] but the kinematics for Experiment 2 are 

given in Cooper and Strayer [44], who report a pre-set 

time headway of 2.00 s. For Experiment 1, it is stated 

in Ratcliff and Strayer [43] (p. 580) that the following 

distance when the lead vehicle started braking was 

“about 100 feet”. Combined with the speedometer 

reading of 60 mph in the vehicle following scenario 

depicted in their Figure 1 translates to an initial time 

headway of 1.30 s. Based on the linear regression 

model in Eq. 1 above [from 39], initial time headway 

values of 1.30 and 2.0 leads to predicted brake RTs of 

864 ms and 1176 ms respectively, which is quite in 

line with the reported average values of 798 ms vs. 

1060 ms in Ratcliff and Strayer’s [43] Experiment 1 

and 2.  

It should be emphasized that the key purpose of 

the present modelling effort was not to optimize RT 

predictions for the meta-analytic data. It is not hard to 

fit more or less advanced statistical models to RT data 

and even the simple linear regression models estimated 

in [39; see Eq. 1 and 2] appears to do a rather good job 

in this respect. Rather, the purpose of the modelling 

was purely explanatory, with the specific goal to 

answer the question ‘could a model implementing the 

mechanisms underlying the cognitive control 

hypothesis be fitted to existing empirical results, thus 

providing a mechanistic explanation for these results?’ 

As shown above, the answer is clearly yes. Note that, 

for example, the model proposed by Ratcliff and 

Strayer [43] and the similar model by Tillmann et al. 
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[45] would not fit the meta-analysis in [39], since they 

don’t account for the RT kinematics dependency in 

lead vehicle braking scenarios (although these models 

can be fitted to each study separately, as long as the 

kinematics is constant, which is typically what has 

been done). 

More work is clearly needed to explore to what 

extent the present type of simulation model is also able 

to predict response times for different combinations of 

cognitive load levels and scenario kinematics in a 

single experiment. 

Even with the present extensions from the hand-

tuned, deterministic, model presented in [38], the 

present driver reaction model (defined by Eq. 3) is still 

relatively simple, which is clearly an advantage from 

an explanatory perspective. There are, however, 

several ways in which the model can be further 

extended. For example, in the present model, cognitive 

control biases the common response unit directly, 

while in the original GAT simulation models [34, 35] 

the top-down bias typically boosts the activity of 

“hidden” units located between the input and response 

units. Such an architecture better represents the key 

GAT idea that top-down cognitive control increases 

activity in competing neural pathways. The present 

type of simulation model may also be applied to other 

aspects of driving performance. For example, we have 

recently developed a similar model that provides an 

explicit account for effects on cognitive load and 

drowsiness on lane keeping variability [46]. 

 

6. References 
 

[1] Engström, J.: ‘Understanding attention selection in 
driving: From limited capacity to adaptive behaviour’. 
PhD Thesis, Chalmers University, Sweden, 2011 
[2] Engström, J., Markkula, G., Victor, T., Merat, N.: 
‘Effects of cognitive load on driving performance: The 

cognitive control hypothesis’. Human Factors. 2017. 
59(5), pp. 734-764. 
[3] Bruyas, M.P., Dumont, L.: ‘Sensitivity of 
Detection Response Task (DRT) to the driving demand 
and task difficulty’. In Proceedings of the Seventh 
International Driving Symposium on Human Factors 
in Driver Assessment, Training, and Vehicle Design, 
Lake George, NY, 2013, pp. 64–70. 
[4] Harbluk, J. L., Burns, P. C., Hernandez, S., et al.: 
Detection response tasks: Using remote, headmounted 
and Tactile signals to assess cognitive demand while 
driving. In Proceedings of the Seventh International 
Driving Symposium on Human Factors in Driver 
Assessment, Training, and Vehicle Design, Lake 
George, NY, 2013, pp. 78–84. 
[5] Engström, J., Larsson, P., Larsson, C.: 
‘Comparison of static and driving simulator venues for 
the tactile detection response task’. In Proceedings of 
the Seventh International Driving Symposium on 
Human Factors in Driver Assessment, Training, and 
Vehicle Design, Lake George, NY, 2013. 
[6] ISO: ‘Road Vehicles -Transport information and 
control systems -Detection Response Task (DRT) for 
assessing attentional effects of cognitive load in 
driving. International Standard, ISO 17488’, 2015. 
[7] Merat, N., Jamson, A. H.: ‘The effect of stimulus 
modality on signal detection: Implications for 
assessing the safety of in-vehicle technology’. Human 
Factors, 2008, 50, (1), pp. 145–158. 
[8] Patten, C., Kircher, A., Östlund, J., Nilsson, L. 
‘Using mobile telephones: cognitive workload and 
attention resource allocation’. Accident Analysis and 
Prevention, 2003, 36, (3), pp. 341-350. 
[9] Alm, H., and Nilsson, L.: ‘The effects of a mobile 
telephone task on driver behaviour in a car following 
situation’. Accident Analysis and Prevention, 1995, 27, 
pp. 707–715. 
[10] Bergen, B., Medeiros-Ward, N., Wheeler, K. et 
al.: ‘The crosstalk hypothesis: Language interferes 
with driving because of modality-specific mental 
simulation’. Journal of Experimental psychology: 
General, 2014, 142, pp. 119-130.  
[11] Brookhuis, K. A., de Vries, G., Waard, D.: ‘The 
effects of mobile telephoning on driving performance’, 
Accident Analysis and Prevention, 1991, 23, (4), pp. 
309-316. 
[12] Engström, J., Ljung Aust, M., Viström, M.: 
’Effects of working memory load and repeated 
scenario exposure on emergency braking 
performance’, Human Factors, 2010, 52, (5), pp. 551-
559. 
[13] Lee, J. D., Caven, B., Haake, S., Brown, T. L.: 
‘Speech-based interaction with in-vehicle computers: 
The effect of speech-based e-mail on drivers’ attention 
to the roadway’, Human Factors, 2001, 43, pp. 631–
640. 



14 
 

[14] Levy, J., Pashler, H., Boer, E.: ‘Central 
interference in driving - Is there any stopping the 
psychological refractory period?’, Psychological 
Science, 2006, 17, (3), pp. 228-235. 
[15] Salvucci, D. D. and Beltowska, J.: ‘Effects of 
memory rehearsal on driver performance: Experiment 
and theoretical account’, Human Factors, 2008, 50, 
pp. 834-844. 
[16] Strayer, D. L., Drews, F. A., Johnston, W. A.: 
‘Cell phone induced failures of visual attention during 
simulated driving’, Journal of Experimental 
Psychology: Applied, 2003, 9, pp. 23–52. 
[17] Strayer, D. L., Drews, F. A.: ‘Profiles in driver 
distraction: Effects of cell phone conversations on 
younger and older drivers’. Human Factors, 2004, 46, 
pp. 640–649. 
[18] Strayer, D. L., Drews, F. A., Crouch, D. J.: ‘A 
comparison of the cell phone driver and the drunk 
driver’, Human Factors, 2006, 48, (2), pp. 381–391. 
[19] Sonnleitner, A., Treder, M. S., Simon, M. et al.: 
‘EEG alpha spindles and prolonged brake reaction 
times during auditory distraction in an on-road driving 
study’, Accident; analysis and prevention, 2014, 62, 
pp. 110–118. 
[20] Muttart, J. W., Fisher, D. L., Knodler, M.,  
Pollatsek, A.: ‘Driving without a clue: Evaluation of 
driver simulator performance during hands-free cell 
phone operation in a work zone’. Transportation 
Research Record: Journal of the Transportation 
Research Board, 2007, 2018, pp. 9–14. 
[21] Baumann, M. R. K., Petzoldt, T., Hogema, J., 
Krems, J. F.: ‘The effect of cognitive tasks on 
predicting events in traffic’, In C. Brusque (Ed.) 
Proceedings of the European Conference on Human 
Centred Design for Intelligent Transport Systems, 
Lyon, France, 2008, pp. 3–11. 
[22] Mantzke, O., Keinath, A.: ‘Relating the detection 
response task to critical events-consequences of high 
cognitive workload to brake reaction times’. Procedia 
Manufacturing, 2015, 3, pp. 2381–2386. 
[23] Shiffrin, R. M., Schneider, W: Controlled and 
automatic human information processing: II. 
Perceptual learning, automatic attending, and a general 
theory. Psychological Review, 1977, 84, 127–190. 
[24] Franconeri, S. L., Simons, D. J. ‘Moving and 
looming stimuli capture attention’. Perception and 
Psychophysics, 2003, 65, (7), pp. 999–1010. 
[25] Náñez, J.: ‘Perception of impending collision in 
3-to 6-week-old human infants’. Infant Behavior and 
Development, 1988, 11, (4), pp. 447–463. 
[26] Schiff, W., Caviness, J. A., Gibson, J. J.: 
‘Persistent fear responses in rhesus monkeys to the 
optical stimulus of “ looming”. Science, 1962, 136, 
(3520), pp 982–983. 
[27] Markkula, G., Engström, J., Lodin, J., et al.: ’A 
farewell to brake reaction times? Kinematics-
dependent brake response in naturalistic rear-end 

emergencies’, Accident Analysis & Prevention, 2016, 
95, pp. 209–226. 
[28] Medeiros-Ward, N., Cooper, J. M., Strayer, D. L.: 
‘Hierarchical control and driving’, Journal of 
Experimental Psychology: General, 2014, 143, (3), pp. 
953-958. 
[29] Lewis-Evans, B., de Waard, D., Brookhuis, K .A.: 
‘Speed maintenance under cognitive load – 
Implications for theories of driver behaviour’. Accident 
Analysis and Prevention, 2011, 43, pp. 1497–1507 
[30] Recarte, M. A., Nuñes, L. M.: ‘Mental load and 
loss of control over speed in real driving. Towards a 
theory of attentional speed control’. Transportation 
Research, 2002, 5, pp. 111–122. 
[31] Cooper, P. J., Zheng, Y., Richard, C. et al.: ‘The 
impact of hands-free message reception/response on 
driving task performance’. Accident Analysis and 
Prevention, 2003, 35,pp. 23–35. 
[32] Engström, J., Victor, T., Markkula.: ‘Attention 
selection and multitasking in everyday driving: A 
conceptual model’. In M.A Regan, T.W. Victor and 
J.D. Lee (Eds.) Driver Distraction and Inattention: 
Advances in Research and Countermeasures. Ashgate, 
2013. 
[33] Botvinick, M. M., Cohen, J. D.: ‘The 
Computational and neural basis of cognitive control: 
Charted territory and new frontiers’, Cognitive 
Science, 2014, 38, pp. 1249–1285. 
[34] Cohen, J.D., Dunbar, K., McClelland, J.L.: ‘On 
the control of automatic processes: A parallel 
distributed processing account of the Stroop effect’, 
Psychological Review, 1990, 97, pp. 332-361. 
[35] Feng, S. F., Schwemmer, M., Gershman, S. J., 
Cohen, J. D.: ‘Multitasking vs. multiplexing: Toward a 
normative account of limitations in the simultaneous 
execution of control-demanding behaviors’, Cognitive, 
Affective and Behavioral Neuroscience, 2014, 14, pp. 
129–146. 
[36] Miller, E. K., Cohen, J. D.: ‘An integrative theory 
of prefrontal cortex function’. Annual Reviews of 
Neuroscience, 2001, 24, pp. 167-202. 
[37] Schumacher, E. H., Seymour, T. L., Glass, J. M. 
et al.: ‘Virtually perfect time sharing in dual-task 
performance: Uncorking the central cognitive 
bottleneck’, Psychological Science, 2001, 12, pp. 101-
108. 
[38] Engström, J., Markkula, G., & Merat, N. 
‘Modeling the effect of cognitive load on driver 
reactions to a braking lead vehicle: A computational 
account of the cognitive control hypothesis’. Paper 
presented at the 5th International Conference of Driver 
Distraction and Inattention, Paris, France, 2017. 
[39] Engström, J.: ‘Scenario criticality determines the 
effects of working memory load on brake response 
time’, In J. Krems, T. Petzoldt, & M. Henning (Eds.), 
Proceedings of the European Conference on Human 



15 
 

Centred Design for Intelligent Transport Systems, 
Lyon, France, 2010, pp. 25–36. 
[40] Markkula, G. ‘Modeling driver control behavior 
in both routine and near-accident driving’, In: 
Proceedings of the Human Factors and Ergonomics 
Society Annual Meeting, 2014, 58, (1), pp. 879-883. 
[41] Markkula, G., Boer, E., Romano, R., Merat, N. 
Sustained sensorimotor control as intermittent 
decisions about prediction errors: Computational 
model and application to ground vehicle steering. 
Submitted manuscript. 
[42] Ratcliff, R., Tuerlinckx, F. ‘Estimating parameters 
of the diffusion model: Approaches to 
dealing with contaminant reaction times and parameter 
variability’. 2002. Psychon Bull Rev, 9(3): 438–481. 
[43] Ratcliff, R., Strayer, D. L. ‘Modeling simple 
driving tasks with a one-boundary diffusion model. 
Psychonomic Bulletin & Review’, 2014, 21(3), 577–
589. 
[44] Cooper, J.M., Strayer, D. L. ‘Effects of simulator 
practiced and real-world experience on cell-phone 
related driver distraction’. 2008, Human Factors, 50, 
893–902. 
[45] Tillman, G., Strayer, D. L., Eidels, 
A., & Heathcote, A. ‘Modeling Cognitive Load Effects 
of Conversation Between a Passenger and Driver. 
2017. Attention, Perception, & Psychophysics. Open 
Science Framework. 
[46] Markkula, Engström. ‘Simulating effects of 
arousal on lane keeping: Are drowsiness and cognitive 
load opposite ends of a single spectrum? Paper 
presented at the10th International Conference on 
Managing Fatigue, San Diego, CA., 2017. 

 

https://www.researchgate.net/publication/316606037_Modeling_Cognitive_Load_Effects_of_Conversation_Between_a_Passenger_and_Driver
https://www.researchgate.net/publication/316606037_Modeling_Cognitive_Load_Effects_of_Conversation_Between_a_Passenger_and_Driver

