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Abstract 

Micro damage evolution in chemical corroded limestone samples subjected to cyclic loads is 

investigated using Nuclear Magnetic Resonance (NMR) system. Based on the experimental data of 

Magnetic Resonance Imaging (MRI), T2 values and porosity, the micro damage evolution process is 

visualized and analyzed. It is found that the porosity and micro cracking of the corroded limestone 

samples increase with the cyclic loading, and the micro damage evolution process consists of three 

distinct stages: micro crack emergence stage, micro damage development stage and damage 

development accelerated stage. Chemical erosion is found to have a significant influence on the 

propagation of micro cracks and accelerate the damage development of the limestone samples under 

cyclic loading. With the same number of load cycles, the chemical corroded samples always have 

lower peak strength than that of the water softened samples. Before the inflection point in the micro 

damage-loading cycles curve, the main damage is caused by new micro cracks increase inside the 

limestone; while after this point, the new micro crack emergence is being restrained, and the existed 

micro cracks connect into rupture bands. A damage model is finally proposed to quantify the damage 

evolution of the chemical corroded rocks subjected to cyclic loads.  

Keywords: Nuclear Magnetic Resonance (NMR); T2 spectrum distribution; Micro damage; Chemical 

erosion; Cyclic loading.  

1 Introduction  

Underground construction excavation, such as tunnel and nuclear waste deposition, etc., leads to the 

cyclic loads near the excavation surface and subsequent stress-induced instabilities [1, 2]. The 

instability and failure of engineering rocks is closely related to the initiation and propagation of micro 

cracks that are induced by cyclic loads [3]. Propagation of micro cracks inside rocks is determined by 

the external loads as well as the surrounding environment. Engineering rocks are always surrounded 

by water, which is a significant influential factor for the mechanical characteristics of rocks by 

reducing their strength and even causing geological disasters during the excavation processes [4, 5]. 

This is because that the surrounding water often contains chemical icons [6, 7], which can react with 

the mineral inside the rocks. Therefore, understanding the micro damage evolution of chemical 



corroded engineering rocks under cyclic loading conditions is vital in order to reduce the risk of 

causing potential engineering disasters during excavation.  

Over the past few years, considerable efforts have been made to investigate the mechanical response 

of intact rocks under cyclic loading. Results have shown that the fatigue properties of rock materials 

are dependent on the maximum stress, loading frequency and amplitude, etc.  Based on energy 

dissipation, Liu et al. [8] established damage evolution equations for two typical rocks using the 

uniaxial cyclic loading test results, and proposed a new damage constitutive model to describe the 

behaviour of rocks under cyclic loading. The amended damage constitutive model can describe the 

degree of compactness of rocks accurately. Shayea [9] reported that the dynamic elastic modulus and 

Poisson's ratio increased with the confining pressure, and under cyclic loading their values during 

unloading were slightly higher than those during loading. Ray et al. [10] concluded that failure strength 

and elastic modulus of Chunar sandstone subjected to cyclic stress decreased with the increase of 

strain rate, and the uniaxial compressive strength decreased with the increase of loading cycles. 

Yoshinaka et al. [11-13] conducted cyclic loading tests to investigate the deformation behaviour of the 

soft rocks, including Kobe mudstone, sandstone, Ohya tuff and Yokohama siltstone, and introduced 

a procedure for strain correction, Young's modulus estimation and yield location. Bagde and Petros 
[14, 15] conducted cyclic loading tests on rock samples to investigate the relationship between loading 

amplitude and frequency and the fatigue strength and deformation behaviour. It was found that fatigue 

strength of the rock under dynamic cyclic loading is influenced by the micro structure of the rock 

samples, the Young's modulus decreases when increasing the cyclic loading frequency and amplitude, 

and there is no obvious relationship between the dynamic energy and the cyclic loading frequency. 

Sun et al. [16] carried out cyclic loading tests at multi-level amplitudes on sandstone samples to 

investigate the damage evolution law of the Chaboche and developed a multiaxial fatigue damage 

model for damage accumulation.  

Meanwhile, a few studies investigated the influence of environment, such as cyclic temperature and 

freezing conditions, on the mechanical properties of rocks. Li et al. [17] conducted cyclic loading 

experiments to investigate the mechanical properties of a jointed rock mass under freezing and cyclic 

loading conditions, found that the original samples usually have a higher fatigue strength than the 

frozen and water saturated samples, and thus proposed a dynamic, fatigue damage model for cracked, 

frozen sandstones. Zhou et al. [18] conducted cyclic uniaxial stress-temperature tests on basalt rock 

specimens to investigate the deformation characteristics of the samples subjected to cyclic uniaxial 

stress and cyclic temperature. Results showed that the peak strain of damaged specimens undergoes 

initial, steady and acceleration stages; the Youngʾs modulus decreases rapidly in the initial cycles, but 

the declining rate decreases further in subsequent cycles. A damage model for rocks subjected only 



to cyclic temperature was also proposed. Mahmutoglu [19] conducted several cyclic temperature tests 

on sandstones, and found that there is an obvious decrease in the mechanical properties of the 

sandstones after being treated with cyclic temperature. 

Most studies of cyclically loaded rocks have focused on the changes of macro-mechanical properties. 

However, under the effect of different external loading conditions, great changes could take place 

inside the rock, such as micro-cracking [20, 21], which then cause the macro-mechanical degradation 

of the rock [22]. However, experimental studies on chemical corroded rocks subjected to cyclic loads 

are rarely reported, and the influence of cyclic loading coupled with chemical erosions on micro 

damage evolution of rock still remains unclear. The micro-cracking inside the rock can be 

investigated using computerized tomography (CT) technique [23-26] or Nuclear Magnetic Resonance 

(NMR) System [27-30]. NMR has been widely applied in medical diagnosis, geotechnical engineering 

and oil and gas exploration [31, 32]. It recently starts to be used in rock engineering for internal 

microstructure imaging and characterization  [30].  

In this study, NMR and cyclic loading tests are carried out to investigate the micro damage evolution 

of chemical corroded limestone samples subjected to cyclic loads. Through the analysis of the 

Magnetic Resonance Imaging (MRI) and T2 values, the micro damage of the limestones has been 

visualized and calculated, and the relationship between peak strength degradation and micro damage 

is investigated. A damage model for rocks subjected to cyclic loads coupled with chemical erosion is 

established, which can be potentially used  for predicting rock strength in practical design of 

underground constructions, slops and dams and roads in water surrounded regions. 

2 Rock samples and experimental tests 

2.1 Sample preparation 

The rock samples are limestone, taken from Jinyun Mountain Tunnel in Chongqing China. The Jinyun 

Mountain Tunnel has two tunnels, each with a length of 7.379 km and have a maximum depth of 220 

m. Limestone, a common sedimentary rock in southwest China and is the main rock of Jinyun 

Mountain, is selected as the test samples in this experiment. All the samples are drilled from a single 

block without macroscopic cracks and machined and finely ground into cylindrical shapes with a 

length of 100 mm and a diameter of 50 mm, as shown in Figure 1. According to the X-ray diffraction 

(XRD) analysis it is found that the limestone samples are composed of 92% calcspar and quartz and 

1% accessory minerals. A typical microstructure of the limestone is shown in Figure 2. 



 

Figure.1. Limestone samples 

 

Figure.2. Microscope image of a limestone sample: Cal, calcspar. 

2.2 Chemical solutions 

According to water sample analysis, the water samples collected from the Jinyun tunnel construction 

site in Chongqing, has a pH value of 6.5 and the main icons are Na+, Ca2+, Mg2+, S ସܱଶି, Cl- and HCO-. 

To simplify the experimental study, the complex ionic compositions of the water are replaced by 

Na2SO4 solution, which is made by NaCl solution added with H2SO4. Three pH values (3, 5 and 7) 

of the Na2SO4 solution are used in the tests and the initial concentration of the chemical solutions is 

all 0.01 molāL-1. 

2.3 Test methodology and process 

Figure.3 shows the NMR system, and a T2 spectrum. The NMR system measures the signal intensity 

of hydrogen atoms, which depends on the number and size of pores inside the rock, in the fully-

saturated rock and outputs transverse relaxation time distribution (T2 spectrum), porosity and 

Magnetic Resonance Imaging (MRI), which can be used to investigate the pore size distribution and 

micro structure damage of the rock.  

All the mechanical tests are conducted using the Rock Testing System, as shown in Figure 4. 



       

Figure.3. The NMR system and an example of its T2 spectrum. 

 

Figure.4. The Rock Testing System 

The test process is as follows: 

(1) The samples are saturated using a vacuum saturation device. After saturation for 24h, all the 

samples are warped with preservative film to prevent evaporation, and then putted into the test box 

of the NMR machine. With the help of the industrial computer of the NMR machine, the initial T2 

spectrum and the porosity of the limestone samples are obtained. After that, samples with similar 

initial porosity and T2 spectrum distribution are selected for later experiments. 

(2) The limestone samples are divided into four groups (Group A, Group B, Group C, Group D). Each 

group has 8 samples and they are immersed in pH3, pH5, pH7 Na2SO4 solutions and distilled water 

separately for 60 days.  

(3) After reaching the designed erosion period, NMR tests are conducted to investigate the micro 

structure changes of the rock sample. After that, regular uniaxial compression tests are conducted to 

obtain the average uniaxial compression of the chemical corroded and water soft sample. Rock testing 

system, which is shown in Fig 4, is employed to complete the compression test. A total of four samples 

(each group is chosen one sample) are used for the uniaxial compression test, and the test result shows 



the uniaxial compression strength (UCS) is 74.96 MPa (sample corroded by pH3 solution), 

101.35MPa (sample corroded by pH5 solution), 119.09 MPa (sample corroded by pH7 solution), 

134.89MPa (water soft sample). 

(4) Cyclic loading tests are conducted at the same loading levels  but with different cycle numbers. 

Each cycle of uniaxial cyclic loading processes is as follows: the rock sample is loaded to 85% of its 

UCS with loading rate of 0.01 mm/min. When the maximum load is reached, the stress of each sample 

is then unloaded to zero with the same rates. Each test consists of 8 cyclic loading stages, with 10 

loading cycles, 20 loading cycles, 30 loading cycles, 40 loading cycles, 50 loading cycles, 60 loading 

cycles, 70 loading cycles, 80 loading cycles, respectively. These 8 stages are conducted on the 

corresponding 8 samples in a group.  Take Group A as an example: sample A-1 is suffered from 10 

times cyclic loads, sample A-2 is suffered from 20 times cyclic loads…. sample A-8 is suffered from 

80 times cyclic loads. The load-time curves during the cyclic loading for the water soft limestone 

samples is shown in Fig 5 as an example. 

 

Fig .5. The load-time curves during the cyclic loading for the limestone samples 

(5) When a sample reaches the designed number of cycles, it is taken for the NMR test to obtain the 

T2 spectrum, porosity and MRI. After the NMR test, the limestone sample is taken out of the NMR 

machine and put into the pressure cell of the Rock 600-50 test system for compression test until it is 

completely ruptured. 

3 Experimental results 



3.1 T2 spectrum distribution and MRI of the samples 

Under the effect of cyclic loads, great changes including the micro damages could take place at micro 

scale within rocks, which can cause changes of the macro-mechanical behaviors. In addition, when 

coupled with chemical erosion, the relationship between micro damage and macro mechanical 

properties of the rocks becomes more complex. To further explore the rock damage evolution law 

under the cyclic loading, T2 spectrum distribution and MRI, which is the inner section images of the 

chemical corroded samples treated with cyclic loading. MRI is taken only from the middle cross-

section of the sample, thus they are mainly used to visualize the damage evolution trend of the samples 

under different loading cycles. While, the T2 spectrum, which is obtained by testing the whole sample, 

can accurately reflect the microstructure changes in the whole sample after suffered different loading 

cycles and chemical erosion. 

Combine all the data obtained from NMR, the evolution of micro damage in the chemical corroded 

limestones during the entire cyclic loading period can be investigated and analyzed. The NMR inner 

section images of the samples are shown in Fig.6.  

 

 

 

(a) Limestone samples immersed in pH3 solution 



 

(b) Limestone samples immersed in distilled water 

Fig .6. The NMR inner section images of the samples after cyclic loading. (‘A’ indicates smaller 

pores, ‘B’ indicates connection of pores into cracks and ‘C’ indicates the macro rupture.) 

The bright areas in the images correspond to pores inside the limestone samples. An increase of the 

brightness and the number of white points indicates an increase of the porosity. It can be seen from 

Fig.6 that image brightness of the limestone samples increase as the increase of number of load cycles. 

While, the image of the water softened sample suffered 40 times of cyclic loads is blur and darker 

than other images in this group, this is due to the heterogeneous distribution of the porosity inside the 

rock. A quite significant increase of porosity occurs between the 10 times and 80 times of load cycles, 

where the brightness of the images increases sharply. And there are macro cracks emerged in the 

samples corroded by pH3 solution after 80 loading cycles, as shown in Fig 6 (a). In general, the 

brightness and the number of white points in the images of the chemical corroded samples is higher 

than that in distilled water, which confirms the micro damage of limestone in the chemical solutions 

develop faster than in distilled water. 

     



(a) Chemical corroded samples (PH=3)  

   

(b) Water soft samples  

Fig.7. T2 distributions of samples under cyclic loading conditions (Left: 10-40 cycles; Right: 50-80 

cycles).  

Fig. 7 shows the T2 spectrum curves of the samples immersed in pH3 solution and distilled water 

from 10 cycles to 80 cycles. The T2 spectrum curve is related to the porosity and pore size distribution 

of the rock, i.e., the porosity increases with the T2 spectrum area and the peak point of the curve 

increases when the pore size increase. The T2 spectrum curves for limestone sample in this test have 

three peaks. The left and the middle peaks indicate the small pores and the right one indicates bigger 

pores. With more load cycles, the T2 spectrum curve has shown higher peaks and changes in curve 

shape, which means there are changes in porosity.  

A few observations can be made from  the test results: (1) after cyclic loading, the area under the T2 

spectrum curves of the limestone samples have largely changed, indicating significant changes of 

microstructure of the limestone samples. (2) From Fig. 6 and Fig. 7, of the evolution of damage in 

the limestone samples (taking samples corroded by pH3 solution as an example) subjected to cyclic 

loads show three distinctive stages: micro crack emergence stage, micro damage development stage 

and damage acceleration stage. In the micro crack emergence stage, there is a slight increase of the 

first peak of the T2 spectrum curve, which means there are newly emerged small pores inside the 

limestone samples. After 30 to 60 cycles, the limestone sample enters into the micro damage 

development stage, where the first and the second peaks of the T2 spectrum curve increase greatly, 

which indicates the significant increase of porosity due to the emergency of new pores as well as the 

convergence of existing pores. This is then followed by the damage acceleration stage which leads to 

rupture. In this stage, the first and second peak decrease, while the third peak increases significantly, 

indicating the initiation of new micro cracks is constrained, and the internal cracks of the specimen 

are gradually converged and interconnected to form a shear band to cause the failure. (3) Compared 

to water soft ones, the chemical corroded limestone samples are more sensitive to the cyclic loading: 

the T2 spectrum area and peak point growth of the samples corroded by pH3 solution are more faster 



and obvious than the water corroded ones, that indicates the porosity and micro cracking increase of 

the chemical corroded samples are faster than that in distilled water.  

3.2 Porosity 

The porosity of corroded samples obtained by NMR is shown in Table 1, and the porosity increment-

loading cycles curve is shown in Fig. 8.  

Table 1 Porosity of corroded samples after cyclic loads  

Chemical 

solution 

Porosity 

before 

cyclic 

loading 

Porosity after cyclic loading 

10 20 30 40 50 60 70 80 

pH3 Na2SO4 7.15 7.84 8.13 8.24 8.32 8.39 8.48 8.79 14.33 

pH5 Na2SO4 6.44 7.03 7.21 7.33 7.42 7.47 7.58 7.78 8.12 

pH7 Na2SO4 5.75 6.27 6.43 6.53 6.57 6.64 6.74 6.86 6.96 

Distilled water 5.22 5.67 5.81 5.86 5.89 5.93 5.97 6.02 6.05 

 

 



Fig. 8 Porosity increment rate vs number of loading cycles 

It can be found that the porosity of the limestone samples increase with the increasing loading cycles, 

which means the micro damage of the samples increase continuously. The porosity increment of 

limestone samples corroded by pH3 solution are always greater than that in other pH values solution, 

and develop faster than other group of samples. Due to the chemical ions exchange between the 

solution and the rock [23], there is a slight increase of porosity of the samples corroded by pH7 

solution, and the porosity growth is higher than that in distilled water, which porosity increment is 

smallest among all the sample groups. 

4 Damage model of corroded limestone under cyclic loading 

4.1 Damage induced by cyclic loading and chemical erosion 

Damage leads to the changes of mechanical properties of rocks, e.g. the elastic modulus, hardness, 

strength and strain, etc. [33, 20]. In order to quantify the influence of damage on the mechanical 

properties of rock, usually a damage variable must be defined and a fatigue cumulative damage model 

must be established. The methods to define the damage variable vary, and the damage variable could 

be elastic modulus, energy dissipation, maximum strain, residual strain or ultrasonic wave velocity, 

etc. [34]. No matter what kind of variable is used, the damage evolution law must be consistent with 

the initiation and propagation of micro cracks, and a reasonable damage variable must meet four basic 

requirements: (1) it has a distinct physical meaning; (2) it can be measured easily and applied 

conveniently in engineering; (3) its evolution law coincides well with the actual degradation process 

of material; (4) it can take the initial damage into account [35-37].  

In this paper, porosity is selected as the key parameter to form the damage variable D, which is tested 

and obtained by using NMR system. A damage model is then developed using such damage variable. 

The micro damage variable can be calculated as [38]: ܦ ൌ ௏ି௏ವ௏ ൌ ௡ି௡బଵି௡బ                             (1) 

Where D is the damage variable, ݊଴ is the porosity of the intact sample, and ݊ is the porosity of the 

sample after suffered external damage, such as chemical erosion or loads. The whole damage induced 

by chemical erosion coupled cyclic loads is assumed to exist simultaneously and independently, 

which can be expressed as:  ܦ ൌ ௖ܦ ൅ ௠ܦ ൅  ௠                       (2)ܦ௖ܦݖ

Where D is the whole damage of the test rock,  ܦ௖ is the variable of chemical erosion damage, ܦ௠ is 

the mechanical damage variable induced by cyclic loads, ݖ is the coupled damage variable, and ܦ௖ܦ௠ 

is the coupled damage induced by cyclic loads and chemical erosion. 



The damage of the rock induced by cyclic loads can be divided into low-cycle fatigue and high-cycle 

fatigue. Low-cycle fatigue means the rock can withstand less than 104 time of cyclic loads, while 

high-cycle fatigue means the rock can withstand over 104 time of cyclic loads, and there is no obvious 

plastic deformation or macro cracks occurs [18]. According to NMR and mechanical test results, the 

limestone in belongs to low-cycle fatigue ones. Thus, the damage development rate can be expressed 

as [39]: ܦᇱ ൌ ሺ௒ொሻ௤(3)                                        ݌ 

Where Y is the energy dissipation rate, p is the cumulative plastic strain rate, and q and Q are 

parameters. 

D is the whole damage of the limestone samples in the one-dimensional condition, and the free energy 

density function, ׎, can be expressed as follows: ׎ ൌ ఙమଶ௣ாሺଵି஽ሻ ൅  (4)                                    ܭ

Where ı is the axial stress, p is the mass density, and K is an item unrelated to the rock damage. The 

energy dissipation rate for the damage can be expressed as follows: ܻ ൌ െ݌ డ׎డ஽ ൌ ଵଶா ሺ ఙଵି஽ሻଶ                           (5) 

When the rock is loaded, the equation for micro-plastic strain rate is as follows[40]: ߝᇱ ൌ ݌ ൌ ݂ ఙ೑షభఙᇲி೑ሺଵି஽ሻ೑ሺడఙሻೌே೎                                (6) 

Where F is loads, ߪᇱ is stress rate, N is the cycle times, f, a, c are parameters.  

Based on formula (3), (5), (6), the following formula can be obtained as follows: ܦᇱ ൌ ఙ್షభఙᇲ஻ሺଵି஽ሻ್ሺడఙሻೌே೎                                           (7) 

Where a and B are parameters, and b=f+2q, B = (2EQ)qFf/ f. 

The damage rate ܦᇱ  is assumed to be small and approximately constant in each fatigue cycle. 

Moreover, the stress unloading is not considered to cause rock damage. Thus, when Eq. (12) is 

integrated into a complete stress loading and unloading cycle, the damage factor induced by cyclic 

loads can be expressed as follows: 

డ஽డே ൌ ׬ʹ ఙ್షభఙᇲ஻ሺଵି஽ሻ್ሺడఙሻೌே೎ ൌ ʹ ఙ೘ೌೣ್ ିఙ೘೔೙್௕஻ሺଵି஽ሻ್ሺడఙሻೌே೎ఙ೘ೌೣఙ೘೔೙       (8) 

Where ߪ௠௔௫  and ߪ௠௜௡  is the maximum load and minimum load during the whole cyclic loading 

process.  



For the rock under cyclic loading, the boundary condition can be:  

When N=0, D=0, while N=Nf, D=1. ௙ܰ ൌ ൥ ௕஻ଶሺ௕ାଵሻሺܾݔܽ݉ߪ െܾ݊݅݉ߪ ሻ൩ భభష೎
 

So the damage factor of a rock subjected only to cyclic stress is as follows: 

௠ܦ ൌ ͳ െ ቂͳ െ ሺ ேேಷሻଵି௖ቃ భ್శభ                                         (9) 

Eq. (9) has the same expression as the damage models proposed by Li et al. [41]. 

The limestone samples in this test are mainly composed of calcspar, which can easily react with acid 

ions (e.g. H+), resulting an increase of the porosity. The following reactions are likely to occur in an 

acidic solution: ܱܥܽܥଷ ൅ ାܪʹ ՜ ଶାܽܥ ൅ ଶܱܪ ൅ ଶܱܥ ՛                (10) 

The reactions of the calcspar can be expressed as follows [42]: ܴܽ݁ݐ ൌ ሺȳ௠݇ܣ െ ͳሻ௡                                             (11) ȳ ൌ ூ஺௉௄                                                                      (12) 

Where Rate is the reaction rate of the calcspar, A is the reaction area of the sample, k is the chemical 

reaction rate parameter, K is the corresponding equilibrium constant, ߗ is the solution saturation 

index, m and n are parameters, and IAP is the is the normalized saturation ratio. It is found that the 

effect of IAP on the overall behaviour of the chemical reaction system was relatively small, although 

the same is not true for changes in the formulation of the growth rate [40]. 

The density of the calcspar inside the limestone sample can be expressed as: డሺଵିఝሻ௣೗డ௧ ൌ െ׏ሺ݌௟߮ݒሻ ൅ ௖݌ ௖ܸܴܽ(13)                          ݁ݐ 

The porosity increment caused by chemical erosion can be expressed as follows: డ௡೎డ௧ ൌ ݎ ௖ܸܴܽ(14)                                                          ݁ݐ 

Where r is the chemical reaction equivalent parameter, Vc is the molar volume of the calcspar, t is 

the erosion time. Therefore, from equation (1) and (13), the micro damage due to chemical erosion 

can be calculated by: ܦ௖ ൌ ௡೟ି௡బଵି௡బ ൌ ୬ౙଵି୬బ                                                      (15) 



Where nt is the porosity of the sample after chemical erosion, ݊଴ is the porosity of the intact sample. 

Combining equations (1), (9) and (14), the micro damage of limestone induced by cyclic loads 

coupled with chemical erosion can be expressed as: 

ܦ ൌ ௖ܦ ൅ ௠ܦ ൅ ௠ܦ௖ܦݖ ൌ ͳ െ ቂͳ െ ሺ ேேಷሻଵି௖ቃ భ್శభ ൅ ଵି୬బ݁ݐܴܽݐܸܿݎ ൅ ݖ ଵି୬బ݁ݐܴܽݐܸܿݎ ሺͳ െ ቂͳ െ ሺ ேேಷሻଵି௖ቃ భ್శభሻ      (16) 

According to [42], the parameters of the fatigue damage model, Equation (16) can be obtained by 

fitting with data of samples immersed in pH3 values solution, and are shown in Table 2.  

Table 2 Parameters for the proposed model 

reaction area/m2 ൈ݃ିଵ logK m n molar volume of the 

calcspar/ g/mol 

7.07ൈ ͳͲିଷ 10.34 1 1 100 

k/molൈm2ൈs-1 Density of 

calcspar/kgൈm-3 

c ͳܾ ൅ ͳ z 

1.724ൈ ͳͲି଺Ǥ଼ 2650 0.114 0.001 91.839 

 

4.2 Damage model  

Considering the damaged part not subjected to external loads and the intact part subjected to external 

loads, Rabotnov [41] proposed a damage model in terms of damage variable D: ߪ௔ ൌ ௜ሺͳߪ െ  ሻ                                 (16)ܦ

Where ߪ௔ is the apparent stress and ߪ௜ is the stress of the intact part. This model will be used as the 

based damage model in this study. 

The stress–strain relationship of the intact part agrees with Hooke’s law. In triaxial stress paths: ߪ௜ଵ ൌ ௜ଵߝܧ ൅  ௜ଷ                                 (17)ߪݒʹ

Where ߪ௜ଵǡ  ௜ଵis the axialߝ ,௜ଵ is the maximum stress and the minimum stress of the rocks respectivelyߪ

strain, E is the elastic modulus, v is the Poisson ratio. 

And the apparent strain in the damaged part and the strain in the intact part are in accordance with 

Lemaitre equivalent strain theory as follows: ߝ௜ ൌ  ௔                                                    (18)ߝ

Where ߝ௜ is the intact strain, and ߝ௔ is the apparent strain.  



From Equation (16)-(18), we can have: ߪଵ ൌ ሺͳ െ ଵߝܧሻܦ ൅  ଷ                      (19)ߪݒʹ

When ߪଷ ൌ Ͳ, Equation (19) can be used for uniaxial condition.  

5 Discussions 

5.1 Relationship between micro damage and peak strength degradation 

After cyclic loading, the chemical corroded and the water soft samples are tested by Rock 600-50 test 

system under compression until completely ruptured. The peak strength of the corroded samples after 

treated with different numbers of cyclic loads is shown in Table 3. The stress–strain curves of 

limestone samples after different loading cycles are shown in Fig 9 (a), (b) and (c). Attention is 

focused on samples corroded by pH3 solution, because there is more significant degradation of 

mechanical properties occurring in this sample group. The stress–strain curves of the water soft 

sample are plotted in Fig 9 (d), (e) and (f) for comparisons.  

 

(a)                                                                                                                               (b) 

 

(c)                                                                                                                               (d) 



 

(e)                                                                                                                               (f) 

Fig. 9 Stress–strain curves of limestone samples under compression. 

Table 3 Peak strength of the corroded samples after cyclic loads (unit: MPa) 

Samples’ 

solution 

Original 

peak 

strength 

Peak strength after number of load cycles 

10 20 30 40 50 60 70 80 

pH3 Na2SO4 74.96 67.02 60.47 55.62 54.90 46.01 51.34 43.07 22.04 

pH5 Na2SO4 101.35 95.68 86.18 84.43 82.85 77.98 80.05 76.50 70.64 

pH7 Na2SO4 119.09 112.91 105.81 103.87 105.09 101.73 99.79 97.47 95.56 

Distilled water 134.89 133.55 123.51 123.24 117.46 115.44 111.12 112.98 105.24 

 

Peak strength of the limestone can be quantified by a strength degradation parameter (SDP), which 

can be defined as the following: ܵܲܦ ൌ ఙ೔ିఙ೏ఙ೔                                      (20) 

Where ߪ௜ is the original peak strength which belongs to the intact limestone sample, and ߪௗ is the 

peak strength of the damaged sample. 

Fig.10 shows the relationship between micro damage and SDP of limestone samples after cyclic 

loading, and the corresponding micro damage rates is calculated and shown in Table 4.  

Table 4 Micro damage rates of the corroded samples after cyclic loads (unit: MPa) 

Micro damage rates after number of load cycles 



Samples’ 

solution 

Original 

micro 

damage 

10 20 30 40 50 60 70 80 

pH3 Na2SO4 0.0230 0.0303 0.0333 0.0345 0.0353 0.0360 0.0371 0.040 0.0451 

pH5 Na2SO4 0.0155 0.0218 0.0239 0.0249 0.0259 0.0264 0.0276 0.0297 0.0332 

pH7 Na2SO4 0.0083 0.0138 0.0155 0.0165 0.0169 0.0177 0.0187 0.0199 0.0210 

Distilled water 0.0027 0.0074 0.0089 0.0095 0.0098 0.0102 0.0106 0.0111 0.0115 

 

 

Fig.10 Strength degradation vs damage rate. 

The observation from Fig.9, Fig.10, Table 3 and Table 4 is that: (1) SDP increases with the increasing 

micro damage rate, until it is approximately more than 4.5% at which point rock should be broken. 

(2) The chemical solutions have an impact on microstructure of limestone as well as the mechanical 

properties, and the cyclic fatigue affects the mechanical properties more seriously for the chemical 

corroded samples: with the same number of loading cycles, the peak strength of the chemical corroded 

samples is degraded much more significantly than that of the water soft ones.  



This is because that the chemical solutions, such as Na2SO4, influence the mechanical properties of 

rock in two main ways [4-5]: (1) the chemical icons react with the mineral substance inside the 

limestone samples, weak the bridging bonds between the rock elements or close to crack tips, thus 

decrease the strength of the rock and facilitate micro crack growth and convergence at relative lower 

stress levels than would otherwise be the case. (2) Under cyclic loading, the stresses are continuously 

redistributed in the rock and the fracture toughness decreases allowing more subcritical crack to grow 

which consequently leads to stress corrosion and mechanical properties degradation. Moreover, the 

chemical erosion weakens the structure and cementing capability of the limestone samples, therefore 

micro flaws or cracks would propagate and grow quickly under cyclic loading.  

5.2 Micro damage evolution law 

 

Fig. 11 Micro damage vs number of loading cycles 

The damage rate evolution law of all the samples is shown in Fig 11. As it is talked in Chapter 3.1, 

there are three damage evolution stages of the corroded sample treated with cyclic loads: micro crack 

emergence stage, micro damage development stage and damage acceleration stage. These stages are 

also plotted in Fig 11.  

Combined with NMR test results, Fig 6 and Fig 7, it can be found that: (1) When the loading cycle is 

low (taking samples corroded by pH3 solution as an example), around 20 cycles, the damage 

evolution curve is obviously convex. Then the micro damage rise steadily with the increasing loading 

cycles. After 60 loading cycles, the damage evolution curve becomes concave. The inflection point 

in the micro damage-loading cycles curve is plotted (see Fig. 10).  



(2) The inflection point in the micro damage-loading cycles curve is a turning point of the micro 

damage evolution process: before this point, the main change of the T2 spectrum curves takes place 

in the first and second peaks, which indicates the micro damage of limestone in this stage is caused 

by sharp increase in number and size of micro cracks. While after this point, the third peak of the T2 

spectrum curve increases rapidly, which indicates the micro cracks increasing is restrained, the micro 

damage of limestone is caused by micro crack connection.  

(3) The inflection point in the damage curve of the chemical corroded sample often emerge in lower 

loading cycles compared to others, so that the ultimate loading cycles (until the sample rupture) of 

the chemical corroded samples, is shorter than water soft ones. This is because after chemical erosion, 

the rock structure of limestone samples becomes softer, that accelerates the convergence of the micro 

crack as well as the rupture stage, and makes the damage evolution process become faster.  

 

6 Conclusions  

In this study NMR technique has been used to investigate the micro damage evolution of limestone 

under chemical erosion coupled with cyclic loading. Based on the experimental results, some 

conclusions can be drawn as below: 

(1) By using NMR system, T2 spectrum curves and MRI of porosity are obtained. The micro damage 

of the chemical corroded rock under cyclic loading is visualized. The results shed a light to better 

understanding of micro damage evolution law and the microscopic mechanical behaviour of the 

sedimentary rocks, limestone, via a non-destructive approach.  

(2) According to MRI and T2 spectrum curves, the porosity and micro cracking of the corroded 

limestone samples increase with the cyclic loading, and the micro damage development process has 

shown three stages: micro crack compaction and emergence stage, micro damages development stage 

and damage develop accelerated stage. 

(3) There is a close relationship between chemical erosion and the micro damage developments: 

micro damage, which includes the porosity and micro cracking, of the chemical corroded samples 

under cyclic loading often develop faster than the water softened ones. The damage development 

stage of the chemical corroded samples often shorter and less obvious compared to the water soft 

ones. 

(4) The inflection point in the micro damage-loading cycles curve is a turning point of the micro 

damage evolution process: before this point, the main damage of the corroded sample under cyclic 

loads is caused by new micro cracks increase inside the limestone; while after this point, the new 

micro crack emergence is being restrained, and the existed micro cracks connect into rupture bond. 



(5) After cyclic loading, the chemical corroded samples always have lower peak strength compared 

with the water soft ones.  

(6) Based on experimental data, a micro damage model is established to qualify the damage evolution 

for the chemical corroded limestone under cyclic loading. The proposed damage model will be useful 

for predicting rock strength in the design of underground constructions, slops and dams and roads in 

water surrounded regions. 
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