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Abstract 

Background 

Elevated platelet counts are observed in cancer, auto-immunity and inflammation with concurrent 

illness. Pro-inflammatory cytokines are elevated in murine osteogenesis imperfecta (OI) models. We 

hypothesised that platelet counts might be elevated in children with moderate-severe OI.  

Methods 

We reviewed the hospital records of 71 children with moderate-severe OI, treated in the Sheffield 

Highly Specialised Severe, Complex and Atypical OI Service. Data relating platelet count 

(below/above average, above upper limit) to prior and concurrent events were summarised as event 

proportions per child. Additionally, we created platelet standard deviation (SD) scores to assess the 

whole group in relation to age-related trends. 

Results 

1206 platelet counts were recorded. Platelet SD scores were right-shifted by 0.89 SD overall. 49 of 

71 (69%) patients had at least one platelet count above the normal range and 246 (20.4%) of all 

counts were above the upper limit of normal. Of these, 101 (41%) were high despite no confounding 

factors being present to explain them. For the 47 children with data at age less than 2 years, 89 

(30.0%) platelet counts were above the upper limit of normal and 39 (44%) had no associated 

confounding factor. Elevated platelet counts were recorded most often for children with new or 

existing vertebral fractures. 

Conclusions 

Raised platelet counts were observed in association with new and healing vertebral fractures, but 

also (41%-44%) in the absence of identified pro-inflammatory factors or events. We speculate that 

these findings are evidence for a pro-inflammatory component to OI that could be a target for 

therapeutic intervention.   

  



Introduction 

Osteogenesis imperfecta (OI) is a heritable group of disorders occurring in 1/15-20,000 births [1].  It 

is characterised by altered bone mass, architecture and material properties with resultant increased 

fracture rate [2].  OI has a wide spectrum of clinical severity ranging from apparently normal, 

through significant bony abnormalities with multiple fractures, to perinatal mortality [3].  Patients 

affected by OI may also exhibit a range of other abnormalities including joint laxity, abnormal dental 

development (dentinogenesis imperfecta), aortic root dilatation and blue sclerae [4].  Infants with 

severe OI are occasionally observed to have recurrent unexplained low grade fevers (own 

unpublished observations). 

Mutations in type I collagen genes are the commonest cause of OI and result in synthesis of 

abnormal pro alpha chains, part of the collagen fibre [5].  These chains are structurally unable to fold 

correctly into normal collagen fibrils.  The fibrils are in turn unable to pack together and orientate 

themselves adequately leading to a less stable structure [6].  Bone mineralisation occurs based on 

this abnormal extracellular matrix template [7].  Bone turnover is increased. [8]  

Platelet counts have been reported to be elevated in a variety of settings where inflammation is 

present [9], including cancer [10], infection [11] and inflammatory bowel disease [12].  In this study, 

we looked at platelet counts as a potential marker of inflammation in children with severe OI.  We 

hypothesised that platelets would be high in children with OI and that raised platelets would be 

more common in infants under age 2 years where additional forms of input such as surgical 

stabilization of the limbs are not possible. 

 

Methods 

This was a retrospective cohort analysis of children who attended the nationally-commissioned 

“ŚĞĨĨŝĞůĚ CŚŝůĚƌĞŶ͛Ɛ HŽƐƉŝƚĂů͛s Severe, Complex and Atypical Osteogenesis Imperfecta Highly 

Specialised Service (SCA OI HSS) spanning the period 2001-2017.  Ethical permission for the study 

was not sought, as per UK Health Research Authority guidance, because all the data were already 

collected and were anonymised prior to use. The service provides multidisciplinary team 

management of children with OI from England and Ireland who meet the following eligibility criteria: 

- multiple early life fractures 

- 6 or more vertebral crush fractures 

- multiple rodding or Ilizarov surgery of limbs 

- intractable bone pain 

- cranio-cervical, skull base or spine deformity requiring surgery 

- unusual (non-collagen gene) forms of OI. 

The ĐŚŝůĚƌĞŶ͛Ɛ ŚŽƐƉŝƚĂů ƌĞĐŽƌĚƐ͕ pathology and digital radiology records were accessed. Of the 123 

children enrolled into the SCA OI HSS since its inception in 2011, 71 were identified as appropriate 



for the project and 52 excluded as either they had never had any blood tests at Sheffield CŚŝůĚƌĞŶ͛Ɛ 
Hospitals or only had blood tests associated with surgery.  The 71 children identified are/were under 

regular review at Sheffield. For those starting bisphosphonates during infancy, pamidronate was 

given seven times in their first year of life, extending to 3 monthly after age 1 year; they had blood 

tests at every cycle. Those taking zoledronic acid (none aged less than 2 years) had 3-6 monthly 

cycles and blood tests.  Children taking risedronate were seen in outpatient clinic every 6 months 

and had blood tests every 12 months.  All children had 6-monthly dual energy x-ray absorptiometry 

(DXA) scans and spinal radiographs 12-monthly to monitor bone mass and vertebral fractures. Some 

of the children had shared care plans in place where they received some of their treatment at their 

local hospital but still underwent regular review at Sheffield.    

Platelets were coded into 3 ͞ďĂŶĚƐ͟ as either above the upper limit of normal, or above average but 

below the upper limit of normal, or below average for age and sex. An age and sex-related z-score 

was also calculated for each platelet count, based on age and sex compared to our laboratory 

reference range with the assumption that the upper and lower limits of the range represent the 2.5th 

and 97.5th centiles, i.e. -2 and +2 standard deviations respectively, with the standard deviation being 

one quarter of the range and the average value being the midpoint. 

 In addition, for each platelet count in each child, the following was recorded: 

- Age of the child at the time of the blood test 

- Time since the child had started bisphosphonate treatment 

- Number of vertebral fractures present on radiographs at that time 

- Number of new vertebral fractures (since last lateral spine radiograph or DXA)  

- Number of long bone fractures since last platelet count 

- Length of time since latest long bone fracture 

- Whether the child had a concurrent illness at the time of the platelet count (defined as 

either a vomiting illness, pyrexia or other trigger in their early warning score* or a child 

deemed too unwell to receive their bisphosphonate treatment) 

- WŚĞŶ ƚŚĞ ĐŚŝůĚ͛Ɛ ůĂƚĞƐƚ ƐƵƌŐĞƌǇ ǁĂƐ ĂŶĚ ƚŚĞ ůĞŶŐƚŚ ŽĨ ƚŝŵĞ ƐŝŶĐĞ ƚŚĂƚ ƐƵƌŐĞƌǇ 

- Creatinine as a marker for renal injury  

- White cell counts and neutrophils as markers of infection 

- Bone specific alkaline phosphatase and general alkaline phosphatase 

- Urine N-terminal cross-linked telopeptide of type I collagen (NTx) 

- Type and dose of bisphosphonate treatment 

 

OI type, date of birth, type and dose of bisphosphonate treatment and sex were recorded for each 

participant.  If a fracture date was not documented, it was estimated as the first of the month prior 

to the latest platelet count. In utero ĨƌĂĐƚƵƌĞƐ ǁĞƌĞ ƌĞĐŽƌĚĞĚ ĂƐ ŚĂǀŝŶŐ ŽĐĐƵƌƌĞĚ ŽŶ ƚŚĞ ĐŚŝůĚ͛Ɛ ĚĂƚĞ 
of birth.   

For each child we recorded the unchanging demographic data as well as summary variables for the 

proportion of platelets across the record that fell into each platelet count group, and the proportion 

of platelet counts for each child that was ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ Ă ͞ĐŽŶĨŽƵŶĚŝŶŐ ĨĂĐƚŽƌ͟ ǁŝƚŚŝŶ ĞĂĐŚ ͞ďĂŶĚ͟.   

Confounding factors were defined as any of the following: 



- New or existing vertebral fracture on latest scan 

- New non-vertebral fracture since last platelet count 

- Surgery since last platelet count 

- Concurrent illness at time of platelet count 

We undertook a subgroup analysis of those who started treatment before age 2 years to address our 

hypothesis that elevated platelets would be more evident at a younger age. 

All data were entered and held in Excel; the collated summary data field was exported and analysed 

using standard methods ʹ F-ƚĞƐƚ ŽĨ ŵƵůƚŝƉůĞ ŵĞĂŶƐ͕ “ƚƵĚĞŶƚ͛Ɛ ƚ-test and ANOVA for multivariate 

analysis of categorical and continuous variables - in DataDesk 7.0.2. 

 

Results 

71 children with OI met the eligibility criteria for this study.  All children were less than 16 years old 

at the time of data collection.  All had received bisphosphonates. Demographic data are shown in 

Table 1. Platelet z score for the entire set of measurements was plotted against age (figure 1a); the 

histogram of the total set of platelet values was right-shifted by 0.89 standard deviations (figure 1b). 

The kurtosis for the OI platelet distribution is 1.35 suggesting a general lack of outliers, and skewness 

is 0.76 suggesting a slight rightward skew, as seen in Figure 1b.   For all children, 246 (19%) of 1206 

platelet counts were above the upper limit of normal (as opposed to the expected percentage of 

2.5% for a normal distribution), and 592 (49.1%) were between average and the upper limit of 

normal.  In children under age 2 years, 89 (30%) of 297 platelet counts were above the upper limit of 

normal, and 156 (52.5%) were between average and the upper limit of normal. 

TŚĞ ͞ďǇ-ŝŶĚŝǀŝĚƵĂů͟ ƉƌŽƉŽƌƚŝŽŶ ŽĨ ƉůĂƚĞůĞƚƐ ;ŵĞĂŶ ц“DͿ ǁŝƚŚŝŶ ƚŚĞ ϯ ͞ďĂŶĚƐ͟ - platelets below 

average; above average and within the normal range; or above the normal range (ULN) and their 

relationship with the main confounding factors in turn are shown in Table 2a (whole group) and 

Table 2b (children aged less than two years).  

Amongst the whole group, there were significant differences in the proportions of platelet counts 

within each band for children with non-vertebral fractures, existing vertebral fractures and the 

ƉƌĞƐĞŶĐĞ ŽĨ ŽŶĞ Žƌ ŵŽƌĞ ͞ĐŽŶĨŽƵŶĚĞƌƐ͘͟  TŚĞ ƉĂƚƚĞƌŶ ŽĨ ĂƐƐŽĐŝĂƚŝŽŶƐ ǁŝƚŚ fracture suggested that 

higher platelet counts ʹ above average, or above the upper limit of normal ʹ were associated with 

prior fracture. The mean proportion of platelet counts with an associated confounder was 

ƐŝŐŶŝĨŝĐĂŶƚůǇ ůŽǁĞƌ ǁŝƚŚŝŶ ƚŚĞ ͞AďŽǀĞ ULN͟ ďĂŶĚ ƚŚĂŶ ŝŶ ƚŚĞ ͞BĞůŽǁ ĂǀĞƌĂŐĞ͟ ďĂŶĚ ;ƉсϬ͘ϬϮϰϱͿ͘  

Amongst the children aged up to 2 years, there were significant differences in the proportions of 

platelet counts within each band for children with prior non-vertebral fractures, and with any 

confounder.  In general, in keeping with the higher percentage of platelet counts ǁŝƚŚŝŶ ƚŚĞ ͞ĂďŽǀĞ 
ULN͟ ďĂŶĚ ďĞůŽǁ ĂŐĞ ƚǁŽ ǇĞĂƌƐ͕ ƚŚĞ ƉƌŽƉŽƌƚŝŽŶ ŽĨ ƉůĂƚĞůĞƚ ĐŽƵŶƚƐ ǁŝƚŚŝŶ ƚŚĞ ͞ĂďŽǀĞ ULN͟ ďĂŶĚ ǁĂƐ 
higher for each confounder in those aged up to two years than for the entire group. 

The proportion of platelet counts in each band associated with each of the fracture-related factors is 

shown in table 3. The distribution within the platelet bands was similar across the groups. 



There was an inverse relationship between time since last fracture and platelet count, with the 

highest platelet z-scores recorded within 250 days of fracture. This is shown in Figure 2, which also 

shows that the overall shift in platelet counts persists well beyond one year after fracture. Platelet 

count varied by OI type as shown in Figure 3.  ANOVA by OI type with platelet count as the outcome, 

and including time since last fracture, confirmed that platelets were increased but less so in types I, 

IV and V than in types III and VI. 

 

Discussion 

In this study, 69% of platelet counts were either above the upper limit of normal or above average 

for the whole cohort; in the children aged under two years (all of whom received pamidronate), this 

rose to 84%.  This was reflected in a right-shift of platelet z-scores by nearly 1 standard deviation, 

with a rightward skew.  Platelets thus appear to be significantly higher in patients with OI than the 

normal population.  This was the case even when no confounding factors were present to explain 

this shift.  This increase in platelet count has not previously been reported in children with OI. There 

were significant differences between the OI types, with types III and VI showing generally higher 

values than types I, IV and V. Type V OI results from a mutation in the promoter region of IFITM5 and 

is associated with hypertrophic callus formation around fractures. Type VI OI is caused by mutations 

in the SERPINF1 gene, and is characterised by florid osteomalacia and altered bone matrix. 

The factors more strongly associated with a higher mean proportion of elevated platelet counts 

were fractures, both vertebral and non-vertebral, rather than concurrent illness or surgery. This 

applied to both the entire group and to those aged below two years.  Whilst there were no clear 

differences to suggest that new as opposed to healing fractures were more strongly associated with 

elevated platelet counts, time from fracture did impact on platelet count, suggesting that the healing 

process has some influence.  

Vertebral radiographs or DEXA scans were not available for every platelet count.  Not all vertebrae 

were visible clearly enough to determine fracture status on each image as ascertained from the 

radiology reports and review of DXA images.   Since not all platelet counts had an associated DXA or 

spine radiograph, and the timing of fractures in relation to platelet counts was variable, the 

ĐŽŵďŝŶĞĚ ŶƵŵďĞƌ ŽĨ ͞ŝŶĨŽƌŵĂƚŝǀĞ͟ ƉůĂƚĞůĞƚ ĐŽƵŶƚƐ ƚŚĂƚ ǁĞƌĞ ĂƐƐŽĐŝĂƚĞĚ ǁŝƚŚ Ă ƐƉĞĐŝĨŝĐ ƉƌŝŽƌ ĞǀĞŶƚ 
type (e.g. existing vertebral fracture) could be less than the total number of counts for that 

ŝŶĚŝǀŝĚƵĂů͘ TŚŝƐ ŵĞĂŶƐ ƚŚĂƚ ƚŚĞ ƌĞĐŽƌĚŝŶŐ ŽĨ ͞ƉůĂƚĞůĞƚƐ ǁŝƚŚ ;ĂŶǇ ĂƐƐŽĐŝĂƚĞĚͿ ĐŽŶĨŽƵŶĚĞƌ͟ ŵĂǇ 
appear discrepant with the values recorded within individual category recordings. 

The values for mean proportions associated with each confounder reflected the overall right shift of 

ƉůĂƚĞůĞƚ ǀĂůƵĞƐ͘ OĨ ŶŽƚĞ͕ ŚŽǁĞǀĞƌ͕ ƚŚĞ ŵĞĂŶ ƉƌŽƉŽƌƚŝŽŶƐ ǁŝƚŚŝŶ ĞĂĐŚ ďĂŶĚ ĨŽƌ ƚŚĞ ͞ĐŽŶĨŽƵŶĚĞƌ 
ƉƌĞƐĞŶƚ͟ ŐƌŽƵƉ ĚŝĚ ŶŽƚ ƐƵŵŵĂƚĞ ƚŽ ϭ͘Ϭ͕ ƐƵŐŐĞƐƚŝŶŐ ƚŚĂƚ ŵƵĐŚ ŽĨ ƚŚĞ ǀĂƌŝĂŶĐĞ ŝŶ ƉůĂƚĞůĞƚ ĐŽƵŶt is not 

accounted for by the identified factors. This in turn suggests that there are other causes for an 

͞ŝŶĨůĂŵŵĂƚŽƌǇ͟ ƌĞƐƉŽŶƐĞ͕ ǁŚŝĐŚ ŵĂǇ ĐŽŶƚƌŝďƵƚĞ ƚŽ ƚŚĞ ĐůŝŶŝĐĂů ƉŚĞŶŽƚǇƉĞ ŝŶ ƚŚĞƐĞ ƐĞǀĞƌĞůǇ ĂĨĨĞĐƚĞĚ 
patients. This potential inflammation in OI appears to be apparent throughout childhood, although 

more marked at an earlier age. 



Raised platelets have been reported in other genetically-determined conditions affecting bone.  In a 

case of a young boy with Camurati-Engelmann disease, platelets of 658 (150-400 reference range) 

were reported [13].  In Camurati-Engelmann disease, excessive release of TGFɴ from bone is 

associated with hyperostosis, bone pain and increased bone turnover. TGFɴ is intimately involved in 

bone remodelling [14].  It is produced in its inactive form by osteoblasts [15], incorporated into the 

bone matrix [16] and released by osteoclasts during bone resorption [17]. Increased TGFɴ signalling 

has been observed in three different OI mouse models (crtp-/-; G610C; and lethal brtl), but not in 

one (non-lethal brtl).  Anti-TGFɴ ĂŶƚŝďŽĚǇ ƚƌĞĂƚŵĞŶƚ ƌĞĚƵĐĞĚ ďŽŶĞ ƚƵƌŶŽǀĞƌ ĂŶĚ ŝŵƉƌŽǀĞĚ ďŽŶĞ 
mass, architecture and biomechanics in two models [14].   

Splenomegaly and increased myeloid  lineage expansion, along with elevation of IL-1ɲ and TNFɲ 

suggesting a chronic inflammatory stimulus were recently observed in another OI mouse model, the 

oim mouse. Targeted anti-TNFɲ therapy did not, however, alter bone resorption or improve fracture 

rate [18].. 

TGFɴ͛Ɛ influence is not limited to bone. Of particular interest, lung defects, including alveolar size, 

improved with TGFɴ neutralising antibody treatment in the mouse models of OI. Severely affected 

infants with OI have both small chests and a persistent oxygen requirement. This may simply reflect 

ribs that are often initially gracile and sometimes fractured.  The finding of raised platelets, 

particularly early in life, allows us to postulate that some of the observed lung disease may be due to 

inflammatory processes.  

Therapeutic interventions for OI are determined primarily by severity of disease.  Many children with 

OI have similar activity levels to their peers and may only require fracture management and 

physiotherapy [19].  They will also be screened for vertebral fractures, which may prompt a change 

of management and the introduction of bisphosphonate treatment.  Other more severely affected 

children will require consistent orthopaedic and rehabilitation support as well as bisphosphonate 

treatment from an early age [20].  Bisphosphonates have been used as treatment for OI for decades, 

although treatment protocols vary between centres [20].    Bisphosphonates have shown a 

significant increase in bone mass density in the spine and elsewhere [21, 22] due to their anti-

osteoclastic effects.  However, studies have struggled to determine any true benefit in terms of 

fracture rate, quality of life or mobility in patients with OI on bisphosphonate treatment [21, 22].  

Concerns have also been raised about the long term use of bisphosphonates, particularly with 

regards to the risk of atypical femur fracture in OI [23]͘  TŚŝƐ ƐƚƵĚǇ͛Ɛ ĨŝŶĚŝŶŐ ŽĨ one or more potential 

inflammatory pathways active in OI could help in the development of more targeted and effective 

treatments for OI. 

Our study has significant limitations; the data is based on a retrospective survey, albeit of a cohort of 

significant size. We have chosen specific potential confounders, based on the clinical course of these 

children; we may have chosen wrongly. In studies of older individuals without OI, there is no 

increase in the number of platelets following a fracture. Our recording of the potential confounders 

is incomplete in that the number of occasions when platelets were measured significantly exceeds 

the number of times when scans and radiographs were performed. Fracture ascertainment may be 

incomplete; we did not subject children to repeated skeletal surveys. Non-vertebral radiographs 

were taken only when a patient presented with a clinically apparent fracture; some older patients 

will have chosen to self-immobilise and not attend. The recording of the timing may not have been 



aĐĐƵƌĂƚĞ͕ ďƵƚ ǁĞ ĂƉƉůŝĞĚ ƚŚĞ ƐĂŵĞ ͞ƌƵůĞƐ͟ ƌĞŐĂƌĚŝŶŐ ƚŝŵŝŶŐ ŝŶ ƌĞůĂƚŝŽŶ ƚŽ ƐƵďƐĞƋƵĞŶƚ ƉůĂƚĞůĞƚ ĐŽƵŶƚƐ 
for all subjects. The vertebral fracture data is only as accurate as the scan quality and time between 

each scan allows. Some subtle vertebral fractures may have been missed and not all vertebrae were 

clearly visible on each scan or radiograph. There may be other inflammatory confounding factors not 

identified here. Finally, we have no other confirmatory measures suggesting that the raised platelets 

are an inflammatory response. 

Despite these limitations, the striking right-shift in the distribution of the platelet counts is 

suggestive of a previously unidentified process contributing to the clinical phenotype of these 

children. We are not able to explain much more than 50% of the variance in this increase. This 

increase may be caused by excessive remodelling of abnormal bone matrix leading to pro-

inflammatory cytokine release.  Further studies are required to define the extent and origin of this 

process and the affected pathways. There may be a therapeutic opportunity here to target what we 

believe to be an inflammatory process and improve outcome for these children, once that process is 

more clearly defined.  
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What is known about this topic 

 

Osteogenesis imperfecta is the commonest cause of inherited bone fragility, affecting 1 in 15-16,000 

live births 

Severely affected children have multiple fractures, progressive bony deformity, restricted mobility 

and chronic pain. 

Treatment with bisphosphonates, regarded as standard care, has been reported to increase bone 

mass, restore vertebral architecture and, in some studies, reduce fracture frequency. 

 

What this study adds 

 

This study has identified a right shift in the distribution of platelets, more marked in the younger 

children 

This right shift is not accounted for by prior or new fractures, or other concurrent illness 



The results suggest that inflammation-related pathways could be targets for treatment in children 

with the more severe form of osteogenesis imperfecta   



Figure legends 

Figure 1a. Platelet count Z-scores plotted against age in years; the shaded area represents the 

normal range 

Figure 1b. Histogram of platelet z score frequencies; normal distribution shown as red dashed line 

Figure 2. Platelet count z-score plotted against time since fracture, with line of best fit 

Figure 3. Box plot of platelet z-score by OI type, showing 95% CI around the mean (shaded area) 
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