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Abstract

Electrohydrodynamic (EHD) air blowers are receiving increasing attention as a thermal management

cooling solution to overcome the restrictions of traditional rotary cooling systems used in small-scale

consumer electronics. In this work, the performance and flow pattern characteristics of miniature EHD air

blowers are evaluated for practical convective heat transfer applications, based on device size, operating

voltage and power, and generated flow rate. For a range of blower heights up to 10 mm, two-dimensional

(2D) and three-dimensional (3D) numerical models of a wire-to-plane EHD channel configuration are

developed and validated against previous experimental data. Investigation of the influence of blower

sidewalls, based on width parameter, on flow characteristics reveals that the 2D simulations for short and

wide blower domains are valid to predict the generated flow rates effectively compared to that obtained by

the means of 3D simulations. An optimized combined EHD blower is developed as a flow-controlled

cooling system in thermal management applications, which minimizes the required operating voltages for

specified flow rates. Comparisons against commercial rotary blowers demonstrate that the miniature EHD

blowers are more competitive as cooling solutions for compact applications and extended heated surfaces

based on transduction efficiency, blower size, flow production of uniform velocity profile, and power

consumption.

Keywords: Electrohydrodynamic (EHD) air blowers, EHD flow characteristics, Pumping performance, Microelectronics
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1. Introduction

Due to the inexorable increase in heat generation from microelectronic devices and components, the

development of effective thermal management cooling solutions has become an increasingly critical

challenge for the academic community, engineering designers and the electronics industry. Forced-air

convection induced by rotary fans remains the most popular cooling method for most electronic devices

especially in portable and consumer products due to convenience, design flexibility and low manufacturing
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costs as well as the capability to dissipate the generated heat to the ambient environment, which is

ultimately a required feature for most air-cooled devices. However, the increasing performance of

microelectronics has led not only to a higher heat generation in electronic components but to smaller-scale

devices. Associated with this trend are the considerable challenges of miniaturizing rotary fans to meet the

required heat dissipation in thin applications, where the device thickness is a critical and limiting factor [1].

Typically, the fan blade profile height and motor design are the main key factors that determine the

fan performance, which can be predicted using well-known fan scaling laws. In their experimental study,

Walsh et al. [2] showed that the magnitudes of flow rate, pressure rise, and power consumption calculated

by scaling laws for miniaturized centrifugal fans, which are usually used in thin electronic devices, are

inaccurate compared to those of experiments. Their results revealed that it is not valid to apply fan scaling

laws based on only blade profile height to determine fan performance independently of fan diameter.

Based on fan aspect ratio, which is defined as the ratio of the fan blade height to its diameter, their results

revealed that the maximum flow rate lies in a range of aspect ratio between 0.07 and 0.16. Therefore, as

fan aspect ratio decreases (or the fan becomes smaller), both flow rate and pressure coefficient are

significantly reduced at a constant rotational speed although an associated drop in power consumption can

be achieved.

Moreover, it has been reported that the traditional fan scaling laws are not effective to predict the

flow characteristics of miniature centrifugal fans at low Reynolds number flows due to increased viscous

effects [3]. Indeed, as the fan becomes smaller and operates at low rotational speeds, the boundary layers

created on the fan rotors at low flow regime effectively block the flow through the fan, reducing the flow

rate, and causing significant losses in the fan performance and transduction efficiency [4]. Furthermore,

design of miniature fan motors and rotors represents further challenges for reliable and practical

implementation, due to the high manufacturing cost, limited rotational speed, and need to prevent bearing

failure [5]. Among other emerging air cooling technologies proposed as alternatives to rotary fans such

synthetic jets and piezoelectric fans, recent performance review and comparison study concluded that

electrohydrodynamic (EHD) air movers have great potential to overcome the limitations of miniaturized

mechanical means to induce air cooling in modern microelectronic applications [1]. With the advantage of

no moving parts, EHD air pumps have silent operation, good reliability, flexibility in scale and design, and

considerable flow production for effective heat removal on small-scale applications.

The operation of EHD airflow induced by corona discharge occurs when a high voltage is applied

between a highly curved corona emitter electrode (usually wire or needle) and a grounded collecting

surface electrode, creating an electric field gradient in the air gap across them. The enhanced electric field

near the emitter electrode ionizes the surrounding air particles and the created ions move towards the

collector of opposite charge under the influence of the electric field and electrostatic forces, transferring

their momentum and energy to the neutral air molecules via collisions and inducing air movement known
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as an ionic wind. A simple schematic diagram of an EHD airflow induced by a positive corona discharge is

shown in Fig. 1.

Fig. 1. Schematic diagram of an EHD airflow induced by a positive corona discharge.

EHD flow has been widely investigated using different electrode configurations either as air pumps to

maximize flow generation, improve conversion efficiency, and evaluate the flow characteristics and

velocity profile [6-11], or for forced convection heat transfer [12-15]. Moreover, EHD driven airflow

provides another feature when it acts as a secondary flow to mix flows and modify the thermal boundary

layer for heat transfer enhancements [16-19]. In the early 1960s, Robinson [20] presented one of earliest

studies to examine the possibility of applying EHD driven flow for practical applications and concluded

that EHD blowers have attractive advantages over conventional mechanical fans. Kalman et al. [21] were

the first to study the optimization of a wire-to-plates EHD blower configuration and investigate its

effectiveness as a cooling solution for electronic components. This study was extended later by Rashkovan

et al. [22] to develop the optimization of the previous EHD blower and improve its performance.

However, it is only recently that the interest in employing EHD technology as an alternative cooling

solution to rotary fans has increased for the applications of localized cooling of microelectronic

components [23-25] and integration with heat sinks [26-28]. The first practical and successful integration

of EHD air blower into a real-world electronic applications has been performed by Jewell-Larsen et al. in

2009 [29], who replaced a mechanical fan in a laptop (with a Thermal Design Power of 60 W) by a

compact wire-to-plate EHD blower. The results of real operation demonstrated that a miniature EHD

blower can offer promising cooling performance with lower installation size and acoustic levels compared

with rotary fans. In their work to develop and optimize EHD blowers for practical applications, Jewell-

Larsen et al. [30] identified the airflow performance scaling laws that predict the flow rate and static

pressure of EHD devices based on the operating power and cross-sectional dimensions (width and height)

of EHD blowers.

Due to the strong influence of the geometrical parameters of EHD devices on the corona discharge

process and the resulting EHD flow, and in order to save cost and time, significant modelling efforts have

been performed over the last decade to study the impact of design parameters and optimisation of
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mesoscale EHD air pumps on the performance of flow generation or heat transfer characteristics [23, 31-

35]. Very recently, Ramadhan et al. [36] presented a numerical study to optimise the configuration of

miniature wire-to-plane EHD blower for a range of heights (from 2 to 10 mm) based on different operating

conditions (voltage and power). Simple relations for each optimization method were determined to predict

the optimal length and location of the collector electrode of each blower. Results of the static pressure and

flow rate obtained by each optimized blower showed agreement with those predicted by the EHD scaling

laws previously presented [30].

This work is established based on the results of the previous study [36] and is the first, to the authors’

knowledge, to investigate the performance and the exit flow patterns of optimized miniature EHD blowers

for practical applications. The investigation is considered with the focus on the key design factors,

including device size, power consumption and generated flow rate. Two-dimensional (2D) and three-

dimensional (3D) numerical models of the EHD airflows are developed and validated carefully against

previous data. Based on thermal management considerations, an optimized combined EHD blower is

proposed and comparisons, based on efficiency and performance, against commercial miniature rotary

blowers are presented.

2. Numerical Modelling

2.1 EHD governing equations

The fundamental equations of EHD airflow that describe the interaction between the electric charges

and the particle movement in the air can be given as following,

The electric field intensity ( ) created between the electrodes is described by Gauss’s law,

where q is the space charge density (C/m3) and is permittivity of free space (= 8.854×10-12 C/V.m). This

can be defined in terms of the electric potential, , by

The electric potential in the air is governed by Poisson’s equation, which can be obtained by substituting

(2) into (1),
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The equation that couples the electrostatic and Navier-Stokes equations for the airflow is derived by

combining the following three equations:

i. The electric current density equation,

where is the air ion mobility in the electric field (m2/V.s), is the velocity vector of airflow, is the

diffusivity coefficient of ions (m2/s). The three terms on the right side of equation (4) represent the charge

conduction (the ion movement due to the electric field), charge convection (transport of charges by the

airflow), and charge diffusion, respectively [37].

ii. The continuity equation for the electric current,

iii. The conservation of mass equation,

Combining equations (4) and (5) and using the continuity equation (6) gives the charge transport equation:

Since the value of the air velocity ( ), which represents the charge convection term in equation (7),

is very small compared with the drift velocity of ions ( ) in the charge conduction term, it can be

neglected [14]. The charge diffusion coefficient is included in (7) with a constant value although its effect

on the numerical accuracy is relatively negligible [38]. The Navier-Stokes equations and continuity

equation (6) describe the hydrodynamic part of the model for the steady state incompressible airflow under

the effect of the electrostatic force,

where is the air density (kg/m3), is the air pressure (Pa), is the air dynamic viscosity (Ns/m2), and the

term of represents the body or Coulomb force (N/m3).

The coupled equations for the electric field (3), charge transport (7), and airflow (6 and 8), were

solved using the commercial package, COMSOL Multiphysics (V5.1), a partial differential equations

solver based on the finite element method. The 3D modelling of EHD flow was solved using a high

performance computing server (POLARIS) at the University of Leeds.
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2.2. Validation of the numerical method

2.2.1. Solution domain and boundary conditions

The accuracy of the numerical method performed in this paper for the 3D model is validated against

ranges of experimental and numerical data of a wire-to-plane EHD channel presented in [30], whereas the

2D validation results for the airflow rate and static pressure were reported in detail in [36]. A cross-section

of the EHD channel geometry used in the validation of the 3D model is shown in Fig. 2, and the modelling

parameters are listed in Table 1. In order to save computation time and minimize the large memory

requirement for the 3D EHD flow models (up to 200 GB), symmetry boundary conditions were applied at

the horizontal plane centered between the channel walls and at one of the channel sidewalls of the

simulation domain. The numerical solution procedure and the boundary conditions applied to the present

numerical model (summarized in Table 2) are adopted as described in [35, 36], including the assumptions

for space charge generation. This is considered by applying Kaptsov’s assumption [39] and using Peek’s

empirical formula [40] to estimate the electric field strength created on the surface of a positive corona

electrode.

Fig. 2. Cross-section of the EHD channel geometry [30] used in the numerical validation. Dimensions in millimetres.

Table 1. Geometric parameters [30] and numerical modelling values used in the present validation model.

Parameter Value

Applied potential, 0 – 10 kV

The breakdown electric strength of air, 3.23×106 V/m

Ion mobility coefficient, 2.1×10-4 m2/V.s

Charge diffusion coefficient, 5.3 ×10-5 m2/s

Density of air, 1.23 kg/m3

Dynamic viscosity of air, 1.8×10-5 N.s/m2

Corona wire radius, 0.0125 mm

Channel height, 2 , 6 mm

Channel length, 70 mm

Channel width, ( corona wire length) 100 mm

Horizontal distance between the electrodes, ( ) 2 , 6 mm

Collecting surface length 5 mm
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Table 2. Boundary conditions used in the validation and developed numerical models.

Boundary Electrostatics Charge transport Fluid dynamics

Corona wire electrode No-slip

Collector electrode Grounded No-slip

Dielectric channel walls
Neumann condition Zero diffusive flux

No-slip

Channel inlet
Prescribed velocity

[33, 35-37]

Channel outlet

Air boundaries Symmetry

A mesh independence study was performed for the flow in the upper half of the 3D simulation

domain of 6 mm thick, 100 mm wide and 70 mm long, with increased mesh refinement near the corona

and collecting electrodes, using three mesh levels with approximately 507550, 631000 and 757230

tetrahedral elements. Results revealed that the maximum difference in the value of the average air velocity

at the blower outlet was approximately 0.6% between the two finest mesh densities. This demonstrated that

the second mesh density, shown in Fig. 3, provides an acceptable balance between computational cost and

solution accuracy.

Fig. 3. Distribution of mesh element density for a half 3D domain of an EHD blower geometry with h = 6 mm and w = 100 mm,

showing the mesh refinement at the emitter and the collector electrodes. Dimensions in metres.

2.2.2 Numerical validation results

The results of the 3D numerical solution are shown as volume map distributions in Fig. 4, which

were generated at 1.5 W for a blower of height, length and width of 6 mm, 70 and 100 mm, respectively,

showing the distributions of the electric potential, charge density, and air velocity generated through the

channel. Fig. 5 compares the mean outlet velocities of the present simulations against experimental data

and numerical results presented in [30] for a range of input power. The results reveal that the average
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discrepancies in the mean air velocities of the present 2D and 3D simulations are 9.2% and 5.4%,

respectively, against the experimental data, showing good agreement and demonstrating the accuracy of

the present numerical approach performed using COMSOL Multiphysics.

Fig. 4. Results of the 3D numerical solution as volume map distributions of a half of EHD channel generated at 1.5 W with 6

mm thick, 100 mm wide and 70 mm long, showing the distributions of: (at top-left) electric potential, (at top-right) space charge

density, and (at bottom) air velocity. Dimensions in meters.

Fig. 5. Validation results of the mean outlet velocity generated by an EHD blower of h = 6 mm, w = 100 mm and L = 70 mm,

for a range of operating power.
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2.3 Numerical configuration domain

The EHD blower geometry used in the present study is shown in Fig. 6. It is considered based on the

optimal design parameters presented in [36], which are defined by

where is the optimal electrode gap (mm), is the maximum effective length of the collector (mm),

(each for the case of constant input power), and h is the blower height (from 2 to 10 mm). The same

modelling values used in the validation model are adopted, whereas the geometric parameters of the

present EHD blower configuration are detailed in Table 3. The present work aims to highlight the

advantages and characteristics of miniature EHD pumps, compared to commercial rotary blowers, for real-

world thermal management applications. In order to improve the performance of optimized miniature EHD

air blowers, the key design factors, including the installation size, limitations of the operating power and

applied potential, and required cooling flow rate, are consid0ered.

Fig. 6. Half domain of the EHD blower geometry used in the present study [36]. Dimensions in millimetres.

Table 3. Geometric parameters considered in the present study.

Geometric parameter Value

Corona wire diameter, 0.025 mm

Channel length, 12 – 20 mm

Channel height, 2 – 10 mm

Channel width, 10 – 60 mm

Horizontal distance between electrodes, = [(h / 4) + 0.5], mm

Collecting surface length, = [1.5 h], mm
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3. Results and Discussion

3.1 Influence of blower width

This section discusses the impact of the blower sidewalls on the air velocity profile and magnitude

for a range of channel widths. It also studies the accuracy of the 2D numerical models to predict flow rates

compared to the 3D modelling, where the friction losses due to channel sidewalls are included. To the

authors’ knowledge, this is the first 3D numerical investigation of the impact of the channel sidewalls on

the flow characteristics for narrow EHD ducts, although the 2D simulation of EHD flow performed in

previous studies has shown acceptable agreement against experimental data for wide flow channels. Due to

limitations caused by the large solution memory required for the 3D modelling of thick domains (thicker

than 6 mm), only blowers of h = 2 and 6 mm are considered in the present investigation. The optimal

location and length of the collecting surface were assigned according to equations (9) and (10), whereas

the length of each blower was reduced to 20 mm and the blower width was varied between 10 and 60 mm.

Fig. 7 illustrates the effect of the channel sidewalls on the outlet average velocity generated by each

EHD blower at a fixed operating voltage that corresponds to 15 W/m input power used in the 2D

simulation, showing the percentage decrease in the velocity magnitude for each blower width compared to

that predicted by the 2D simulation. It is important to mention that fixing the operating voltage ensures that

the generated air velocity through each blower remains constant regardless of the blower width, and any

change in its magnitude is only caused by sidewall effects. Although there are slight differences between

the values of percentage decrease at a given width of both blowers, the actual impact of the flow losses are

different and can be determined based on the blower aspect ratio, which is defined by the ratio of the

blower height to its width (h/w). For instance, the blower of h = 2 mm with an aspect ratio of 0.2 (at w = 10

mm), leads to a reduction in the velocity by 5.5% lower than that predicted by the 2D simulation,

compared to an approximately 3% reduction for a blower of equivalent aspect ratio with h = 6 mm and w =

30 mm. However, the figures demonstrate that the influence of the flow resistance through shortened and

thin EHD blowers decreases and can be neglected as the blower becomes wider (or the aspect ratio

decreases). This indicates that using 2D modeling for short and wide EHD blowers is valid to predict flow

rates effectively compared to that obtained by the means of the 3D simulation.

The results of the 3D numerical solution for the velocity distribution through narrow and wide EHD

blowers with h = 2 and 6 mm are displayed in Fig. 8, showing that the induced flow at the exit of both

blowers has uniform velocity gradient and the impact of flow resistance is insignificant.
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Fig. 7. Influence of blower width on the average outlet velocity generated in 3D modelling at a fixed operating voltage, showing

the percentage decrease in the velocity magnitudes compared to the 2D results for optimized blowers of (a) h = 2 mm at ≈ 3.9 
kV, and (b) h = 6 mm at ≈ 5.7 kV, each with 20 mm long.    

Fig. 8. Velocity distribution induced at a fixed operating voltage that corresponds to15 W/m, through narrow and wide

optimized EHD blowers for h = 2 mm (top) and h = 6 mm (bottom). Dimensions in metres.

Fig. 9 shows that the outlet velocity profile is uniform and has a parabolic distribution along the

vertical y-z plane (at x = 30 mm) for the both wide blowers considered in Fig. 8, based on the coordinate

system shown in Fig. 10.
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Fig. 9. Normalized velocity profiles in the central vertical y-z plane (at x = w/2), along the blower outlet of (a) h = 2 mm and (b)

h = 6 mm.

Fig. 10. Schematic diagram of the rectangular EHD blower’s coordinate system.

Fig. 11 shows the velocity distribution on different x-y planes along the blower width for the two

blowers considered here. For the thinner blower of h = 2 mm, it can be seen that the outlet velocity profile

is similar (flat) for all selected planes (at z = 0.25, 0.5 and 1 mm), whereas the velocity magnitude is

affected by the friction losses at the sidewalls (along the x-axis) and the bottom and upper walls (along the

z-axis) of the blower, as shown in figures 10(a) and (b). The same behaviour is observed for the thicker

blower of h = 6 mm, but with a slight disruption in the top-hat profile at the regions close to the upper and

bottom walls (z = 0.5 and 1 mm), as shown in figures 10(c) and (d). This can be attributed to the impact of

the electric field distribution caused by the increase in the vertical components of the Coulomb force as the

blower becomes thicker [36].

In order to highlight that EHD blowers produce a uniform velocity profile, their flow pattern is

compared with that produced by rotary fans, as presented in [41]. Fig. 12 shows experimental

measurements of air velocity distribution at the exit flow region of a centrifugal fan of diameter and height
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of 60 mm and 11 mm, respectively. It can be clearly observed that the velocity profile of the airflow

induced by rotary air movers is highly non-uniform, which is due to the non-uniform distribution of the

static pressure on the fan impellers.

Fig. 11. Velocity profile at the blower outlet in the x-y plane, for different widths of the blowers of h = 2 and 6 mm.

Fig. 12. Distribution of outlet velocity on the x-z plane at the exit region of a centrifugal rotary fan at 3100 rpm [41].
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In a wire-to-plane EHD channels, the blower width is usually equal to the emitter wire length, and

therefore, it can be employed to control the flow rate, static pressure, produced velocity and operating

voltage. An EHD blower with 4 mm thickness and 15 mm length was modelled in 2D simulations at a

fixed power of 0.5 W to demonstrate these relations.

The electrostatic pressure created due to the body force, which acts on the collecting surface and

equals the channel static pressure, can be calculated by integrating the body force within the distance

between the electrodes [30, 42]. The pressure at any point (z) along the electrode gap, G, for an EHD wire-

to-plane configuration is given as [42],

where and ( ) are respectively the charge density and the electric field strength within the

electrode gap.

Fig. 13(a) shows how the pressure decreases and the flow rate increases as the blower becomes wider

or the wire extends at a fixed input power. This behaviour is attributed to the reductions in the operating

voltage and the electric field (or the body force) created across the electrodes, leading to reduced air

velocities, as shown in Fig. 13(b). In this case, the increase in the ion current required for keeping the input

power at a fixed level is due to the increase in the wire length. This can be explained based on the

definition of the ion current,

where is the surface area of the corona wire (m2). Since the ion mobility is assumed constant and both

the applied voltage and electric field strength decrease in this case, thus the ion current increases as

increases.

Practically, this trend is attractive for cooling extended heated surfaces such as heat sinks, where

higher flow rates using lower operating voltages are required. Furthermore, the wire length can provide an

additional useful degree of freedom by representing the EHD blowers in P-Q curves, which are usually

used for rotary fans, to reflect their specifications based on static pressure (P) and generated flow rate (Q),

as shown in Fig. 13(c).

For EHD devices of a wire-to-plane channel configuration, Larsen et al. [29] stated that both the

static pressure and outlet velocity are functions of power per wire length. They demonstrated that the

static pressure changes proportionally to (Power)2/3, while the average velocity is proportional to

(Power)1/3. Fig. 13 shows that the current predicted trends of static pressure and outlet average velocity
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change proportionally against the blower width w at a fixed operating power, and agree very well with

those obtained from scaling relations presented in [29], which are identified by dashed lines in figures (a)

and (b).

Fig. 13. Effect of the blower width (or the emitter wire length) on (a) static pressure and flow rate, (b) outlet average velocity

and applied voltage, and (c) fan P-Q curves, for a blower of h = 4 mm operated at 0.5 W.

3.2 Combined EHD blowers

In the practical applications, EHD blowers are usually designed to fit the limited thickness of the

electronic device, regardless if the used blower height is not the most efficient one compared to other

levels of blower heights at a given operating power. Fig. 14(a) shows the average outlet velocity as a

function of input power for different optimized blowers of length 20 mm. It can be seen that the average

velocities generated by thinner blowers are higher than those obtained by thicker ones at a given input

power. However, although the expected airflow rates produced by the thicker blowers are higher, the

applied potential required to fix the power at a certain level increases as the blower becomes thicker, as
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shown in Fig. 14(b). Typically, reducing the blower height at a given wire length and fixed input power

leads to a higher air velocity, lower operating voltage, and reduced installation size, meeting the thermal

management requirements for cooling thin microelectronics. Based on this fact and in order to balance

these related factors, an EHD blower of two combined thin channels are developed and compared with a

blower of an equivalent height at a fixed operating power.

Fig. 14. Operating input power as a function of (a) average outlet velocity, and (b) required applied voltage, for different

optimized EHD blowers [36].

Two EHD blowers, each with 4 mm thickness and optimal design parameters (GP = 1.5 mm and bP =

6 mm), are combined, forming an integrated blower of 8 mm thickness. In order to reduce the friction

losses of the EHD-driven flow, the middle wall separating the two thin channels (located downstream of

the collector) is removed, while the wall located upstream of the collector is kept to avoid electric field

interference. The combined blower is operated at an overall power of 25 W/m, which is divided equally

between the thin channels each with 12.5 W/m, and the generated airflow velocity is compared with that

generated by an optimized blower of h = 8 mm (GP= 2.5 mm and bP = 12 mm), using the same total

operating power.

The predicted distributions of the air velocity generated by both blowers are shown in Fig. 15. The

results demonstrate that the combined blower of two 4mm-channels is able to produce an outlet average air

velocity up to approximately 3 m/s, which is a little higher than that identified by a blue dashed line in Fig.

14(a) for a blower of h = 4 mm at 12.5 W/m due to the reduced friction losses, and is very close to that

obtained by the blower of h = 8 mm (3.2 m/s). This indicates that the combined blower has almost the

same pumping efficiency of that of h = 8 mm, consuming the same total electrical power but with a

reduced operating voltage by approximately 3 kV (39%), as shown with red dashed lines in Fig. 14(b).



17

Fig. 15. Distribution of air velocity generated at 25 W/m through (a) combined EHD blower of two 4 mm-thick channels, and

(b) an EHD blower with h = 8 mm. Dimensions in metres.

Table 4 compares different EHD blowers generated at 2.5 W, each of 100 mm width, showing that

the combined blower has the best performance among others due to its relatively high flow rate produced

using a low operating voltage. In addition, due to the shorter length of the collectors used in the combined

blower (6 mm each), the length (or the overall size) of the new blower can be reduced further compared to

those of the blower of h = 8 mm (12 mm). Moreover, the new blower offers an improved outlet velocity

profile with two high stream paths, which is highly beneficial for cooling specific electronic components.

Table 4. Comparison of airflow rate generated at 2.5 W by different EHD blowers, each of 100 mm width and 20 mm length.

Trend
Blower height,

h (mm)

Optimal collector

length, bP (mm)

Electrode gap,

GP (mm)

Operating

voltage (kV)

Flow rate

l/min CFM

(a) 4 6 1.5 5.4 91 3.21

(b) 6 9 2.0 6.5 124 4.37

(c) 8 12 2.5 7.5 152 5.39

(d) 10 15 3.0 8.4 178 6.28

(e) 8 (Combined) 6 1.5 4.6 143 5.03
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Fig. 16 illustrates the curves of static pressure against airflow rate generated at 2.5 W by the EHD

blowers listed in Table 4. The trends from (a) to (d) in the figure reveal that the flow rate decreases as the

blower height is reduced at a fixed blower width while the static pressure increases. Indeed, as the blower

becomes thinner at a given operating power, both the horizontal (GP) and vertical (height parameter)

electrode gaps decrease, increasing the electric field strength created across the electrodes. Unlike the case

explained using equation (12) in the previous section, both the electric field and the ion current increase

here due to the reduction in the electrode gap at a fixed wire length, which improves the body force and

leads to a higher pressure head.

For the combined blower (e), the thin EHD channels that have small electrode gaps and a shared

outlet area can create high electric fields and contribute together to generate the total flow rate and pressure

head of the combined blower, which (the total pressure) is found to be higher compared to that of the

blower (a) although they have the same electrode gap and consume equal total power. This can be

attributed to the level of applied voltage required to fix the input power at a certain level in both blowers (a

and e), as listed in Table 4, which highly affects the electric field strength and its distribution along the

collecting surfaces. It is found that the change in the static pressure generated by a single channel of the

combined blower (at 12.5 W/m) and that of the blower (a) (at 25 W/m) confirms the relationship between

the static pressure and input power reported in [29, 30] for ideal EHD devices, which suggests that

. The total static pressure of the combined blower is calculated following the relation given in

[29], which states that a multi-stage EHD device operated by a number of wires (N) at a reduced electric

field interference has N times the static pressure of a single wire device.

Fig. 16. Fan P-Q curves of different EHD blowers generated at 2.5 W, each of w = 100 mm.
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The combined blower can provide another important advantage when it is used as a flow-controlled

cooling system in thermal management applications. In this case, the flow velocity generated by the

combined blower can be controlled by changing the operating power supplied to each of its channels,

depending on the local cooling rate required for the application. Fig. 17 shows the simulation results of a

flow-controlled EHD blower at 25 W/m total power, which is consumed differently with 10 and 15 W/m

by the upper and bottom channels, respectively. Both the average outlet velocity and the flow rate are kept

constant but a different velocity profile along the blower outlet is achieved. It is useful to bear in mind that

the presented combined EHD blower of two 4-mm channels was developed as an example, and further

developments for other thicknesses with more than two thin channels can also be investigated.

Fig. 17. Distribution of air velocity through a flow-controlled combined EHD blower generated at 25 W/m. Dimensions in

metres.

3.3 Comparisons against rotary blowers

This section presents a comparison of the performance of miniature EHD blowers and mechanical

centrifugal fans. The results of 3D simulations developed for thin EHD blowers of 3 mm thickness and 12

mm length were compared with equivalent commercial rotary blowers provided by SUNON Inc. [43],

based on blower size, power consumption and flow rate production, as illustrated in Table 5. It can be

observed that the EHD air movers are more competitive as cooling solutions than the conventional blowers

for miniaturized applications and extended heated surfaces. Unlike traditional rotary blowers, the reduction

or extension of the height and width of the EHD blowers are independent of the device length, offering

flexible fabrication for the blower structure to fit limited spaces or extended heated components, whereas

the rotary blowers are restricted by the circular rotation of the blades.

For example, at a fixed blower width, the EHD blower (g) can produce approximately the same flow

rate of that provided by the rotary blower (a) with a slight increase in the power consumption but with a

60% reduction in the size. Moreover, increasing the operating power of the blower (f) by 0.14 W, over that
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consumed by blower (a), leads to improvement in the flow rate with reduction of the size by approximately

37% and 33%, respectively, showing nearly similar efficiency with a gain in the width of 20 mm.

Furthermore, the narrow EHD blower (j) shows higher efficiency than the rotary one (d) by more than

1050%, generating up to 75% higher airflow and a 180% reduction in electrical power, but with an

increase in the device size by 48%. However, decreasing the length of the blower (j) to 8 mm can reduce

its size to 240 mm3, which is equivalent to that of (d).

Table 5. Comparison of characteristics of EHD blowers with 3 mm thickness modelled in 3D simulations at a range of operating

voltage from 4 to 4.3 kV, against those of mechanical blowers of the same height presented by SUNON [43].

Blower

Type

Width, w

(mm)

Length,

L (mm)

Size

(mm3)

Consumed

Power (W)

Flow Rate, Q Transduction

Efficiency (CFM/W)(l/min) (CFM)

Rotary

Blowers

(a) 30 30 2700 0.36 18 0.64 1.78

(b) 17 17 867 0.1 6.5 0.23 2.3

(c) 12 12 432 0.1 2.67 0.094 0.94

(d) 9 9 243 0.28 1.17 0.0413 0.147

EHD

Blowers

(e) 50 12 1800 0.75 29.4 1.04 1.4

(f) 50 12 1800 0.5 24.6 0.87 1.74

(g) 30 12 1080 0.45 17.4 0.614 1.36

(h) 30 12 1080 0.3 14.4 0.51 1.7

(i) 20 12 720 0.2 9.6 0.34 1.7

(j) 10 12 360 0.1 4.8 0.17 1.7

In addition to other merits that the EHD-driven flow devices have over the rotary blowers such as

silent operation, and no vibration or moving parts, they have the further advantage of producing more

uniform outlet velocity profiles across their width [29, 30], as shown in Fig. 18. This advantage offers

active heat dissipation from narrow flow paths such as heat sink fin-channels, compared to the non-

uniform outlet velocity profile obtained by mechanical blowers, especially when they are miniaturized.

Fig. 18. Three-dimensional simulation results of EHD blower of 3 mm thickness with different widths and operating powers,

showing a uniform outlet velocity profile. Dimensions in metres.
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It is important to note also that the rotary blowers presented in this comparison are the thinnest

blowers commercially available, according to the authors’ knowledge, while further reduction in the

miniature EHD blower size (with heights less than 2 mm and lengths less than 12 mm) is possible.

However, the high voltage required to operate the EHD discharge still presents a practical challenge for

using it to cool portable microelectronic devices such as laptops. In fact, the applied potential can be

minimized for thin EHD blowers by using specific collector geometry, very fine emitter wire and

optimized electrode gap. From a design and thermal management perspective, the balance between the key

design factors, including the space available for the cooling system, the limitations of operating power, and

the required cooling flow rate, is the key criteria for optimizing EHD devices for small-scale electronic

applications. Once the balance between the aforementioned factors is determined, depending on the

limitations and requirements of the application itself, design optimization and modification of the

miniature EHD blowers can make them feasible alternatives to mechanical cooling solutions in real-world

applications.

4. Conclusions

A numerical study to highlight the practical capabilities of miniature EHD air blowers is performed

using both 2D and 3D numerical simulation methods that have been validated successfully against

previous data. This study explores the performance and flow pattern of miniature EHD air blowers

required in the practical implementation as thermal management cooling solutions. Based on blower width,

investigation of the influence of the blower sidewalls on the flow characteristics shows that 2D simulations

are valid for shortened and wide blower domains and can predict airflow rates generated accurately

compared to that obtained using the 3D simulations. In order to minimize the operating voltage required to

generate a certain flow rate, a configuration of two combined thin EHD blowers is developed and

compared against other levels of blower height. Results reveal that the combined blower can produce flow

rates close to that obtained by a blower of the same thickness, consuming the same electric power but with

reducing the applied potential by approximately 40%. This can be exploited to provide further control of

localized cooling in thermal management applications. A comparison against commercial rotary blowers

demonstrates that the optimized miniature EHD blowers are more competitive for cooling miniaturized and

extended heated surfaces based on blower size, uniform flow rate, and power consumption.

However, as is true of many other emerging technologies, EHD based cooling systems still require

further research, development and design optimization, particularly to reduce the required operating

voltages, before they can be adopted commercially for the thermal management of thin and small-scale

electronic devices.
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