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Summary 

The significance of synthetic crime datasets in criminological research cannot be underestimated, as 

real crime datasets are usually unavailable in many policing jurisdictions, due to reasons such as 

privacy concerns and the lack of shareable data formats. This study introduces a dynamic 

microsimulation framework by which a specified spatiotemporal crime pattern can be synthesised. A 

case study presented compares a real crime dataset with the synthesised datasets, and found certain 

spatiotemporal similarities between them. The developed model has the potential for wider 

applications in criminology, given some identified areas of improvement. 
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1. Introduction  

Crime is an inherently human phenomenon; a complex interaction between the criminals, victims, 

police and the surrounding environmental factors (Cohen and Felson, 1979; Brantingham and 

Brantingham, 1993). Due to the complex nature of human behaviour in relation to its environment, it 

is often difficult to synthesise these interactions in a computer environment, in order to generate 

synthetic crime datasets, which are often required for many criminological studies. Given the fact that 

real crime datasets are usually unavailable in many policing jurisdictions, due to reasons such as privacy 

concerns and the lack of shareable data formats, synthetic datasets may provide alternative datasets for 

a lot of criminological research. In previous studies, synthetic datasets have been used to examine 

criminological theories (Chastain et al., 2016) as well as for investigating the performance of analytical 

methods (Shiode and Shiode, 2013). For example, the detection capability of a cluster detection 

algorithm was assessed using artificially-induced crime hotspots (Shiode and Shiode, 2013). Our goal, 

in this study, is similar; to develop a simulation framework by which a synthetic crime dataset can be 

generated, with a defined spatiotemporal pattern. The novelty of our study lies in the integration of 

complex human behaviours with crime the underlying environmental factors to model the 

spatiotemporal point patterns, within a heterogeneous network landscape. The detection or 

identification of such as a pattern may subsequently be used to assess the performance of crime hotspot 

algorithms. 

In this study, we adapted a dynamic microsimulation model (DMM) that was originally used in the 

field of ecology for simulating the interactions between foraging animals and their environments 

(Morales et al., 2004; McClintock et al., 2012). In this model, the behavioural movement of an object 

can be simulated in relation to progressions in time, allowing a specified spatiotemporal pattern to be 

synthesised (Li and O’Donoghue, 2013). The DMM is built on certain assumed movement parameters 

and a transition matrix - a time-nonhomogeneous Markov chain with a limited number of behavioural 

states, incorporated to control the potential behavioural changes of an offender in relation to some 

theoretical considerations. An offender is then allowed to transit systematically across three assumed 

behavioural states, namely; the ‘exploratory state’, the ‘motivated state’ and the ‘offending state’. The 
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model parameters were carefully chosen to enable some localised spatiotemporal patterns to be 

synthesised.  

The resultant spatial and temporal crime patterns are compared with real crime datasets using repeat 

pattern profiles (Johnson et al., 1997) and Ripley K-test (Ripley, 1988), respectively. These statistics 

are generally used to assess the theory of repeat victimisation of crime; the central idea of any 

spatiotemporal crime pattern analysis. The repeat victimisation theory states that if a target such as 

building is victimised, the targets within a relatively short distance of the original target have an 

increased risk of being victimised over a limited period of time —varying from days to weeks of the 

original victimisation taking place (Farrel and Pease, 1993; Bowers and Johnson, 2005). This study 

represents a preliminary effort towards the development of a general-purpose simulation framework by 

which synthetic datasets of varying spatiotemporal characteristics can be generated. 

2. A Dynamic Microsimulation framework of crime 

The proposed DMM framework comprises a latent variable model, where an object switches between 

discrete (unobserved) movement behaviour states 𝑧 = {1, … , 𝑍}, where each state is a collection of 

movements between consecutive positions (𝑋𝑡−1,  𝑌𝑡−1) and (𝑋𝑡 ,  𝑌𝑡) for each time step 𝑡 = 1, … . . 𝑇. 

The framework follows the Morales et al. (2004) model by selecting a Weibull distribution for the step 

length (𝑠𝑡) and a wrapped (𝑤) Cauchy distribution for the direction (∅𝑡) of movement. The movement 

process model is therefore, a discrete-time, continuous space, multi-state movement model with step 

length [𝑠𝑡|𝑧𝑡 = 𝑖]~Weibull(𝑎𝑖, 𝑏𝑖) and direction [∅𝑡|𝑧𝑡 = 𝑖]~𝑤Cauchy(𝜇𝑖, 𝜌𝑖).  

Then, we have the following probability density function: 𝑓(𝑠𝑡|𝑧𝑡 = 𝑖) = 𝑏𝑖𝑎𝑖 (𝑠𝑡𝑎𝑖)𝑏𝑖−1 exp [−(𝑠𝑡/𝑎𝑖)𝑏𝑖] (5)

and  𝑓(∅𝑡|𝑧𝑡 = 𝑖) = 12𝜋 1 − 𝜌𝑖21 + 𝜌𝑖2 − 2𝜌𝑖cos (∅𝑡 − 𝜇𝑖) 
(6)

For 𝑎𝑧 > 0, 𝑏𝑧 > 0, 0 ≤ ∅𝑡 < 2𝜋, 0 ≤ 𝜇𝑧 < 2𝜋, −1 < 𝜌𝑧 < 1, and 𝑧 = 1, … . . , 𝑍. Assuming 

independence between step length and direction within each movement’s behavioural state, the joint 

likelihood for 𝑠𝑡 and ∅𝑡, conditioned on the latent state variable 𝑧𝑡, is: 

𝑃(𝒔, ∅|𝒛) = ∏ 𝑓(𝑠𝑡|𝑧𝑡, 𝑏𝐼𝑡)𝑓𝑇
𝑡=1 (∅𝑡|𝑧𝑡) 

(7)

In order to switch between different states, a categorical distribution is assigned to the latent state 

variable 𝑧𝑡. In its simplest form, every time step may be assigned to a movement behaviour state, 

independent of the previous state: 𝑧𝑡~Categorical(Ψ𝑖, … . . , Ψ𝑍) (8)

Such that Ψ𝑖 = Pr (𝑧𝑡 = 𝑖), where Ψ𝑖 is the fixed probability of being in state 𝑖 at time 𝑡, and ∑ Ψ𝑖 = 1𝑍𝑖=1 . For this study, we define three movement behavioural states, namely; (1) “exploratory” - 
describing a sequence of undirected and random movements, (2) “motivated” – also undirected but 

easily ‘transitable’ to the third state, and (3) offending state, which describes the actual crimes and the 

subsequent “directed” movements that follow the crime event. A non-homogeneous continuous-time 

Markov transition matrix is incorporated to allow easy switches between states. For the Markov 

process,  



[𝑧𝑡|𝑧𝑡−1 = 𝑘]~Categorical(Ψ𝑘,𝑖 , … . . , Ψ𝑘,𝑍) (9)

And Ψ𝑘,𝑖 = Pr (𝑧𝑡 = 𝑖|𝑧𝑡−1 = 𝑘), for 𝑘 = 1, 2, 3, where Ψ𝑘,𝑖 is the probability of switching from state 𝑘 at time 𝑡 − 1 to state 𝑖 at time 𝑡.  

2.1. Parameterisation of the model for South Chicago area 

Two parameters, namely; the spatial range, K, and the Markov transition probabilities, are used to 

condition the DMM, in order to generate localised spatial patterns and cyclic temporal fluctuations, 

respectively. The spatial range is a radius, measured from an offender’s origin, within which an offender 

is expected to operate. A list of K (200m, 400m, … , 1000m) was created. The direction ∅𝑡, is 

continuously re-adjusted if 𝐷0,𝑡 > 𝐾, where 𝐷0,𝑡 is the distance between the origin of an offender and 

its next potential location. This allows the offender to be kept within its spatial range. The transition 

matrix is defined as Pr(0.05, 0.0001, 0.05, 0.0282, 0.05, 0.05), allowing a transition to be made to the 

‘offending state’ at an approximate step length counts equivalent to 14 days. The difference between 

the ‘exploratory state’ and the ‘motivated state’ lies in the directional values (∅) of 0.3 specified for the 

latter, enabling a slightly ‘directed’ movement to be made while the offender is in this state. The 

directional values (∅) of 0.8 is specified for the ‘offending state’, enabling an offender to move in an 

almost opposite direction as soon as an offence is committed. 

We used the SimRiv package in R (Quaglietta and Porto, 2017), which allows a movement constraint 

to be integrated in the form of a heterogeneous network landscape. A resistance raster map built 

comprises a buffered street network and a background, with resistance values of 0 and 0.95, 

respectively. This allows the movements to be restricted only to the street network.  

 

Figure 1. (a) Land use map and (b) Resistance map built, for South Chicago area  

The offenders’ origins are specified using the locations of the residential buildings, randomly selected 

amongst the three categories of residential land use (Figure 1 (a)), based on the visual inspection of the 

real datasets (see section 3). A total of 300 offenders were synthesised during each simulation, with 

varying spatial range, K. The parameter combination ensures that similar total number of crimes are 

generated for each value of K.   

3. Comparative analysis of the real and synthetic datasets 

The real crime dataset used is the burglary crime incidents of 2015, downloaded from the official 

website of Chicago City. This dataset consists of 2,163 records of burglary incidents.  

 

https://data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2


3.1. 3D point distribution 

Figure 2a shows the 3D point distribution of the real dataset, while figure 2b shows the 3D point 

distribution of a synthetic data, when K=200m.  

 

 

Figure 2. 3D point distribution. (a) real dataset and (b) a synthetic dataset (where K=200m) 

The most noticeable difference between the two point distributions is the relatively higher point 

densities in the south-east corner and the north-west corner of the study area, for the real dataset and 

the synthetic dataset, respectively. The difference can be attributed to the disproportionate higher 

distribution of the offenders at the north-west corner of the area during the simulation. This can be 

improved with a more accurate specification of origins for the offenders. 

3.2 The spatial and temporal patterns 

Figure 3a and Figure 3b show the results of the Ripley’s K-test using R-Spatstat package (Baddeley et 

al., 2015) and the repeat pattern profiles (Johnson et al. 1997), respectively. For convenience, the 

baseline distributions for the K-tests was defined as an inhomogeneous Poisson process, through the 

fitting of a Gaussian density model. For the real datasets, different spatial bandwidths (i.e. 200m, 400m, 

.., 1000m) are used to generate different test plots, while for the synthetic dataset, the value of K that 
was used for simulating each dataset is employed for fitting the Gaussian density model. 

Real datasets

(a) Real dataset (b) A Synthetic dataset (K=200m)



  

     

Figure 3. (a) Ripley K-test for spatial clustering analysis, and (b) the repeat pattern profiles for 

temporal clustering analysis, for both the real and the synthetic dataset. Inhomogeneous Poisson 

model as the baseline distribution. Different arbitrary values of K is used for defining the bandwidth 

for the baseline distribution of the real datasets, while the value of K used in the simulation of the 

synthetic dataset is used for defining the bandwidth for the baseline distribution of the synthetic 

datasets. The black (solid) lines represent the observed estimates, while the red (dotted) lines 

represent the mean simulated estimates, bounded by the maximum and the minimum simulated 

estimates, across all distances. The repeat pattern profiles of both the real dataset and the synthetic 

datasets are estimated at 1-day temporal lag distances up to 60 days. Edge corrections are 

implemented in both cases.  

In all the cases, both the observed and the inhomogeneous Poisson model appear closer to one another. 

For the real dataset, both models appear to describe each other better, at spatial bandwidths of 200m, 

400m and 600m, while diverging at bandwidths of 800m and 1000m. For the simulated datasets, the 

theoretical estimates only appear to describe the observed estimates as K and r approach each other. 

For example, at K=400m, both estimates appear to coincide at around r=400m and 600m. However, 

both patterns start to diverge very significantly at larger values of K. This explains the fact that as the 

spatial range increases, the spatial coverages of the offenders begin to overlap one another, thereby 
producing interwoven point distribution. 

In Figure 3b, the temporal patterns of the real dataset are less well-defined, as compared to the synthetic 

datasets, at 0-200m, 0-400m and 0-600m. This is due to the fact that the synthesised offenders are 

assumed to be operating at a uniform spatial range (spatial bandwidth) in each case, and that their 

temporal patterns are similar. The temporal patterns at smaller spatial ranges (bandwidths), such as 0-

200m, are able to explain these two assumptions, since there is less intermingling of the activities of 

different offenders. At larger bandwidths, however, the spatial and temporal distribution of the crime 



points start to interact, giving rise to spatiotemporal interactions. We can say that the real dataset is less 

‘well-defined’, primarily because the assumption of the uniform spatial range (K) does not hold. 

Lastly, the pattern profiles of the synthetic datasets at 0-800m and 0-1000m look similar to the real 

dataset. This is primarily due to the spatiotemporal interactions in the activities of the offenders, as they 

are able to cover more distance, and tends to produce similar patterns as the real datasets.  

4. Further work 

This study represents a preliminary stage of our model building. The goal is to develop a general-

purpose framework that will allow different theory-based spatiotemporal patterns to be synthesised. In 

order to achieve this goal, we intend to incorporate different environmental crime-related factors into 

the model. Furthermore, a simulated offender should be able to evaluate risk and benefits, and also 

learn from past activities.  
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