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ABSTRACT 1 

Background: While recent studies indicate that in humans fat-free mass (FFM) is closely 2 

associated with energy intake (EI) when in energy balance, associations between fat mass 3 

(FM) and EI are inconsistent.  4 

 5 

Objectives: The present study used a cross-sectional design to examine the indirect and direct 6 

effects of FFM, FM and resting metabolic rate (RMR) on EI in individuals at or close to 7 

energy balance. 8 

 9 

Methods: Data for 242 individuals (114 males; 128 females; BMI = 25.7 ± 4.9 kg/m2) were 10 

collated from the non-intervention baseline conditions of five studies employing common 11 

measures of body composition (air displacement plethysmography), RMR (indirect 12 

calorimetry) and psychometric measures of eating behaviours (Dutch Eating Behaviour 13 

Questionnaire). Daily EI (weighed-dietary records) and energy expenditure (flex heartrate) 14 

were measured for 6-7 days. Sub-analyses were conducted in 71 individuals who had 15 

additional measures of body composition (dual-energy X-ray absorptiometry) and fasting 16 

glucose, insulin and leptin. 17 

 18 

Results: After adjusting for age, sex and study, linear regression and mediation analyses 19 

indicated that the effect of FFM on EI was mediated by RMR (P < 0.05). FM also 20 

independently predicted EI, with path analysis indicating a positive indirect association 21 

(mediated by RMR; P < 0.05), and a stronger direct negative association (P < 0.05). Leptin, 22 

insulin and insulin resistance failed to predict EI, but cognitive restraint was a determinant of 23 

EI and partially mediated the association between FM and EI (P < 0.05). 24 

 25 
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Conclusions: While the association between FFM and EI was mediated by RMR, FM 26 

influenced EI via two separate and opposing pathways; an indirect ‘excitatory’ effect (again, 27 

mediated by RMR), and a stronger direct ‘inhibitory’ effect. Psychological factors such as 28 

cognitive restraint remain robust predictors of EI when considered alongside physiological 29 

determinants of EI, and indeed, have the potential to play a mediating role in the overall 30 

expression of EI. 31 

 32 

KEY WORDS 33 

Energy intake, appetite regulation, body composition, fat mass, fat-free mass, resting 34 

metabolic rate, energy expenditure, energy balance.   35 
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INTRODUCTION  36 

Despite substantial interest into the putative causes of weight gain and obesity, fundamental 37 

questions remain over the nature and extent of the biological regulation of human energy 38 

intake (EI), and the relationship between physiology and behaviour in determining energy 39 

balance. While understanding of the putative peripheral signals that affect EI has improved, 40 

this has not yet yielded a means to prevent weight gain or promote weight loss maintenance. 41 

As such, there has been renewed interest in integrative models of weight gain and loss using 42 

energy balance methodology, as this provides an opportunity to integrate physiological and 43 

behavioral determinants of appetite with dynamic changes in body structure and function.  44 

Recent studies have demonstrated that fat-free mass (FFM) is more strongly associated with 45 

EI than fat mass (FM) in those at or close to energy balance,1-6 with FFM ‘indirectly’ 46 

influencing EI through the energetic demands of metabolically active tissue.3, 4 However, 47 

while the associations between body composition, EE and EI have been demonstrated under 48 

controlled laboratory conditions, it remains unclear whether FFM and RMR are strong 49 

determinants of EI under free-living conditions where EI is influenced by multiple social and 50 

environmental factors.7 Furthermore, in contrast to the consistent associations between FFM 51 

and EI, negative1, 4, 8 or no associations2, 5, 6, 9 have been reported between FM and EI at or 52 

close to energy balance. A negative association between FM and EI is consistent with the 53 

proposed inhibitory role of FM (and leptin) in appetite control,10 but such feedback is 54 

inconsistent with the apparent ease with which humans can gain weight.  55 

Psychological factors may also mediate the effects of FM on EI, but the conjoint influence of 56 

biological and psychological factors on EI is rarely examined. McNeil et al.11 recently 57 

reported that the combination of RMR and prospective food consumption explained a greater 58 

proportion of variance in daily EI than RMR alone (n = 55). However, whether psychological 59 
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factors directly mediate the associations between FM, FFM and RMR and EI has not been 60 

examined. Therefore, the aim of this study was to examine the specific indirect and direct 61 

effects of FM, FFM and RMR on EI in individuals at or close to energy balance, and whether 62 

any associations between FM and EI were mediated by leptin, insulin or psychometric eating 63 

behaviours. 64 

SUBJECTS & METHODS 65 

Subjects 66 

In total, 242 subjects (114 males; 128 females; BMI = 25.6 ± 5.0 kg/m2; Table 1) were 67 

included in the present analysis, with data aggregated from the control conditions of five 68 

separate studies with common experimental procedures. A flow chart detailing the participant 69 

contribution from each study can be found in the online supplementary material 70 

(Supplementary Figure 1). All data were collected at the Rowett Institute, University of 71 

Aberdeen, UK between 1998 and 2007, and aspects of these data have been published 72 

previously.12-17 The individual studies were originally designed to examine the effects of diet 73 

on body composition and health, and subjects were informed that their purpose was to 74 

examine the relationships between diet and lifestyle. For each study, written informed consent 75 

was obtained and ethical approval was granted by the Joint Ethical Committee of the 76 

Grampian Health Board and the University of Aberdeen. Subjects were weight stable (<2 kg 77 

change in the previous three months), free from disease and not taking medication known to 78 

effect metabolism or appetite. The present study was registered at clinicaltrials.gov as 79 

NCT03319615. 80 

Table 1 here 81 

Study Design 82 
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The present study examined the cross-sectional associations between body composition (air 83 

displacement plethysmography), RMR (indirect calorimetry) and total daily EI (weighed 84 

dietary records) and EE (flex heart rate; HR). Data were aggregated from the non-85 

intervention, baseline control conditions of five separate studies that employed common 86 

experimental procedures, with daily EI and EE measured over six (n = 54) or seven (n = 188) 87 

days. Detailed descriptions of the procedures used, repeatability of measurements, and the 88 

assumptions and limitations associated with these data can be found elsewhere.12, 13, 16, 18-22  89 

Anthropometry and Body Composition 90 

Baseline body weight was measured to the nearest 0.01ௗkg after voiding in all subjects (DIGI 91 

DS-410 CMS Weighing Equipment, London, UK), while the change in body weight over the 92 

measurement period was measured in 229 subjects. In each case, subjects were weighed in 93 

dressing gowns of a known weight, with body weight then corrected back to nude weight. 94 

Stature was measured to the nearest 0.5ௗcm using a portable stadiometer (Holtain Ltd., 95 

Crymych, Dyfed, Wales).  96 

Body composition was estimated using air-displacement plethysmography (BOD POD Body 97 

Composition System, Life Measurement, Inc., Concord, USA) in 233 subjects. Measurements 98 

were taken according to manufacturers’ instructions while wearing minimal clothing, with 99 

thoracic gas volumes estimated using the manufacturer’s software. This technique has been 100 

validated against underwater weighing in normal23 and overweight and obese adults.24 In a 101 

nine subjects, body composition was estimated from skinfold thickness (Holtain Ltd., Dyfed, 102 

Wales, UK) and the equations of Durnin & Womersley25 as measures of air-displacement 103 

plethysmography were unavailable. The inclusion of these subjects alongside those with 104 

estimates using air-displacement plethysmograph did not alter the outcomes of any analyses. 105 
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Resting Metabolic Rate 106 

RMR was measured by indirect calorimetry over 30-40 minutes using a ventilated hood 107 

system (Deltatrac II, MBM-200, Datex Instrumentarium Corporation, Finland). Following a 108 

12 hour fast, subjects laid on a bed in a thermo-neutral room and were instructed to lie still 109 

but remain awake. Resting EE was calculated from minute-by-minute data using the mean of 110 

15 minutes of stable measurements, with the first and last five minutes excluded. The 111 

equations of Elia and Livesey21 were used to derive RMR. Details of calibration burns and 112 

repeatability testing have been described previously.17 113 

Daily Energy Intake 114 

Energy intake was measured using a weighed dietary record method in which subjects 115 

recorded all foods and drinks consumed for either six or seven days. Full written and verbal 116 

information on how to complete the record was given at the beginning of each study. Subjects 117 

were provided with calibrated digital electronic scales to a resolution of 1 g (820 Soehnle, 118 

Soehnle-Waagen GmbH & Co. KG, Murrhardt, Germany), and a food diary for recording of 119 

food/drink, time of consumption, food weight, cooking method and leftovers. Subjects were 120 

encouraged to record all recipe formulations and to keep all packaging for ready-to-eat food 121 

products. When scale use was difficult (i.e. when eating out), subjects were instructed to 122 

record as much information as possible about the quantity of the food they ate by using 123 

household measures (e.g. tablespoon, cup, slice). Data were analysed using Diet 5 (Robert 124 

Gordon University, Aberdeen), which was updated for unusual food products based on the 125 

food packaging provided by subjects. Standard portions sizes were used with missing weights 126 

or portion sizes, and to reduce investigator bias and inputting errors, all diets were cross-127 

checked by at least one other trained member of staff.  128 

Psychometric Eating Behaviours  129 
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The Dutch Eating Behaviour Questionnaire26 was administered in 193 subjects to assess trait 130 

levels of cognitive restraint, emotional eating behaviour and external eating behaviour. The 131 

Dutch Eating Behaviour Questionnaire is a 33-item questionnaire that uses a 5-point Likert 132 

scale ranging from 1 (seldom) to 5 (very often) to assess three eating behaviour domains: the 133 

restrained subscale (10 items- DEBQ_R), the emotional eating subscale (13 items- 134 

DEBQ_EM), and the external eating subscale (10 items- DEBQ_Ext). The questionnaire has 135 

previously been found to have good psychometric properties.26 136 

Total Daily Energy Expenditure 137 

To examine the validity of the EI measures in the present study, energy balance (i.e EI - EE) 138 

was compared to the change in body weight over the measurement period. Mean daily EE was 139 

calculated using the modified flex HR method of Ceesay et al.,20 and the calorimetric 140 

equations of Elia and Livesey.27 Total daily EE was calculated from a minimum of 12 hours 141 

of HR data per day (Polar Sport Tester, Polar Electro Oy, Finland). HR was averaged over 1-142 

minute intervals throughout the waking day, with subjects recording the time at which they 143 

started and stopped wearing the HR monitors each day. A regression line of HR vs. EE was 144 

established for each subject by simultaneously measuring HR  breath-b -breath  ࡆ O2 and 145 

ࡆ  CO2 (averaged over 10-s intervals) at incremental workloads in the morning following an 146 

overnight fast. As previously described,28 the test comprised of a series of sedentary activities 147 

and an incremental cycle test in the following sequential steps with no break between them: 5 148 

min sitting, 5 min standing up, 5 min cycling at the lowest possible resistance (55 W), and a 149 

further 3 × 5-min blocks increasing resistance and maintaining 60 rpm. The average of the 150 

two calibration curves was used for calculation of EE, with daily EE was estimated from:  151 

 152 

 Total daily EE = sedentary EE + sleep EE + activity EE 20, 29 153 
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 154 

Sleep EE was calculated as 95% of measured RMR30 and was applied to the time when the 155 

HR monitors were not worn (i.e. during sleep). Sedentary EE was assumed to be equal to the 156 

mean EE from RMR, sitting, and standing measurements during the calibration.29 However, 157 

as these measures were performed following an overnight fast, the thermic effect of food 158 

would not have been accounted for in these calculations, and this would have likely resulted 159 

in an under-estimation of total daily EE in the present study. For HR exceeding flex HR, HR 160 

was calculated using the treatment-specific HR: O2 calibration regression equation for each 161 

individual. Zero values and heart rates that were considered to be outside of the physiological 162 

range (>220 beats/min) were removed and replaced by the average of the previous and 163 

subsequent values.31  164 

 165 

Sub-Analysis   166 

A sub-analysis was conducted in 71participants who had additional measures of body 167 

composition (dual-energy X-ray absorptiometry) and fasting glucose, insulin and leptin. 168 

These were also included in the main analysis, and RMR, EE and EI were measured using the 169 

above procedures. Body composition was assessed using a Norland XR-26, Mark II high-170 

speed pencil beam scanner equipped with dynamic filtration (version 2.5.2 of the Norland 171 

software; Norland Corporation, Fort Atkinson, WI) following an overnight fast. Fasted whole 172 

blood was also taken from an antecubital vein and collected into a 10-mL lithium heparin tube 173 

and spun in a chilled centrifuge (1000 g at 4 °C for 10 min) to obtain plasma and stored at 80 174 

°C for batch analysis. Plasma leptin was measured using radioimmunoassay (BioVendor 175 

GmbH, Heidelberg, Germany), while plasma insulin was measured using enzyme-linked 176 

immunosorbent assay (LINCO Research, St Charles, Missouri, USA). Insulin resistance 177 
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(HOMA IR) was calculated using the homeostatic model of assessment32 based on the fasting 178 

measures of glucose and insulin.  179 

 180 

Statistical Analysis 181 

Statistical analyses were performed using IBM SPSS for windows (Chicago, Illinois, Version 182 

24), and data are reported as mean ± SD. A paired t-test was used to examine for differences 183 

between mean daily EI and EE. A Bland and Altman plot was used to compare the deviations 184 

between the methods used for the assessment of energy balance. Based on previous research 185 

findings,3, 4, 33 two regression models were constructed using general linear modelling with EI 186 

as the dependent variable. In model one, FM, FM and RMR were entered as independent 187 

variables (n = 242). In model two, DEBQ_R, DEBQ_EM and DEBQ_Ext were also entered 188 

as independent variables alongside FM, FFM and RMR (n = 193). A ‘stud ’ term was 189 

included in both models to account for heterogeneity between separate studies, and given their 190 

known effects on RMR and EI, sex and age were also included in both models. In a sub-191 

sample of data (n = 71), linear regression was performed with EI as the dependent variable 192 

and sex, age, FM, FFM, RMR, and one of leptin, insulin or HOMA_IR included as 193 

independent variables. Multicollinearity was assessed using the variance inflation factor 194 

(VIF), which indicated that there was no instability in any of the models (with VIF scores 195 

below 7.0 for all predictors included in the regression models).34 196 

Path analysis was used to further examine the associations between age, sex, FM, FFM, 197 

RMR, DEBQ_R, and EI. A model initially tested whether the associations between sex and 198 

the standardised residual scores (after adjusting for study using residuals from a linear 199 

regression model which had a term for study only) of age, body composition (independent, 200 

exogenous variables) and EI (dependent, endogenous variable) were mediated by RMR 201 
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(endogenous mediator variable). A second model was also tested examining whether the 202 

addition of the standardised residual score (after adjusting for study) for dietary restraint 203 

altered the associations between the standardised residual scores of age, body composition 204 

(independent, exogenous variables), RMR (endogenous mediator variable) and EI (dependent, 205 

endogenous variable). The significance of the regression coefficients and fit statistics were 206 

calculated using the Maximum Likelihood estimation method. The following recommended 207 

goodness of fit indices were analysed to test for the adequacy of the mediation model: Chi-208 

square (Ȥ2), Tucker Lewis Index (TLI), Comparative Fit Index (CFI), and Root-Mean Square 209 

Error of Approximation (RMSEA), with 95% confidence interval.34, 35 Indirect effects were 210 

tested through the bootstrapping method, with 2000 Bootstrap samples and 95% bias-211 

corrected confidence intervals (CI). Effects were significant when zero was not included in 212 

the CI lower and upper limits.34, 35 213 

 214 

RESULTS 215 

Table 2 here. 216 

Mean daily EI, EE, energy balance and the change in body weight can be seen in Table 2. 217 

There was a significant difference between EI and EE, producing a mean energy deficit of -218 

1250 kJ/d (P < 0.01). The relationship between EI and EE was also plotted as a Bland and 219 

Altman diagram to illustrate the spread of the differences (EI-EE) against the mean of the two 220 

methods (Figure 1). Overall, there was a good spread in the data with no apparent trend. 221 

However, the intercept of the average weight change and energy balance was found to differ 222 

significantly from zero (coefficient = -0.401; SE = 0.064; P < 0.001). 223 

 224 

Figure 1 here 225 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



 

 

13 

Influence of Body Composition, Energy Expenditure and Psychometric Eating 226 

Behaviours on Food Intake 227 

After accounting for sex (ß = 0.12; P = 0.247), age (ß = -0.08; P = 0.184) and study (P = 228 

0.024 to P = 0.490) in model one (F(9, 232) = 18.85, P < 0.001; R2 = 0.42- Table 3), RMR (ß = 229 

0.39; P = 0.001) and FM (ß = -0.29; P <0.001) independently predicted EI. In model two 230 

(F(11, 193) = 15.16, P < 0.001; R2 = 0.48), RMR (ß = 0.30; P = 0.008) and DEBQ_R (ß =-0.26; 231 

P < 0.001) independently predicted EI after accounting for sex (ß = 0.09; P = 0.395), age (ß 232 

= 0.10; P = 0.139) and study (P = 0.064 to P = 0.465).  233 

Table 3 here 234 

Influence of Leptin and Insulin on Energy Intake (n = 71) 235 

While associations between FM, FFM, RMR and EI were similar to that reported above, 236 

leptin (F(6, 64) = 8.39, P < 0.001; R2 = 0.44; ß = 0.02; P = 0.833), insulin (F(6, 64) = 8.50, P < 237 

0.001; R2 = 0.44; ß = 0.07; P = 0.515) or HOMA_IR (F(6, 64) = 7.24, P < 0.001; R2 = 0.40; ß = 238 

0.15; P = 0.582) were not independent predictors of EI.   239 

 240 

Path Analysis- Body Composition and Resting Metabolic Rate 241 

To further explore the associations reported in regression models one and two, the mediator 242 

effect of RMR was initially examined using path analysis (Figure 2a). Sex and standardised 243 

residual scores of FM, FFM, RMR, age and EI were used in the model after adjusting for 244 

study. The model was first examined through a fully saturated model with 29 parameters. 245 

Results showed that the path relating the direct effect of FFM on EI was non-significant (bFFM 246 

= .18; SEb = .11; Z = 1.60; P = 0.109; ȕ = 0.18). The effects of sex (bsex = .15; SEb = .16; Z = 247 

-0.92; P = 0.359; ȕ = -0.07) and age (bage = -.07; SEb = .06; Z = -1.25; P = 0.210; ȕ = 0.18) on 248 
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EI were also non-significant. The recalculated model with the non-significant paths removed 249 

presented a very good model fit (Ȥ2
(3) = 6.13, P = 0.106; TLI = 0.98; CFI = 1.00; RMSEA = 250 

0.07, P = 0.285). The model accounted for 78% of RMR and 36% of EI variance.   251 

 252 

FM (ȕFM = 0.40; bFM = 0.40; SEb = 0.03; Z = 11.87; P < 0.001) and FFM (ȕFFM = 0.68; b = 253 

0.68; SEb = 0.05; Z = 14.36; P < 0.001) presented a significant direct effect on RMR. RMR in 254 

turn, presented a significant direct effect on EI (ȕRMR = 0.; b  = 0.63; SEb = 0.06; Z = 11.20; P 255 

< 0.001). FM had a significant total effect on EI (ȕFM = -0.16), with a direct effect of -0.41 256 

and an indirect effect of 0.25 mediated by RMR. FFM predicted increased EI with an indirect 257 

effect of 0.43, fully mediated by RMR. The estimates of the indirect effect of FM (CI = 0.19, 258 

0.33, P = 0.33) and FFM (CI = 0.35, 0.51, P = 0.001), on EI, framed by a CI of 0.95% were 259 

significantly different from zero. Age and sex presented a significant direct effect on RMR 260 

(ȕage = -0.18; bage = -0.18; SEb = 0.03; Z = -5.53; P < 0.001; ȕsex = -0.12; bsex = -0.23; SEb = 261 

0.09; Z = -2.47; P = 0.014) and an indirect effect on EI of -0.11 (CIage = -0,16, 0.08, P = 262 

0.001) and -0.07 (CIsex = -0.13, -0.01, P = 0.010), respectively. 263 

 264 

Path Analysis- Body Composition, Resting Metabolic Rate and Dietary Restraint 265 

An additional model that considered the mediator effect of DEBQ_R was examined (Figure 266 

2b) as DEBQ_R was found to be a significant predictor of EI in regression model two. Sex 267 

and standardised residual scores of FM, FFM, RMR, DEBQ_R, age and EI were used in the 268 

model after adjusting for study. The model presented a very good model fit (Ȥ2
(6) = 13.38, P = 269 

0.37; TLI = 0.96; CFI = 0.99; RMSEA = 0.08, P = 0.167). The model accounted for 75% of 270 

RMR, 17% of DEBQ_R and 39% of EI variance. DEBQ_R presented a significant direct 271 

negative association with EI (ȕDEBQ = -0.25; b = -0.27; SEb = 0.06; Z = -4.41; P < 0.001). 272 

Results indicated that FM had a significant indirect effect of 0.14 on EI (CI = 0.05, 0.23, P = 273 
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0.006), mediated by RMR with an effect of 0.22 and by DEBQ_R with an effect of -0.09. The 274 

associations between the other variables maintained the same direction and strength. FFM 275 

presented a significant indirect effect on EI of 0.38, fully mediated by RMR (CI = 0.30, 0.47, 276 

P = 0.01).  277 

 278 

DISCUSSION 279 

This study examined the specific indirect and direct effects of FM, FFM and RMR on EI in a 280 

large and heterogeneous sample. The present data indicate that FFM is a strong determinant 281 

of self-recorded weighed EI. However, mediation analysis revealed the effect of FFM on EI 282 

was mediated by RMR, such that FFM did not statistically influence EI independent of its 283 

effect on EE. In contrast, FM influenced EI via two associations that appeared to follow 284 

separate and opposing pathways; an indirect excitatory effect mediated via RMR and a 285 

stronger direct inhibitory effect (although the strength of this direct association was still 286 

weaker than that seen between RMR and EI). While leptin, insulin or HOMA IR did not 287 

predict EI, cognitive restraint was found to predict EI and partially mediated the direct 288 

association between FM and EI. 289 

Fat-Free Mass, Resting Metabolic Rate and Energy Intake 290 

Consistent with previous findings under laboratory conditions,1-6 FFM was found to predict 291 

self-recorded weighed EI under conditions more representative of the free-living 292 

environment. However, mediation analysis revealed the effect of FFM on EI was mediated by 293 

RMR. The effect of FFM on EI has previously been attributed to its contribution to EE, with 294 

associations between FFM and EI previously reported to be mediated by RMR3 and 24-hour 295 

EE.4 Taken together, these data suggest that the energetic demand created by FFM acts as a 296 

tonic driver of EI under conditions of approximate energy balance. However, in light of the 297 
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emergence of skeletal tissue as an important endocrine organ,36 a direct molecular pathway 298 

linking FFM to EI that operates independent of EE should not be dismissed (particularly 299 

under conditions when functional stores of FFM are challenged).9, 37 As such, there is a need 300 

to examine the peripheral and central putative mechanisms that link FFM and EE to EI. 301 

Fat Mass and Food Intake  302 

In the present study, FM was associated with EI via two separate and opposing pathways; a 303 

weak indirect positive association (mediated via RMR) and a stronger direct negative 304 

association. While these direct and indirect associations represent statistical rather than 305 

biological pathways, they are consistent with the proposed effects of FM on RMR and EI. In 306 

line with the smaller contribution of FM to RMR,17, 38 the indirect effect of FM on EI 307 

(mediated by RMR) was weaker than that for FFM. Similarly, the direct negative association 308 

between FM and EI (independent of RMR) is consistent with the proposed inhibitory role for 309 

FM in appetite control i.e. that increases in FM, and in turn, leptin, promote reductions in 310 

hunger and EI via alterations in the expression of anorexigenic and orexigenic neuropeptides 311 

in the arcuate nucleus of the hypothalamus.10 However, despite extensive literature on leptin 312 

and other putative feedback signals arising from adipose tissue,39, 40 there appears limited 313 

evidence in humans that FM exerts strong negative feedback on EI under conditions of 314 

approximate energy balance (or indeed, energy surfeit). In line with this, the strength of the 315 

negative (inhibitory) association between FM and EI in the present study was weaker than the 316 

positive (excitatory) association between RMR and EI. This mis-match between inhibitory 317 

and excitatory associations may have important implications for overconsumption, with the 318 

balance between these opposing drives influencing the overall expression of appetite and EI. 319 

A number of previous studies examining the role of FM on EI, including those of our own, 320 

have reported no association between FM and EI under conditions of approximate energy 321 
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balance.2, 5, 6, 9 However, the present study employed a larger sample than previous studies (n 322 

= 242), potentially increasing our ability to detect a weaker, but physiological relevant, 323 

association.  324 

It has been suggested that FM influences EI via the tonic action of leptin and insulin.10 While 325 

leptin appears to be a key central putative appetite signal,10 evidence that FM or peripheral 326 

leptin concentrations exert strong negative feedback on day-to-day feeding under conditions 327 

of energy balance is limited. In line with this, leptin, insulin or HOMA IR predicted EI in the 328 

present study, suggesting that the ‘direct’ association seen between FM and EI was not 329 

biologically mediated (although this analysis was performed in a small sample of individuals 330 

free from insulin resistance, and other potential hormonal mediators clearly exist). In contrast, 331 

cognitive restraint predicted EI and partially mediate the direct association between FM and 332 

EI. Cognitive restraint can be viewed as an enduring trait that manifests itself as a conscious 333 

or subconscious pressure to reduce EI,26 and this type of function would account for the 334 

inverse association between DEBQ_R and EI seen in the present study. There is also evidence 335 

that restraint is positively associated with BMI, with individuals with high BMIs tending to 336 

show higher levels of restraint (as restraint is a self-reported measure of attempted EI 337 

restriction rather than an actual measure of success).41 The ‘encoding’ of restraint in biolog  338 

is not known and is likely to be complicated. However, it is plausible that FM is one of a 339 

number of predictors of restraint, and that restraint is one of the pathways that mediates the 340 

negative effect of FM on EI. The present findings indicate that psychological factors such as 341 

cognitive restraint remain robust predictors of EI when considered alongside physiological 342 

determinants. However, few studies have sought to integrate determinants from differing 343 

scientific domains, and this has limited our understanding of how physiological, 344 

psychological and behavioural factors interact in a co-ordinated fashion within an energy 345 

balance framework. 346 
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Despite common methodological procedures, aggregation of data from separate studies will 347 

have introduced heterogeneity. Therefore, a study term was included in all statistical models 348 

(and accounted for ≈5% of variance in EI). These data are cross-sectional and correlational in 349 

nature, and do not provide evidence into the mechanisms that drive EI during significant 350 

weight loss or gain. However, they do provide a framework for considering how such 351 

mechanisms may operate. Given the limitations associated with self-report EI7 and flex HR,29 352 

we compared EI and EE to change in body weight as an independent index of energy balance. 353 

This indicated that on average individuals were in an energy deficit and a detectable bias 354 

exited in measured energy balance compared to the change in body weight. This bias may 355 

have resulted from an underestimation of EI due to dietary mis-reporting,7 and/or an 356 

underestimation in total daily EE as the thermic effect of food was not specifically accounted 357 

for.29 In comparison to our previous paper where FM, FFM & RMR accounted for 47% of the 358 

variance in EI under laboratory conditions,3 in the present study these variables only 359 

accounting for ≈37% of the variance in self-recorded EI. This likely reflects differences in the 360 

methods used to measure EI, but there is no evidence that the bias in EI-EE compared to the 361 

change in body weight influenced the overall patterns in any of the models calculated in the 362 

present paper. Indeed  despite the additional ‘noise’ introduced b  current approach, strong 363 

associations were still seen between FFM, RMR and EI. Furthermore, we show that models 364 

integrating physiological and psychometric factors explain a greater proportion of the 365 

variance in EI. 366 

CONCLUSIONS  367 

These data indicate that FFM is a strong determinant of EI under conditions of approximate 368 

energy balance, with its effect mediated by RMR. FM influenced EI via two associations that 369 

were weaker and appeared to follow separate and opposing pathways, highlight the 370 
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importance of examining the balance between inhibitory and excitatory signals from specific 371 

tissues when trying to understand the determinants of EI. Psychological factors such as 372 

cognitive restraint remain robust predictors of EI when considered alongside these 373 

physiological determinants of EI, and indeed, have potential to play a mediating role.  374 
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LEGENDS FOR FIGURES  
 
 
Figure 1: Bland Altman plot of the differences of the means of energy intake and energy 

expenditure against the mean of energy intake and energy expenditure. 

 

Figure 2: Panel A: Path diagram with standardized parameter coefficients for the direct and 

indirect effects of the standardised residual scores of fat mass, fat-free mass, resting metabolic 

rate and age (after adjusting for the influence of study differences using residuals from a 

linear regression model which had a term for study only), and sex on energy intake, and the 

squared multiple correlations (R2) for resting metabolic rate and energy intake. The mediation 

model indicates that the effect of fat-free mass on energy intake was fully mediated by resting 

metabolic rate, while fat mass had indirect (mediated by resting metabolic rate) and direct 

effects on energy intake. Panel B: Path diagram with standardized parameter coefficients for 

the direct and indirect effects of the standardised residual scores for fat mass, fat-free mass, 

resting metabolic rate, cognitive restraint and age (after adjusting for the influence of study), 

and sex on energy intake, and the squared multiple correlations (R2) for resting metabolic rate, 

cognitive restraint and energy intake. The mediation model indicates that the direct effect of 

fat mass was partially mediated by cognitive restraint and resting metabolic rate. FM, fat 

mass; FFM, fat-free mass; RMR, resting metabolic rate; DEBQ_R, restraint sub-score from 

the Dutch Eating Behaviour Questionnaire; EI, energy intake. 
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Table 1: Descriptive characteristics of subjects (mean ± standard deviation, range). 

 

 

 

 

 

BMI, body mass index. 

 
  

 Total Sample (n = 242) Men (n = 114) Women (n = 128) 
 Mean ± SD Range 

(min-max) 
Mean ± SD Range 

(min-max) 
Mean ± SD Range 

(min-max) 
Age, yrs 39.7 ± 10.9 19.8-66.0 40.2 ± 10.8 20.0-64.0 39.2 ± 11.0 19.8-66.0 
Stature, m 1.70 ± 0.1 1.49-2.00 1.78 ± 0.07 1.64-2.00 1.63 ± 0.06 1.49-1.79 
Body Mass, kg 74.9 ± 17.3 45.5-152.4 84.0 ± 16.8 56.0-152.4 66.7 ± 13.3 45.5-128.3 
BMI, kg/m2 25.7 ± 4.9 16.7-49.3 26.4 ± 5.1 18.4-49.3 24.8 ± 4.8 16.7-47.7 
Body Fat, % 27.7 ± 11.4 1.0-59.8 22.7 ± 10.9 1.0-49.4 32.2 ± 9.9 8.5-59.8 

©    2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



 

 

27 

Table 2: Mean daily energy intake, energy expenditure, energy balance and weight change. 

 

Energy balance = energy intake - energy expenditure. PAL, physical activity level (total daily 

energy expenditure / resting metabolic rate). Note, change in body weight measured in 229 

subjects only. 

  

 Total Sample (n = 242) Men (n = 114) Wome

 Mean ± SD Range 
(min-max) 

Mean ± SD Range 
(min-max) 

Mean ± SD

Mean total daily energy 
intake, kJ/d 

9761 ± 2623 5018 - 19008 11216 ± 2673 5531 - 19008 8467 ± 

Mean total daily energy 
expenditure, kJ/d 

11011 ± 3263 5599 - 23095 13139 ± 3126 7515 - 23095 9118 ± 

Mean energy balance, 
kJ/d 

-1250 ± 3039 -15720 - 7420 -1923 ± 3681 -15720 - 7420 -651 ± 

Mean weight change,  
kg 

-0.48 ± 0.92 -3.70 - 2.18 -0.42 ± 0.97 -3.70 - 2.10 -0.54 ± 

Resting metabolic rate, 
kJ/d 

6497 ± 1245 4261 - 10998 7384 ± 1104 4795 - 10998 5708 ± 

PAL 1.69 ± 0.40 1.15 - 3.64 1.79 ± 0.45 1.19 - 3.64 1.60 ± 
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Table 3: Regression coefficients showing the effects of body composition, resting metabolic 

rate and psychometric eating behaviours on daily energy intake. 

 

 

 

 

 

 

 

 

 

B, unstandardized beta coefficient; SE, standard error; ȕ, standardized beta coefficient; FM, 

fat mass; FFM, fat-free mass; RMR, resting metabolic rate; DEBQ_R, restraint sub-score 

from the Dutch Eating Behaviour Questionnaire; DEBQ_EM, emotional eating sub-score 

from the Dutch Eating Behaviour Questionnaire; DEBQ_Ext, external eating sub-score from 

the Dutch Eating Behaviour Questionnaire. *P ≤ 0.05, **P ≤ 0.001. Multiple linear regression 

indicated that R2 = 0.42 for Model one (P < 0.001), R2 = 0.48 for Model two (P < 0.001). Of 

Model one (n = 242) Model two (n =193) 

 B   B  

 Mean  
Estimate 

SE ß  Mean  
Estimate 

SE ß 

Intercept 3909.9 1359.7  Intercept 4740.4 1668.7  

FM -62.2 15.7 -0.29** FM -21.0 17.5 -0.10 

FFM 33.2 27.1 0.15 FFM 45.3 27.5 0.21 

RMR 0.8 0.2 0.39** RMR 0.6 0.2 0.30* 

    DEBQ_R -760.0 188.7 -0.26** 

    DEBQ_EM 161.8 208.6 0.06 

    DEBQ_Ext 237.6 300.2 0.05 
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note, study, age and sex were also included in each model, but for clarity, regression 

coefficients are not reported in the table. 
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