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Wavelet Energy Transmissibility Function and its

Application to Wind Turbine Bearing Condition

Monitoring
Long Zhang, Member, IEEE, Zi-Qiang Lang

Abstract—Condition or health monitoring techniques and
methods have been widely used for engineering systems fault
detection and diagnosis. However, there is a major challenge with
monitoring the systems operating under time varying loadings
especially when the system loads are unknown or hard to
measure. To address this problem, a new concept, wavelet energy
transmissibility function (WETF), is proposed in this paper. The
main advantage of this new method is that it can remove the
impact of varying loadings but it does not require any loading
information. Further the proposed method is robust to noise and
is sensitive to system property changes. The effectiveness of the
proposed method has been well demonstrated by a numerical
example, the theoretical study and the analysis of the field
vibration data from bearings of operating wind turbines.

Index Terms—Wavelet energy transmissibility functions
(WETF), Wind turbine, Condition monitoring,

I. INTRODUCTION

Frequency domain methods have been widely used for the

condition monitoring of engineering systems. The fundamental

principal is that damaged systems can produce frequency char-

acteristics that is different from those under normal conditions.

For example, some faults can cause frequency shocks, spikes

or sidebands. If the monitored systems are under steady or

stationary operating conditions, Fast Fourier Transform (FFT),

modulation sidebands, envelope analysis, cepstrum analysis,

skewness and kurtosis have been successfully used in many

applications [1], [2], [3]. However, if the monitored systems

are under non-stationary operating conditions, such as in the

case of wind turbines, the frequency information may vary

with the system dynamic loadings, which is referred to as

the variable loading problems [4], [5], [6], [7], [8], [9], [10].

Variable loadings can result in difficulties in using traditional

frequency domain techniques. To address the dynamic load-

ing problems, time-frequency methods, such as short-time

FFT, Empirical model decomposition, Hilbert transform, and

wavelet transform and their modifications, can be used in

many cases including both online and realtime and offline

applications [11], [12], [13], [14], [15], [16]. These methods

are also well studied and used in other fields, such as structure

health monitoring [17], [18].

Alternatively, the frequency response function (FRF) is a

promising technique to remove the dynamic loading effects.
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FRF is defined as the spectra ratio between the dynamic

response and corresponding loading input [19], [20], [21]. Due

to the ratio operation, the effect of the input loading can often

be eliminated, producing FRF solely dependent on system

physical properties. For the purpose of health monitoring, the

estimated FRFs can be compared with their baseline values

[19], [22]. If the changes are beyond a warning threshold,

the inspected system or component may have some physical

damage. According to the definition of FRF, the computation

of the FRF needs to measure the system input and response

simultaneously. However, the information of input loading is

often not available. In the case, FRF can not be used for

condition monitoring purpose.

As a similar concept to FRF, transmissibility function (TF)

is defined as the ratio of two different FRFs and is also

equal to the ratio of the spectra of two different responses.

In other words, unlike FRF which requires both system input

and outputs, TF only requires system outputs or measured

responses. TF can be used to represent the system physi-

cal properties. For example, for a multi-degree of freedom

(MDOF) system, TF is solely dependent on modal parameters

including mass, stiffness and damping [23], [24], [25], [22].

TF based condition monitoring has been widely used in many

applications [24], [26], [27], [28], [28], [21]. A good review

on the transmissibility analysis can be found in [27].

In practical applications, FRF and TF are often estimated

from measured data using Fourier transform [29]. Most re-

cently, instead of Fourier transform, the wavelet transform is

proposed to compute FRF [30] and experimental investigations

on wavelet based FRF with validations to detect abrupt change

in stiffness were carried out in [31]. The new wavelet FRF

is the ratio of coefficients of wavelet transforms of system

input and output. A similar type of concept employing the

ratios of wavelet coefficients at different frequency bands

were proposed in [32] to identify time-varying and nonlinear

systems. Due to the relationship between FRF and TF, wavelet

FRF can be naturally extended to wavelet TF (WTF) as the

ratio between wavelet coefficients of two different system

responses. However, it is found in the present study that it is

often difficult to produce an consistent WTF using real data.

The main reason for this can be due to the variable or dynamic

loading effect as the estimated WTF may have different values

under different loading conditions. Another reason can be due

to the noise effect which can easily corrupt useful information

in data, especially data with small amplitudes.

In the present study, a new concept, wavelet energy trans-
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Fig. 1. wavelet level 1 decomposition

missibility function (WETF), is proposed to overcome the

effects of dynamic loadings and noise on the data analysis.

The proposed method is evaluated using a large amount of

field data from operating wind turbine bearings and promising

results are achieved.

II. WAVELET TRANSMISSIBILITY FUNCTION (WTF)

When system responses are measured by multiple sensors

simultaneously, the wavelet transmissibility can be calculated

using the ratio of coefficients resulting from wavelet trans-

forms of two different measurements. Therefore, the wavelet

coefficients need to be first obtained. Suppose there are n
measurements which are denoted as [X1, ..., Xi, ..., Xn] where

Xi = [xi(1), ..., xi(N)]T with N being the data length. The

wavelet transform of Xi, i = 1, ..., n, is given by

Wi(a, b) = a−
1

2

∫

xi(t)ϕ(
t− b

a
)dt (1)

where ϕ is a wavelet function and a, b are dilation and

translation parameters, respectively. The integral operation is

computationally expensive, therefore a direct method is not

preferable in practice. To improve the computational effi-

ciency, the multiple resolution analysis (MRA) method was

proposed in [33], which makes wavelet analysis be widely

used in all aspects of engineering and science fields due to its

excellent computational efficiency. The MRA uses multiple

levels decomposition to compute coarse-to-fine frequency res-

olutions. In each level of decomposition, MRA first involves

computing the convolutions with high pass filter g and low

pass filter h where the filters are determined by the wavelet

orthonormal basis, and then adopts downsamplings for both

filtered results. For level one decomposition, the original signal

Xi is decomposed to a detailed part Di
1 and an approximation

part Ai
1. More specifically, the decomposition process can be

denoted as

Di
1 = (Xi ∗ g) ↓ 2 (2)

Ai
1 = (Xi ∗ h) ↓ 2 (3)

where

Xi ∗ g = {
∑

k

xi(k)g(n− k), n = 1, ..., N} (4)

and

Xi ∗ h = {
∑

k

xi(k)h(n− k), n = 1, ..., N} (5)

and ↓ 2 indicates the downsampling by 2. To make it clear,

the level 1 decomposition is illustrated in Fig. 1. The ap-

proximation part Ai
1 can be further decomposed using the

same procedure. The second decomposition is called level

2 decomposition. The decomposition continues until a pre-

set level is satisfied. For the wavelet transform with J level

...

Fig. 2. J level wavelet decomposition

decomposition, it can be described in Fig. 2 and wavelet

coefficients are given by

Wi = {Ai
J , D

i
J , D

i
J−1, . . . , D

i
1}

= {vi(r), r = 1, . . . , R}
(6)

The TF is the ratio between two different measurements.

Let ith and jth denote the two different measurement indexes,

where i = 1, ..., n−1, j = i+1, ..., n, and the transmissibility

function between two measurements can be written as

Tij = [tij(1), ..., tij(r), ..., tij(R)] (7)

where

tij(r) =
νi(r)

νj(r)
(8)

The total number of such transmissibility functions is L =
(n− 1)n/2. These functions will be denoted as

{tij(r), i = 1, ..., n− 1, j = i+ 1, ..., n}

={τl(r), l = 1, ..., L}
(9)

Therefore, the values of all the transmissibility functions can

be written as

Γ =











τ1(1) τ1(2) . . . τ1(R)
τ2(1) τ2(2) . . . τ2(R)

...
...

...
...

τL(1) τL(2) . . . τL(R)











(10)

For the purpose of damage detection, the transmissibility

correlation (TC) between healthy hτ(r) and in-service τ(r)
can be used, which is defined as

TC(r) =
|
∑L

l=1 τl(r)
hτl(r)|

2

[
∑L

l=1 τl(r)τl(r)][
∑L

l=1
hτl(r)hτl(r)]

(11)

Transmissibility damage indicator (TDI) is the average of

transmissibility correlations over all the parameters {1, . . . , R}
given by [34]

TDI =
1

R

R
∑

r=1

TC(r) (12)

The wavelet TDI measures the similarities between normal

condition and monitored condition. If the two conditions are

similar, the correlation values at all frequencies are high. Oth-

erwise, the correlation values are low. It is worth mentioning

that the range of wavelet TDI values is between 0 and 1.

If wavelet TDI value is 1 or near 1, it means the monitored

condition is healthy. If it is smaller than 1 or near 0, it indicates

damage may happen. In general, the more serious the damage

is, the smaller the TDI value will be [21].
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Fig. 3. wavelet section energy transmissibility procedure

III. WAVELET ENERGY TRANSMISSIBILITY FUNCTION

(WETF)

In theory, the WTF should be unique under the same system

condition. However, in practice, the WTF is determined from

measured data and the results can therefore be affected by

many issues. First, the WTF can be easily corrupted by the

noise due to that a ratio calculation for estimating WTF is

used. Further, under different loading conditions, the WTF

often varies because of the loading effects. For example, a

wind turbine operates under time-varying wind loads, and

therefore it has time-varying system responses, say vibrations.

As WTF is estimated using measured vibration data in prac-

tice, the estimated values may not be consistent under different

wind loads. In other words, the effects of time-varying wind

loads may not be fully eliminated. These two reasons may

prevent the wide applications of WTF. In order to address

these issues, in this section, a new concept, called as wavelet

energy transmissibility function (WETF), is proposed. Unlike

the WTF that is the ratio of the coefficients between wavelet

transforms of two different responses [35], [36], the WETF is

the ratio of wavelet energy between the wavelet transforms

of two different responses. Fig. 3 illustrates the difference

between WTF and WETF. Here, the wavelet energy is defined

as the root mean squares (RMS) of a group of wavelet

coefficients. Suppose the R wavelet coefficients are divided

into Z groups and each group has m wavelet coefficients.

More specifically, from the original wavelet coefficients in

Equation (6), the new wavelet energy (WE) can be obtained

as

WEi = {ei(z), z = 1, ..., Z} (13)

where












ei(1) = RMS(νi(1), ..., νi(m))

ei(2) = RMS(νi(m+ 1), ..., νi(2m))

...

ei(Z) = RMS(νi((Z − 1)m+ 1), ..., νi(Zm))













(14)

and

ei(z) = RMS(νi((z − 1)m+ 1), ..., νi(zm))

=

√

√

√

√

1

m

zm
∑

h=(z−1)m+1

ν2i (h)
(15)

and zm = R. Then the WETF is defined as

Tij = [tij(1), ..., tij(z), ..., tij(Z)] (16)

where

tij(z) =
ei(z)

ej(z)
(17)

The total number of the WETF is also L = (n − 1)n/2 and

these functions will be represented as:

{tij(z), i = 1, ..., n− 1, j = i+ 1, ..., n}

={τl(z), l = 1, ..., L}
(18)

In this case, the transmissibility correlation (TC) is changed

to

TC(z) =
|
∑L

l=1 τl(z)
hτl(z)|

2

[
∑L

l=1 τl(z)τl(z)][
∑L

l=1
hτl(z)hτl(z)]

(19)

and TDI is the average of the TCs over all the Z groups given

by

TDI =
1

Z

Z
∑

z=1

TC(z) (20)

The ultimate objective of grouping wavelet coefficients is

to make WTF less sensitive to variable loadings and noise.

In each group, its RMS value is the wavelet energy indicator,

which is a robust and stable indicator in condition monitoring,

and can help reduce sensitivity to noise and dynamic loadings

without sacrificing sensitivity to the changes in system prop-

erties. The grouping number m can be tuned to control the

tradeoff between sensitivities and robustness.

To make the new concept clear and demonstrate its robust-

ness to noise and time varying loading, a numerical example of

a mass-damping-spring system is used to show its relationship

with conventional TF and advantages over WTF. For the

mass-damping-spring system, the TF is only dependent on the

mass, damping and spring parameters. Here, suppose one TF

that describes the relationship between two measurements in

Laplace transform is given by [37]

TF (s) =
36s+ 400

s2 + 36s+ 400
(21)

where s represents the frequency operator in the Laplace

domain. The plot of the frequency response function of the TF

is shown in Fig. 4. The magnitude represents the frequency

gain of the second measurement over the first measurement.

It can be seen that the low frequency gains are around 1

and the high frequency gains fall rapidly. Moreover, sup-

pose the first measurement contains a combination of sine

waves over the frequency range from 0 Hz to 50 Hz, with

the difference between two consecutive frequencies being

0.2 Hz and the second measurement is the response of the

system represented by the TF to the first measurement. To

produce the wavelet based TF, the wavelet function and

the decomposition level have to be chosen first. Here, the

low pass wavelet filter in (5) and high pass filter in (4)

are chosen as h=[0,0,0,0,0.1768,0.5303,0.5303,0.1768,0,0,0,0]

and g=[0.0138, 0.0414, -0.0525, -0.2679, 0.0718, 0.9667, -

0.9667, -0.0718, 0.2679, 0.0525, -0.0414, -0.0138] [38], re-

spectively, and 5 level decomposition is used. Then the WTF

and WETF can be calculated using the formula (7) and (16),

respectively. Finally, the following comparisons are made.
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• Relationship with TF: With the 5 level decompo-

sition, the wavelet transform (WT) of each measure-

ment produce 6 groups of wavelet coefficients, namely,

D1, D2, D3, D4, D5, A5 where D1 group contains the

highest frequency components and A5 denotes the low-

est frequency components and others represent middle

frequencies. Further, the wavelet transforms are essen-

tially the filters and therefore the wavelet coefficients are

the filtered results of original signal followed by down

sampling. In other words, the wavelet coefficients from

each group can be regarded as the filtered time-series

data. Different from the TF plot that shows the frequency

response, both WTF and WETF plots as shown in Figs.

5 and Fig. 6 can be classified into six different groups

where each contains multiple frequency components.

Further, within each group, both of WTF and WETF

have repeatable patterns under noise-free conditions and

time-invariant loadings. More importantly, WETF has a

high ratio in the lowest frequency group represented by

E(A2
5/A

1
5) and lower ratios in other higher frequency

groups, which shares the similar trends. This is because

the wavelet energy ratio can be interpreted as an average

of the mean squared TF frequency gains, which is proved

as follows. Suppose V1 = [ν1((z−1)m+1), ..., ν1(zm)]
and V2 = [ν2((z − 1)m + 1), ..., ν2(zm)] are wavelet

transforms of the two measurements and they belong to

the defined wavelet energy group z, z = 1, ..., Z. Since

the wavelet coefficients from each level decomposition

can be interpreted as the filtered measurement data and

the frequency components in a bounded frequency range,

V1 used in the zth group of WETF can be written in a

Fourier Series form, i.e.

ν1(h) =

sf
∑

k=lf

xke
−i2πkh (22)

where lf and sf represent the lower bound and upper

bound frequency components, respectively, and h = (z−
1)m+1, . . . , zm. Since ν2(h) can be treated as the output

of TF under the input of ν1(h), it can be written as

ν2(h) =

sf
∑

k=lf

ckxke
−i2πkh (23)

where ck is the gain at the frequency k. By using

Parseval’s theorem [39], the proposed WETF given by

(16) with two measurements can be re-written as

t(z) =
e2(z)

e1(z)
=

√

√

√

√

∑zm

h=(z−1)m+1 ν
2
2(h)

∑zm

h=(z−1)m+1 ν
2
1(h)

=

√

√

√

√

∑sf

k=lf c
2
kx

2
k

∑sf

k=lf x
2
k

(24)

As t(z) is in a limited frequency range and bounded

within [lf, sf ], all the gains ck’s are similar and it is

reasonable to suppose all the gains can be approximated

using a single value c ∈ [cmin, cmax] where cmin and

cmax represent the minimal and maximal gains within

the frequency range [lf, sf ], respectively. And then the

formula (24) can be simplified to

t(z) =
e2(z)

e1(z)
=

√

√

√

√

∑sf

k=lf c
2
kx

2
k

∑sf

k=lf x
2
k

=

√

√

√

√

∑sf

k=lf c
2x2

k
∑sf

k=lf x
2
k

=c

(25)

This indicates that the proposed WETF can be interpreted

as a gain of TF within the corresponding frequency range.

In other words, the proposed WETF has a clear physical

meaning.

• Robustness to noise: The noise with 20 dB signal-to-

noise (SNR) ratio is added to the first measurement. The

noisy first measurement passes through the TF and this

results in the noisy second measurement. Both the WTF

and the WETF under the noisy condition are plotted

in Figs. 7 and Fig. 8, respectively. Compared to noise-

free case, the WTF is significantly changed with noise,

particularly, repeatable patterns are corrupted. However,

the WETF keeps the same trends as those in the noise

free case. In other words, the WTF is very sensitive to

noise but the WETF is robust to noise.

• Robustness to time-varying loading: For a non-

stationary process, varying loading has a directly impact

on each measurement. Here, suppose the loading only

changes once at the half time and therefore two loading

conditions are produced. The first half measurement is

under one loading as mentioned above and the latter is

under another loading, say a doubled amplitude loading.

Results from Figs. 9 and 10 show that varying loading

can change the WTF but it has negligible impact on the

WETF. Therefore, the WETF is insensitive to varying

loading and can be used for non-stationary applications.

• Sensitivity to system property change: To test the

sensitivity of both WTF and WETF under the condition

of system property changes, the experiment is repeated

but the system property is changed under the second

loading condition. More specifically, the system under

two loading conditions has two different TFs that are

shown in Fig. 11 where the first one labeled ’tf1’ is given

by (21) and the second one labeled by ’tf2’ is given by

TF (s) =
36s+ 900

s2 + 36s+ 900
(26)

The main differences between the two TFs lie in the

low frequency gains. It is desirable to capture the system

change under different loading conditions. It seems hard

to capture the change from the WTF plot shown in Fig.

12. In contrast, it is easy to observe the change from

the WETF plot in Fig. 13. WETF correctly indicates the

change in the first group with low frequency range that is

label using a rectangle. Further, as the results of wavelet

transforms include time information, it can be seen from

Fig. 13 that the change happens in the second half part,
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Fig. 4. Transmissibility function of the system used in the numerical example
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Fig. 5. Wavelet transmissibility function of the system used in the numerical
example

which accurately captures the change due to the second

loading.

In order to fully understand the WETF, some discussions

are summarized as follows:

• Group number determination: It is important to know

how to determine the total group number Z. Both time-

varying loads and noise have an impact on the group

number. More specifically, time-varying or non-stationary

loads can be formulated as a combination of a number

of time-invariant or stationary loads, say the number is

Z0 under the given sampling time. The basic requirement

is that each group represents a full or part of stationary

process. Therefore, the chosen group number Z should be

bigger than Z0, e.g. Z > Z0. Further, each group should

include sufficient data points where the noise, generally

Gaussian noise, can have minimal impact on each group,

and then the RMS values would be consistent. On the

other hand, the sufficient data in each group requires

that group number should not be bigger than an upper

bound value, say Z1. In some cases, Z0 could be known.

For example, wind is time varying but statistical study
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Fig. 6. Wavelet energy transmissibility function of the system used in the
numerical example
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Fig. 8. Wavelet energy transmissibility function of the system used in the
numerical example under noise with 20 SNR
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Fig. 13. Wavelet energy transmissibility function of the system with property
change used in the numerical example

shows it can be treated a stationary process in a short

time of 10 seconds. If the measurement sampling time

lasts for 100 seconds, then the total group number is at

least 10 in order to make sure that each group represents

a stationary process. In some practical cases, Z0 and Z1

may be unknown. Therefore, trials and errors can be used

to choose the group number Z.

• WTF is a special case of WETF: When applying the

WETF, if the group number is chosen as its maximal

value, i.e. the length of the whole measured data and

each group of WETF only has one data, it can be easily

to observe that the WETF becomes the WTF. Therefore,

the WTF is a special case of the WETF. The WTF has

only one single data in each group. This means that it has

extremely insufficient data in each group, which results

in the high sensitivity to noise. This conclusion is also

confirmed using both numerical examples in the current

section and the real world case study in the following

section.
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• Reference: In practice, if no healthy condition reference

is available, the proposed method can still be used. The

current state, even with some defects, can be used as the

reference and further deterioration causing more severe

defects can be shown in the TDI values.

• Incipient fault detection and prognosis. It is very

important to detect the incipient faults at an early stage.

However, conventional spectral methods often fail to do

so under the time-varying loading conditions. The reason

for this is that the time-varying loading can lead to

varying spectra. The incipient faults with slight changes

in the spectra may not be identifiable. The proposed

methods can effectively deal with the varying loading

impact and therefore it can be used for incipient fault

detection. The TDI indicators using the WETF can be

used for inferring both damage and severity level de-

tection. Further, the trending of TDI indicators can be

used for prognosis to predict the future deterioration

rate and even failure time by using some curve analysis

methods. It is worth pointing out that, to monitor the

incipient faults, data collection should last for a long

enough periods, sometimes several years, including both

healthy condition and changed conditions. If the proposed

method is applied for the continuously monitored data,

TDI indicator values will be reduced, often slowly drifted

due to the low change in the condition, which can be

used to distinguish the incipient damage from the healthy

condition because the used TDI indicator is a quantitative

evaluation of differences between the reference and in-

serve condition.

• Differences from existing wavelet methods: First, the

unique contribution of this paper is that the novel method

does not require or measure loading information but it is

able to remove the impact of varying loadings for non-

stationary applications. Some popular methods reported

in [40] have to measure and use information such as rota-

tion speed in order to deal with time varying conditions.

Further, the proposed method is computationally efficient

as its main computation is from wavelet decomposition

and it does not require a complex training process. A

number of existing methods which are a combination

of the extracted wavelet features and artificial intelligent

algorithms [41], [42], require a large amount training data

and a complex training process.

• Advantages and limitations: The main advantage is that

the new WETF is related to system physical properties

and therefore can present the system conditions. Further,

the WETF is able to deal with multiple system responses

without requiring the system input. Finally, the WETF

is computationally efficient as it only needs calculating

wavelet decomposition and RMS. The main limitation, as

pointed in [27], [43], is that the values of TF depend on

location of system input. In this case, multiple WETFs

under inputs at different locations can be used to address

the varying position problem [34], which will be investi-

gated in future studies.

In this section, the novel concept, WETF, has been intro-

duced and its robustness to dynamic loading and noise has

been analyzed in theory and also validated using a numerical

example. The application of the novel method to the real-world

problem will be investigated in the following section.

IV. WIND TURBINE BEARING CONDITION MONITORING

Worldwide installed wind turbines have been significantly

increased over the past decade. To avoid unexpected failure

and minimize turbine downtime, different wind turbine con-

dition monitoring systems and methods have been developed

[44], [45], [46], [47], [48]. Although a number of methods

have been proposed, most of them are tested in simulation

or lab stage and have not been fully tested in operating

wind turbines [3]. In this section, the real world wind turbine

condition monitoring problem is considered. Two condition

monitoring systems were installed on two operating turbines

in Greece, which were carried out by an industrial partner

in a joint project funded by European Research Council. The

vibration data from four acceleration sensors fitted on the main

bearing were collected. It is known that one bearing was in

good conditions while the other had some damaging conditions

over the period of monitoring. It has to mention that for the

purpose of condition monitoring, data collection should last

for a long enough period including both healthy condition and

changed conditions. However, often in practice, no reference

data were recorded during the healthy condition. To deal with

this issue, an alternative option is to use the healthy data from

another system that has the same physical structures but is in

good condition. A number of examples in the literature also

used another system as a reference [9], [49], [10], [50], [13],

[21]. The four acceleration type vibration sensors were fitted

at different locations along the main bearing. The employed

sampling rate was 25 KHz and each data collection lasted for

12 seconds, producing 300000 data points from each sensor.

The data acquisition was carried out hourly and had a duration

of about 5 months.

In order to show the time-varying loading effects, four

data sets that were collected at different time under good

conditions were plotted in Fig. 14, where the data collec-

tion date was labeled below each sub-figure, e.g. 20140324

representing 24th March 2014. It can be seen that the four

sub-figures have different amplitudes ranges, indicating differ-

ent loading conditions. Similar phenomena can be observed

in Fig. 15 where the data were collected under damaging

conditions. Further, the wavelet transforms (WT) of good

condition and damaging condition data collected at differ-

ent times are plotted in Fig. 16 and Fig. 17, respectively,

where the low pass filter in (5) and high pass filter in (4)

are chosen as h=[0,0,0,0,0.1768,0.5303,0.5303,0.1768,0,0,0,0]

and g=[0.0138, 0.0414, -0.0525, -0.2679, 0.0718, 0.9667, -

0.9667, -0.0718, 0.2679, 0.0525, -0.0414, -0.0138] [38], re-

spectively. It can be seen that the wavelet coefficients varies

from one sub-figure to another, which also shows the time-

varying loading effects. However, the differences between

good and bad conditions can not be observed from the wavelet

coefficients due to their variations. Finally, the WTFs under

good and damaging conditions are shown in Fig. 18 and Fig.
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Fig. 14. Time series vibration data of good condition collected at different
times

Damaging condition data
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Fig. 15. Time series vibration data of damaging condition collected at
different times

19, respectively. It is obviously still hard to tell the differences

between good and damaging condition from the WTF due

to the variations. Further, the TDI results using WTF are

shown in Fig. 20, showing that the good condition has some

difference compared with the bad conditions. However, the

differences between two conditions are very insignificant. TDI

values for the first 2190 sets of good condition data are around

0.3. As the TDI values are in the range of [0,1], we need

to choose a threshold to determine its condition. Here, if we

choose 0.5 as the threshold value, the good condition can be

easily misinterpreted as bad conditions due to the small TDI

values.

The new WETF is then used to analyze the same data

sets. The grouped wavelet coefficients of good and damaging

condition data collected at different times is plotted in Fig.

21 and Fig. 22, respectively, where the number of wavelet m
in each group is chosen as 30 by trial-and-error. It is worth
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Damaging conditions
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Fig. 20. TDI results using WTF method where data sets (1-2190 datasets:
good condition, 2191-3990 datasets: damaging condition)

pointing out that the choice of m for other applications should

follow the suggestion given in Section III. It can be seen that

the amplitudes of grouped wavelet coefficients varies from

one sub-figure to another sub-figure, still indicating different

loading conditions on different data collection. Further, the

WETF under good and damaging conditions are shown in Fig.

23 and Fig. 24, indicating the WETFs with good condition

under different loading conditions are quite similar. In other

words, the WETF is robust to variable loadings and noise.

Therefore, it can be used as a good indicator of true system

condition. The same conclusion can also be observed from

WETFs for the data under damaging condition at different

loading conditions. Finally, TDI result using WETF is given

in Fig. 25. Compared to the previous results produced by

WTF shown in Fig. 20, the new results shown in Fig. 25

can clearly distinguish the differences between good and

damaging conditions without a false alarm if choosing 0.5 as

the threshold. To make a fair comparison, the threshold for the

conventional WTF method has been chosen as 0.25 as all its

TDI values as shown in Fig. 20 are smaller than those for the

proposed method. It is found that there are 85 false alarms for
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Fig. 21. The RMS values of the grouped WT coefficients of good condition
data collected at different times
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Fig. 22. The RMS values of the grouped WT coefficients of bad condition
data collected at different times

the WTF method. This comparison confirms the advantages

of the new WETF approach over the WTF method.

V. CONCLUSION

In this paper, a new wavelet energy transmissibility analysis

method is proposed and has been applied to field data from

operating wind turbines for wind turbine bearing condition

monitoring. The main advantage of the WETF is that it can be

used for condition monitoring under non-stationary operations

and the result is insensitive to time-varying loads and noise.

The results of the analysis using the field data have shown the

new method can produce much better indicator than the direct

wavelet transmissibility analysis for evaluating the conditions

of wind turbine bearings.
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“Condition monitoring of wind turbines: techniques and methods,”
Renewable Energy, vol. 46, pp. 169–178, 2012.

[2] W. Qiao and D. Lu, “A survey on wind turbine condition monitoring
and fault diagnosis-part ii: Signals and signal processing methods,” IEEE

Transactions on Industrial Electronics, vol. 62, no. 10, pp. 6546 – 6557,
2015.

[3] W. X. Yang, P. J. Tavner, C. J. Crabtree, Y. Feng, and Y. Qiu, “Wind
turbine condition monitoring: technical and commercial challenges,”
Wind Energy, vol. 17, no. 5, pp. 673–693, 2014.

[4] B. Lu, Y. Li, X. Wu, and Z. Yang, “A review of recent advances in
wind turbine condition monitoring and fault diagnosis,” in IEEE Power

Electronics and Machines in Wind Applications (PEMWA), 2009. IEEE,
2009, pp. 1–7.

[5] W. Bartelmus and R. Zimroz, “A new feature for monitoring the con-
dition of gearboxes in non-stationary operating conditions,” Mechanical

Systems and Signal Processing, vol. 23, no. 5, pp. 1528–1534, 2009.

[6] S. Cruz, “An active-reactive power method for the diagnosis of rotor
faults in three-phase induction motors operating under time-varying load
conditions,” IEEE Transactions on Energy Conversion, vol. 27, no. 1,
pp. 71–84, 2012.

[7] R. R. Schoen and T. G. Habetler, “Evaluation and implementation of a
system to eliminate arbitrary load effects in current-based monitoring of
induction machines,” vol. 33, no. 6, pp. 1571–1577, 1997.

[8] R. Zimroz, W. Bartelmus, T. Barszcz, and J. Urbanek, “Diagnostics
of bearings in presence of strong operating conditions non-stationarity
a procedure of load-dependent features processing with application to
wind turbine bearings,” Mechanical Systems and Signal Processing,
vol. 46, no. 1, pp. 16–27, 2014.

[9] W. Bartelmus and R. Zimroz, “Vibration condition monitoring of plan-
etary gearbox under varying external load,” Mechanical Systems and

Signal Processing, vol. 23, no. 1, pp. 246–257, 2009.

[10] W. Bartelmus, F. Chaari, R. Zimroz, and M. Haddar, “Modelling of
gearbox dynamics under time-varying nonstationary load for distributed
fault detection and diagnosis,” European Journal of Mechanics-A/Solids,
vol. 29, no. 4, pp. 637–646, 2010.

[11] I. Antoniadou, G. Manson, W. J. Staszewski, T. Barszcz, and K. Worden,
“A time–frequency analysis approach for condition monitoring of a wind
turbine gearbox under varying load conditions,” Mechanical Systems and

Signal Processing, vol. 64-65, pp. 188–216, 2015.

[12] X. Y. Wang, V. Makis, and M. Yang, “A wavelet approach to fault
diagnosis of a gearbox under varying load conditions,” Journal of Sound

and Vibration, vol. 329, no. 9, pp. 1570–1585, 2010.

[13] R. B. Randall and J. Antoni, “Rolling element bearing diagnostics a
tutorial,” Mechanical Systems and Signal Processing, vol. 25, no. 2, pp.
485–520, 2011.

[14] E. S. Carbajo, R. S. Carbajo, C. McGoldrick, and B. Basu, “Asdah: An
automated structural change detection algorithm based on the hilbert–
huang transform,” Mechanical Systems and Signal Processing, vol. 47,
no. 1, pp. 78–93, 2014.

[15] S. Nagarajaiah and B. Basu, “Output only modal identification and
structural damage detection using time frequency & wavelet techniques,”
Earthquake Engineering and Engineering Vibration, vol. 8, no. 4, pp.
583–605, 2009.

[16] B. Basu, S. Nagarajaiah, and A. Chakraborty, “Online identification of
linear time-varying stiffness of structural systems by wavelet analysis,”
Structural Health Monitoring, vol. 7, no. 1, pp. 21–36, 2008.

[17] D. Cantero and B. Basu, “Railway infrastructure damage detection
using wavelet transformed acceleration response of traversing vehicle,”
Structural Control and Health Monitoring, vol. 22, no. 1, pp. 62–70,
2015.

[18] J. Abe, Ma.and Abot and B. Basu, “Encyclopedia of structural health
monitoring.”

[19] H. Zoubek, S. Villwock, and M. Pacas, “Frequency response analysis
for rolling-bearing damage diagnosis,” IEEE Transactions on Industrial

Electronics, vol. 55, no. 12, pp. 4270–4276, 2008.

[20] L. Gelman, “The new frequency response functions for structural health
monitoring,” Engineering Structures, vol. 32, no. 12, pp. 3994–3999,
2010.



IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, VOL. , NO. , 2017 11

[21] L. Zhang, Z. Q. Lang, and M. Papaelias, “Generalized transmissibility
damage indicator with application to wind turbine component condition
monitoring,” IEEE Transactions on Industrial Electronics, vol. 63,
no. 10, pp. 6347–6359, 2016.

[22] S. N. Ganeriwala, J. Yang, and M. Richardson, “Using modal analysis
for detecting cracks in wind turbine blades,” Sound and Vibration,
vol. 45, no. 5, p. 10, 2011.

[23] A. M. R. Ribeiro, J. M. M. Silva, and N. M. M. Maia, “On the
generalisation of the transmissibility concept,” Mechanical Systems and

Signal Processing, vol. 14, no. 1, pp. 29–35, 2000.

[24] M. J. Schulz, A. S. Naser, P. F. Pai, M. S. Linville, and J. Chung,
“Detecting structural damage using transmittance functions,” in Proced-

dings SPIE the Intertional Society for Optical Engineering. SPIE the
International Society for OpticalL, 1997, pp. 638–644.

[25] T. J. Johnson and D. E. Adams, “Transmissibility as a differential
indicator of structural damage,” Journal of Vibration and Acoustics, vol.
124, no. 4, pp. 634–641, 2002.

[26] T. J. Johnson, R. L. Brown, D. E. Adams, and M. Schiefer, “Distributed
structural health monitoring with a smart sensor array,” Mechanical

Systems and Signal Processing, vol. 18, no. 3, pp. 555–572, 2004.
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