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Abstract

In the present study, a new concept known as the Associated Outgueicg Response Function (AOFRF) is ontr
duced to facilitate the analysis of the effects of both linear antinear characteristic parameters on the output freguenc
responses of nonlinear systems. Based on the AOFRF concept, the stgiypWwa, for the first time, that the outpug-fr
guency responses of a wide class of nonlinear systems that are debgrthedNARX (Nonlinear Auto Regressive with
eXegenous input) model can be represented by a polynomial functiathathle system linear and nonlinear characteristic
parameters of interests to the system analysis. Moreover, an efficient algerdbnived to determine the structure and c
efficients of the AOFRF based representation for system output frequesmynses. Finally, a case study is provided to
demonstrate the effectiveness and advantages of the new AOFRF bassdntegion and the implication of the result to
the analysis and design of nonlinear systems in the frequen@irdom

Key words Associated Output Frequency Response Function; NARX model; Nonlineamsystalysis and design; &
quency domain.

tion of linear systems and have found applications in the
1. Introduction areas of structural health monitoring and fault diagnosis
(Zhao et al, 2015)The OFRF reveals an analyticalael

Because the linear system frequency domain analysigionship between the output spectrum of nonlinear systems
and design have a wide range of scientific and engineeringand the parameters which define system nonlinearities, and
applications, the analysis and design of nonlinear systemsrovide an effective approach to the design of the system
in the frequency domain have also received considerablenonlinear properties in the frequency domdiin et al,
interests(Dobrowiecki and Schouken2007). Compared 2014) The HOSIDF can be considered to be a special case
with the time domain methods such as, e.g., the traditionalof the OFRF of a static polynomial nonlinear systgin
harmonic balance and multi-scale methods, the frequencylaarsdam et al, 2011Considering the wide application of
domain approaches have shown the capability to deal withthe FRF in linear system analysis, Pavlov €tal7)pro-
a wide class of nonlinear systems, rather than the systemposed the concept of nonlinear Bode plots for the analysis
with specific model descriptiorislovara et al, 2013) ard design of nonlinear convergent systems. However, in

Based on the Volterra series theory of nonlinea-sy most cases, the nonlinear Bode plots cannot be analytically
tems, the concept of Generalized Frequency Responsetudied (Rijlaarsdam et al, 2017and are, consequently,
Functions (GFRFs) was proposed in 195@0rge; 1959) difficult to be used to understand the properties of ugeerl
which are a series of multi-dimensional functions. The ing systems.
multi-dimensional nature makes the GFRFs difficult to be It is well known that the output frequency responses of
applied in practice. To address this challenge, some onenonlinear systems are affected by both the linear and
dimensional frequency domain representations of nonlineamonlinear characteristic parameters of the system. The
systems have been proposed. These include, for exampl@dFRF shows an analytical relationship between the output
Nonlinear Output Frequency Response Functionsspectra of nonlinear systems and the system’s nonlinear
(NOFRFs)(Lang et al, 2005)Output Frequency Response characteristic parameters, but this relationship is only valid
Function (OFRF)Lang et al, 2007)Higher Order Sin- under the condition that the system linear characteristic
soidal Input Describing Functions (HOSIDE)uij et al, parameters are fixed. Very recently, the issue associated
2006) and the nonlinear Bode plotsaviov et al, 2007)  with the effect of linear characteristic parameters on the
The NOFRFs represent the relationship between the inpuhonlinea system output frequency responses have been
and output spectra of nonlinear systems in a way similar tostudied (Xiao and Jing, 2016)However, the result is, so
the Frequency Response Function (FRF) based repaesentfar, only a conceptual polynomial approximation for the
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system output spectrum, and there are still no results thaWherehn(rl,...,rn) is thenth order Volterra kernel, and

can systematically relate the output frequency response of,, . , . .
nonlinear systems to both system linear and nonlinearN is the maximum nonlinear order of the Volterra series

characteristic parameters so as to facilitate the systen{svlec:]r;%vggi_;hneg%‘ﬁg%ﬁﬂ;‘;ﬁg&?f the system can bevepr
analysis and design.

In the present study, motivated by the need of theyanal N Nv (N 1
sis and design of the effects of any parameters of amonli Y(Jw) a ;Y” (J w) a nzz‘;\/ﬁ(zﬂ)nfl
ear system on the output frequency response, a new co n (3)
cept known as Associated Output Frequency Response xj Hn(a)l,...,a)n)HU(jwi)dO-w
Function (AOFRF) is introduced for the NARX model of o oA .
nonlinear systems. Based on the novel AOFRF condept, iwhere-zf <o<zf,, f =1/At is the sampling frequency;
is rigorously shown that the output frequency response ofy (jw) andY (jw) are the spectra of the system input and
nonlinear systems can be represented by a ponnomia[)utput respectivelyand
function of both the system linear and non-linear characte ’

istic parameters. Effective algorithms are derived toreete Hn(wll""a)n) = i i hn(z-l,_._,fn)
mine the structure and coefficients of the AOFRF based e tyme 4)
representation of the output frequency response of monli xexp(— j(a’171+"'+0)nfn)At)

ear systems. Finally, a case study is used to showpthe a
plication and verify the effectiveness of the algorithms in
the analysis of output frequency responses of nonlineal
systems to both deterministic and random inputs. Ehe r
sults demonstrate the significance of the new AOFR¥ co : . : Y
cept and associated techniques in the revelation offthe e ?:rrnn é{;\égnctlon of the system nonlinear characteriséi p
fects of both linear and nonlinear characteristic parameters Recently, Xiao and Jing2016) have conceptually ird

on the output frequency responses of a wide class Of e that the output spectrum can also be represented by a
nonlinear systems. polynomial function of the system linear characteristie p
. rameters. These results imply that the output spectrum of
2. Theoutput frequency responses of nonlinear sys- nonlinear systems could be represented by a polynomial
tems function of both the system linear and nonlinear characte
. . . istic parameters. However, there are neither results about
Consider the nonlinear systems described by a poly-ihe conditions under which this representation is valid nor

is the nth order GFRF of the system.

" According to the concept of the OFRF proposed by
Lang et al(2007), the output spectrum of a wide class of
nonlinear systems can rigously be represented by pol

nomial NARX modelPeyton-Jones and Billings, 1989) algorithms that can be used to determine the detailec- stru
Mmoo K P ture of this polynomial.
y(k)=ZZ Z {Cp,q(kv kmq)H y(k- ki) The present study is motivated by the successfuli-appl
M1 P=0K, kpq= =1 (1) cation of the OFRF and associated techniduesg et al,
o K 2009, 2013, Ho et al, 2014and the need to study thé e
X.glu( _K) fects of both the linear and nonlinear characteristic para-

. meters on the output responses of nonlinear systems. The
where y(.) and u(.) are the outputs and inputs of the \york will be based on a new concept known as the Associ-

system; k represents the discrete tirne{;vq(ki, e kp+q) ated OUtpUt Frequency Response Function (AOFRF)

with p+qg= m represents the model coefficients of the 3. The concept of the Associated Output Frequency

NARX model andz:'kqulz Z:ﬂ'-'Z:M:l ; M and Response Function (AOFRF)
K are integers.

The NARX model (1) is a determinstic representation of 1he concept of the AOFRF of the NARX model of
nonlinear systems. When the physical model of nonlinearnonlinear systems is introduced in Proposition 1 toifacil
systems under study is not avaliable, a NARX model cantate the representation of the system output frequescy r
be obtained from a NARMAX (Nonlinear Auto Regressive SPonse in terms of both the NARX model linear and
Moving Average with eXegenous input) model by nonlinear characteristic parameters. _
removing the terms representing modelling error and noiseProposition 1. The output spectrum of the nonlinear
in the model. The NARMAX model can be identified from System (1)/(2) can be deschlbed as
the system input/output data using the NARMAX method NN (G
of nonlinear system identificatiam®illings, 2013). Y(Jm)_;Y' (]w) ®)

Under the condition that system (1) is stable at zeroynere
equilibrium, the output of system (1) can be described by N
the discrete time Volterra series Y (jo)= ZJ.W-..+,Un:wH1r (0,

V)= 20,09 =3 3 - 35 () [ Tu(kr) Ly (@10,)2 B (@10,)| €, o,

n=17=—0 i=1
) is referred to as the th order AOFRF withr =0,...,n; “

s

o " represents the Hadamard product,

(6)
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n . where 4, is a vector composed of the coefficients
Doy (@11 0,) U(]a)j) , _ _ _ _
' 0 A .. (j®), (jp-+1]s) € I, which are the functions of

D (o,...,0)= 2 (7
) Jn(2z)™ frequency variablen; @,,r =0,...,N are the vectors of
with qu(m)(,) representing the functions of frequasc  the monomials in the polynomial representation;
e . i i p+q=>1
@, o, ,. L-(m)(.) are the functionsf the systen-1 linear 6,,...,04 €|:Cp,t1(k1’”"kWQ)‘{kl,..., k=LK }
characteristic parametersind C,,, are determined by (11)
the system nonlinear characteristic parameters. are the linear or nonlinear characteristic parameters of

Proof of Propos'tion 1. It can bg _shown by foII'owing the NARX model (1);S is an integer and is the set
the results in Peyton-Jones and Billir@989 and Jing et

al (2009)that containing all indices of,..., .
n Proof of Proposition 2. Omitted due to space limitation.
Hn(a)l,...,a;n):ZHl' (..., 0,) Remark 4. The order of the polynomial representation
r=0 ; (8) (10) is determined by the order N of the Volterra senes e
X[L(n:,)(wl..--.wn)oq)H(n:,)(a)l,---,wn)JC (1) pansion and the order of the power series expansion for

Proposition 1 can then be obtained by substituting (7) H,(-) and (. for i =1,...,n. When the order for the

into (3). power series expansion off,(.) and L, *(.) are given as

Remark 1. L(n:r)(') andC, in Proposition 1 can be n, , the maximum order of the linear characteristic param

obtained by using a recursive algorithm as demonstrated ingrs in any specific term in (6) can be directly obtained by

Appendix A. . . ;
Remark 2. Given the system linear characteristic para- referring to the expansion order dfi’(.) and L(n:r)(') as

meters and input spectruifg) and (6)become the OFRF  rn, and(n—l)nL, respectively. This explains the impo

of system (1)/(2), a polynomial function of the system yance of the introduction of the AOFRF concept which can,

nonlinear characteristic parameters. ; ; : . N
. as simply illustrated above and described in more details in

Remark 3. Generally, the AOFRF based representation ge qinn 2 2 helow, significantly facilitate the determination
(5) and (6) explicitly decouples the effects of the system

3 - o f the structure of a polynomial representation for
linear and nonlinear characteristic parameters on the outpu?em output spectrunpq |¥1 terms gf both the Iin:Z? and
spectrum. This will facilitate the study of the relationship n

. onlinear characteristic parameters.
between the system output spectrum and both the linear P
and nonlinear characteristic parameters. 4.2. Determination of the AOFRF based representation

4. The AOFRF based representation of the output fre- The determination of the AOFRF based polynomigt re
quency response of nonlinear systems resentation 10) of the system output spectrum isneo
) cerned with determining both the structure and the coeff
4.1. The AOFRF based representation cients of the polynomial. In order to determine thecstru
71 . ture, the components i@, , which are the monomials in
Denote L *() for i=1...n as the elements

the polynomial representation of tmeth order AOFRF,
composing L(m)(.) as shown in Appendix Alt will be can be determined by using Proposition 3.

shown in Propositon 2 below that under certain conditions Proposition 3. The monomialsn the polynomial repre-
H () and L'—l() can be expanded into a power series in sentation of the th order AOFRF can be determinad
Ne (.

N
terms of the system linear characteristic parametey) 0, = H[@<Lm) ®@('1;LF)J (%)

and CO,l(')' and the AOFRF based representation (5) and In (12), “® * denotes the Kronecker product: @(Lm) repre-

(6) of the system output spectrum can be described as a - .
polynomial function of both the system linear and Sents a vector only consisting of the system linear ahara

nonlinear characteristic parameters teristic parameters such that
. . n-1 )
Proposition 2. If there exist a set of constan® = Q(Ln:r) ~[6.] ®U[0L]I (13)
[c,(K)|k=1,..,K] such that 1

whered, and@,_ are the vectors of the monomials in the

K
Y Jeo (k)¢ (K| <1 (9  power series expansi@i H, (@) and L, (@, -,@ ) for
k=1 . . . ..
(5) and (6) can be expanded into a polynomial function i=1...,n in terms of system linear characteristic para-

_ N N . meters with
Y(J”):Z(;Yr (J“’):;/Wr [0.] =0, ®--®0, and[6,] =0, ®---®0, (14)
r= r= (10) — Y

= ljl.-- (ja))elil...gsjs Y :

(j1,-._yj5)€~]s

s
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@NL
(nir)
nonlinear characteristic parameters such that

n-p+l r

_ NL NL
([np)r) — |L:J1 FE:JO@(i:R) ®@([m| p-1:r-R :

(16)

O}y =[1]and@;, =6, =[NULL] for r> n

Proof of Proposition 3. Omitted due to space limitation.
Remark 5. Proposition 3 provides an algorithm that can

be implemented using computer codes to automatically

produce all the monomials in the polynomial form eepr
sentation of the system output spectrdi®) (
When @,,r =0,...,N have been obtained, the coeffi-

cients 4, (jo) in the AOFRF based representation

rametersk ,, k., of system (17) affect the system output

frequency response when the values of the two parameters
vary over the range of

k, €[0.5,1.4x 16 M nandk,e[0,x16 N ni(21)
Denote ¢, =G 4(1) and ¢ =¢,4(1,13) . It is known
from the relationship betweek), andk,, andc (1) and
C;0(1,1,9) that
{CL =G,(1) €[1.473,1.61]1
Cu =GCo(11) e[ 0512, 0.66% £

Take N =5, then the AOFRF based representation for
the output spectrum of the system can be determined by
the following steps.

Step 1. Determine a polynomial representatioof

H,(®) and (e, ) for i=1...,n in terms of the
system linear characteristic parameter of concern, which is
C. =G,o(1), in this case.

For NARX model (19), over the range of values @f p
rametersc ,(1) and c;(1,1,9) given by (21), it can be
shown that the converge condition (9) is satisfied by
chosen, for examplec,(1)=(1.473+ 1.61}) 2 1.54

(22

(10) of the output spectrum can be evaluated using agnd Cz(2)= q,0(2)2_0'687' Therefore,Hl(a)) can be

Weighted Least Squares (WLS) method from the simulated
responses of system (1) to a given input in the case wher&

xpanded into a convergent polynomial function cpf

the system linear and nonlinear characteristic parameters ovthose second order approximation can be written as

concern vary over a selected range of values of interest

(Zhu and Lang, 2017)

5. A case study
Consider he Duffing equation with nonlinear damping
§(8)+ Ca¥(1)+ Ka V(D) + koY(1) + ()’ = u(t) (17

wherec, =80 N/ms* andc,, =200 N/ nfs®.
Approximating the first and the second derivatives in

(17) as
y(k)-y(k-1)

y(t) Y y(k+1)—2y(k)+y(k—1)

At?

V()=

18
and substituting18) into (17) with At =1/256¢ yielt(js)a
NARX modelof system 17) as

Y(K) = Goa (D u(k=1)+ Go(Y A k-3+ ¢, W k- 3
+C3,0(1'1']) y3(k— ])+Cs,0( 1'1’2)’2( k- )-Y( k- ?
+G0(12.2 (k= 9y (k- 3+c,(22.2y° (k- ¥

(19)
where

. (1)=1.526¢ 10° , o( 2=- 0.687;
Co(1,1,2=1.024« 1D ¢, o( 1L,2,2=— 1.024 1( (20a)
C0(2,2,2= 051 10 ;

Co(LL)=—(1526 16k, + 0512 1P
Co(1)=—(1.526< 10k, — 1.68) elsec, ,()= C (20b)

Preprint submitted to Automatica

Hy (o) = go(jo)+oy(iw)c +o,(i0)e® (23
Moreover, L, *(.) for i=1...,n can also be appro-
ximately expanded into a polynomial function @f of the

same form as (23).

Step 2: Determine the structure of the AOFRF based
representation of the system output frequency response.
According to Proposition 3, the monomial vector assoc
ated with the AOFRF based representation can be written
as

N L NL L NL
0= L:Jl[@(r:r) ®@(r:r):| = |:@(1:1) ®0(1]):|
L NL L NL
U |:@(3:3) ® @(3:3 :| U |:@( 59 ® @( 5:5:|
In this caseit is known from Step 1 tha¥, =6, =

(24)

[1, c., qz] and, from Proposition, 3t is known that

@(Il:l) =0, = I:l! G, CI_2:| p5a)
@(T;) = [1]
2 .
@(L3:3) =[0, ]3 ®iL:J1[0L] = |:l’CL Qe anO] (25b)
@('\3":—3) = [CNL]
and
4 .
Q(I:'-s:s) = [0H ]5 ®9[0L] = |:1v C ,qz e ,le] (25¢)
Oy =[]

20 February 2018



Consequently, substitutin@®) into (24) yields the stro- teristic parametec,, . If the system nonlinear characteri
ture of the AOFRF based representation of the outpet Spe tjc parameters are fixed, the AOFRF based representation
trum of systemX7) as: (27) becomes a 1B order polynomial function of the sy

Y(jo) = Ayo(j@)+ A 0(j 0)c, + 2,4 @)c.? tem linear characteristic parametgr. These results are
10 18 . . .
- I 2 - o (26) also illustrated in Fig.1.
+CNL§%1’1(W)Q o ZJMJ(J )¢ Fig.1 clearly indicates that the AOFRF based represent-

tation for the system output spectrum is valid over a wide
range of values of the system linear and nonlinear chara
teristic parameters, including the values which are outside

Step 3: Determination of the coefficientis the poly-
nomial representation of (jw).

Equation (26) can be rewritten as the parameter ranges (28), over which the polynorefal
_ . - o . qz resentation was determined. This is because the AOFRF
Y(jo) = Ao o(j@)+Ayo(i a))l—L+/12,o(J a))l—z based representation is capable to capture inherent system
| Y L@ dynamics rather than simply fit the data.
Cy & i (i C' G &: . \G*? Now consider another case where a random band limited
+_Z |1v1(Ja)) | + 2 2212,1(] a)) | H -
o = [ W "2 signal over the frequency range @fe [50,204 rad with

where 4 ; (jo) =4 (] a))/IL‘INLj ,0,j=0,1,... with I, =1 magnitude varying ovef—30,30 Nis applied as inputo
and |, =10 are introduced as weights to transform the System (17). The AOFRF based representation fosysie
tem output spectrurwas determined over the same range

of the values of the system parametgrsand c,, as in
in (26) to 4 | (ja)) in (27). The objective is to circumvent (28). Fig.2 shows a _comparisor_1 of sim_ulated output spectra
possible numerical issues with evaluation of these ioeff ©f System (17) to this random input with the results @val
cients(Zhu and Lang, 2017) ated using the AOFRF based representation under three

Now consider the situation where the system input different sets of values af andc, , indicating that the

u(t)=3coqwt) with w=110rad/c. The coefficients AOFRF based representation can also accurately des-cribe

. . ] the system output spectra to a random input.
4;(j®),i,j=0,1,... in (27) were evaluated from tisys- 10

tem output frequency responses to this input when the sy

frequency related polynomial coefficients from, (jo)

. : - 5
tem linear and nonlinear characteristic parametgrand £ 4
c,. Vvary over the following range of values <3
=2
¢/l =[1.54:0.003:1.5f 28) >
Cy /I =[5-80:0.05:6.3p 20502 g B,
The result is a specific case of (27), which is a pmlyn 00150100 e, . (1.60, 6.50
i i 30 o 148 530 (1.55, 6.00)

m!a! function of the_ system p_arameterLs and ¢, con- Frequency, /rad/s (148, 5.30) (& /l G /b))

taining 33 terms which are omitted here due to spade lim Fig.2. The output spectrum and its AOFRF based representation

tation A comparison of the system output spectrum eval under a random input

ated using (27) thus determined and the result determined Line: Simulation results; Cross: The AOFRF based reprasent

from the simulated system output response is shown in . . tion. _

Fig.1. It is worth noting that many terms in the AOFRF based
x10*. o/l ~1588 representation of nonlinear system output spectra as dete
N > mined in the case study above are often redundantpAn o

314 timal selection of the terms (monomials) in the polynomial
£ Y A B [ . 58 . N representation is being investigated and will be discussed
=301 AW A = 51 55 99 63 6. in a future publication.
= B ca/Ine
x29 ' 6. Conclusions

2.81 s P .

b7 6.7 " The OFRF based representation for output frequescy r

- >5.9 — . sponses of nonlinear systerfisang et al, 2007has den-
146 15 1.46 1.5 1.54 1.581.6. S . '
lc'jf[ 1.58 1.625.1 cu/lne cll onstrated significant advantages in both the systeny-anal
Fig.1. A comparisoinf the simulated system output spectrum  SiS and design. However, the OFRF only shows a pelyn
with the result evaluated using the AOFRF based representation.mial relationship between the system’s output spectrum
Circle: Simulated results; Surface: Results evaluated using the and nonlinear characteristic parameters; it can’t explicitly
AOFRF based representation; Cross: Data of the output spectrareveal the effect of system linear characteristic parameters
_ used to determine the AOFRF based representation. ~  on gutput spectra. In order to address this issue, a new co
It is worth noting that, if the system linear characteristic cept known as the AOFRF of nonlinear systems, has been
parameters are fixed, then the AOFRF based representatiogroposed. The AOFRF enables an explicit separation of the

(27) will become the OFRF of the system, which is a 2nd gystem linear and nonlinear characteristic parameters in the
order polynomial function of the system nonlinear cbara
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