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ABSTRACT 

The aim of this paper is to formulate and validate an alternative design approach suitable for 

predicting finite lifetime of mechanical assemblies subjected to constant amplitude (CA) fretting 

fatigue loading. The design methodology being proposed is based on the use of the Modified Wӧhler 

Curve Method (MWCM) applied in conjunction with both the Theory of Critical Distance (TCD) and 

the Shear Stress-Maximum Variance Method (τ-MVM). In more detail, the TCD, applied in the form 

of the Point Method (PM), is used to take into account the damaging effect of the multiaxial stress 

gradients acting on the material in the vicinity of the contact region. The time-variable linear-elastic 

stress state at the critical locations is then post-processed according to the MWCM which is a bi-

parametrical criterion that estimates fatigue lifetime via the stress components relative to those 

planes experiencing the maximum shear stress amplitude. Thanks to its specific features, the MWCM 

is capable of modelling not only the presence of non-zero mean stresses, but also the degree of 

multiaxiality and non-proportionality of the local load history being investigated. In this setting, the 

τ-MVM is used to calculate the stress quantities relative to the critical plane whose orientation is 

determined numerically by locating that plane containing the direction experiencing the maximum 

variance of the resolved shear stress. The accuracy and reliability of the proposed design 

methodology was checked against a number of experimental data taken from the literature and 

generated by testing four different metallic materials. The agreement between experiments and 

estimates being obtained strongly supports the idea that the proposed approach can be used to 

perform a rapid assessment of mechanical assemblies damaged by in-service fretting fatigue loading. 
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Nomenclature 

a Contact semi-width. 
A, B Material fatigue constants in the �� vs. ��  relationship 

E Young’s modulus 
f Friction coefficient 
��,�,	
�� External time-variable forces 


 Negative inverse slope of the fully-reversed uniaxial fatigue curve 

� Negative inverse slope of the fully-reversed torsional fatigue curve 

�
����� Negative inverse slope of the modified Wöhler curve 

�� Notch fatigue strength reduction factor 

�� Stress concentration factor referred the net area 
�� Critical distance in the finite life regime 
� Mean stress sensitivity index 
�� Reference number of cycles to failure 
��  Experimental number of cycles to failure 

��,� Estimated number of cycles to failure 

�� Reference number of cycles to failure in the low-cycle fatigue regime 
P Normal load 
�� Peak pressure 
Q Shear load 
Qmax Amplitude of the shear load 
r Linear coordinate associated with the focus path 
rn Notch root radius 
R Stress ratio 
Rp Pad radius 
t Time instant 
∆� Range of the shear force 
∆�� Range of the linear-elastic maximum principal stress 
∆�� Range of the bulk stress 
� Poisson’s ratio 
���� Effective critical plane stress ratio 

���� Intrinsic fatigue strength threshold 
�� Fully-reversed uniaxial endurance limit at �� cycles to failure 
��  Fully-reversed uniaxial notch endurance limit 
��
�� Bulk stress at a generic instant, t 
��,!  Amplitude of the bulk stress 

� ,!  Amplitude of the stress perpendicular to the critical plane 

� ,�  Mean stress perpendicular to the critical plane 

� ,�!∀  Maximum value of the stress perpendicular to the critical plane 

� ,��  Maximum value of the stress perpendicular to the critical plane 

�#  Yield stress 

�∃%� Ultimate tensile strength 
��  Reference normal stress at �� cycles to failure 
&
�� Time-variable shear stress 
&! Shear stress amplitude on the plane of maximum shear stress amplitude 
&� Fully-reversed torsional endurance limit at �� cycles to failure 
&�,∋��
����� Fatigue strength corresponding to NRef cycles 

&�(
�� Resolved shear stress 
&�(,�!∀ Maximum value of the resolved shear stress 

&�(,��  Minimum value of the resolved shear stress 

&�  Reference shear stress at �� cycles to failure 
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1. Introduction 

Fretting is a damage mechanism that occurs at the surface of two contacting mechanical 

components. This type of damage results from a small amplitude oscillatory movement in the contact 

region. In particular, in those situations where one or both contacting components undergo cyclic 

loading, the damage resulting from fretting becomes more detrimental and is called “fretting fatigue” 

(Fig. 1). It is found that fretting reduces the lifetime of engineering materials, compared to plain 

fatigue [1]. Fretting fatigue damage is a particular issue in mechanical assemblies such as aircraft 

structural lap joints, dovetail blade/disk type attachments in gas turbine engines and at the contact 

interface between the cylinder block, head gasket and cylinder head of internal combustion engines. 

A number of physical, environmental and mechanical factors influence the initiation and 

propagation of fretting fatigue cracks. These include: contact geometry, contact load, coefficient of 

friction, bulk stress amplitude, material mechanical/fatigue properties, aggressiveness of the 

environment, and temperature [2]. 

Due to the complex nature of this structural/design problem and its significance in engineering 

applications of practical interest, extensive theoretical and experimental work has been carried out 

over the last 50 years. In this context, the problem of standardising fretting fatigue tests has been 

investigated since the late 80s [3, 4] and some of these testing protocols have been used successfully 

in different testing configurations, for instance, grip-type loading [5], single-clamp loading [6], and 

bridge-type loading [7]. 

Examination of the state of the art demonstrates that many approaches have been proposed (and 

validated) to predict crack initiation and propagation in assemblies subjected to constant amplitude 

(CA) loading. For example, Hojjati-Talemi et al. [8] used continuum damage mechanics to predict 

crack initiation lifetime under fretting fatigue conditions. Alternatively, Lykins et al. [9] attempted 

to model the fretting fatigue crack initiation process by using damage parameters such as those 

proposed by Fatemi & Socie [10], by Smith, Watson and Topper [11, 12], and by Ruiz [13]. Navarro 

et al. [14] estimated the total fretting fatigue lifetime of Al 7075-T6 specimens by considering both 

the crack initiation and the crack propagation phase. They suggested using a bespoke multiaxial 

crack initiation criterion that can be applied by directly post-processing the stress distribution in the 

vicinity of the contact region. To model the crack propagation part of the total lifetime, they 
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employed different fatigue crack growth laws which effectively modelled the initial short crack 

growth phase. 

Nowell et al. [15] applied the critical distance concept [16] and a short crack arrest criterion [17] to 

predict fretting fatigue thresholds. The short crack arrest methodology was used to assess fretting 

fatigue damage for those contact configurations resulting in severe stress gradients. To validate their 

predictions, they used both the Hertzian fretting test results that were generated by Nowell himself 

[18] and the fretting fatigue experiments reported in Ref. [17] and carried out using ‘flat and rounded’ 

contact pads made of Ti-6A1-4V. They concluded that both criteria returned sound predictions and 

could be used to assess a wide range of applications including surface treated components. Nowell 

et al. [19] also investigated the fretting fatigue performance of blade-to-disc assemblies in aircraft 

gas turbines. In particular, they carried out a number of bespoke fatigue experiments to simulate the 

loading experienced by dovetail blade roots in turbines of aero-engines. To predict the fretting 

fatigue performance of their blade-type specimens, they suggested to use short crack arrest methods 

[17, 20] to post-process the stress fields obtained from conventional linear-elastic FE models. 

Following a different philosophy to estimate the crack initiation lifetime of Al2024-T3 specimens 

subjected to CA fretting fatigue loading, Hojjati-Talemi et al. [21] used an uncoupled damage-

evolution model based on a thermodynamic potential function, where the assumption was formed 

that the state of stress is not influenced by extent and evolution of damage. Recently, 

Noraphaiphipaksa et al. [22] carried out experiments and FE analyses to investigate the influence of 

cylindrical-on-flat and flat-on-flat contacts on the fretting fatigue behaviour of medium-carbon steel 

JIS S45C. They proposed use of the maximum shear stress range criterion [23] to predict the location 

of the crack nucleation sites and the maximum tangential stress range criterion [24] to estimate the 

orientation of fretting fatigue crack paths. Fretting fatigue life was estimated by integrating the 

fatigue crack growth curve from an initial to a critical crack length. They concluded that the predicted 

fretting fatigue lives were slightly shorter than the experimental ones. Finally, in a series of 

investigations, Araújo et al. [25-27] proposed to use the Modified Wӧhler Curve Method (MWCM) 

along with the Theory of Critical Distance (TCD) [28, 29] to estimate fretting fatigue damage both in 

the high- and in the medium-cycle fatigue regime. As to the way this design methodology was 

implemented in its latest reformulation, it is worth observing that in Ref. [25] Araújo et al. used the 
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Maximum Rectangular Hull concept [30-33] to calculate the shear stress components relative to the 

critical plane that are needed to estimate fatigue damage according to the MWCM. 

This paper presents a formal design methodology of general validity for estimating the life of 

mechanical assemblies under CA fretting fatigue loading. Following the approach of [25], damage is 

assessed according to the “notch analogue” concept [34] by post-processing the linear-elastic stress 

fields present near the trailing edge of the contact. More specifically, the proposed approach starts 

by assuming that the damage mechanisms in a metallic material subject fretting fatigue are similar 

to those observed in conventional notched components made of the same material and subjected to 

a cyclic load history [26]. 

To estimate the life of notched metals, Susmel et al. [35] reformulated the TCD to apply it also in the 

medium-cycle fatigue regime. This reformulation was based on the idea that the characteristic 

material length, L, increases as the number of cycle to failure, ��, decreases. This assumption took 

as its starting point the experimental evidence that in metallic materials containing stress raisers the 

size of the plastic zone increases as the magnitude of the applied loading increases. This approach 

was validated by an extensive experimental investigation involving uniaxially loaded notched 

specimens made of cold-rolled low-carbon steel EN3B. Susmel et al. [36-40] have also argued that 

the life of notched components subjected to multiaxial loading paths can be predicted successfully 

by applying the MWCM in conjunction with the TCD, with the latter being used in the Point Method 

(PM) form. To validate this approach, they carried out experiments on cylindrical V-notched 

specimens of EN3B carbon steel. The specimens were subjected to in-phase and 900 out-of-phase 

tension and torsion loading with and without superimposed static stresses [36]. The authors 

concluded that the use of the MWCM along with the TCD was successful in predicting the fatigue 

lifetime of the notched steel. 

Due to the similarities between notch fatigue and fretting fatigue [34], a design procedure based on 

the combined use of the MWCM, the TCD, and the Shear Stress-Maximum Variance Method (τ-

MVM) is formalised in the present paper to allow a rapid estimation of finite lifetime of components 

subjected to CA fretting fatigue. The novelty in this method is that the τ-MVM [41] is employed to 

calculate the critical plane stresses that are needed to assess fretting fatigue damage according to the 

MWCM applied along with the PM. 
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2. The MWCM applied in conjunction with the TCD 

The MWCM [28, 42, 43] is a medium/high-cycle multiaxial fatigue criterion that estimates fatigue 

life as a function of the stress components relative to the material plane experiencing the maximum 

shear stress amplitude (the so-called critical plane) [44, 45]. The formulation of the MWCM is based 

on the effective critical plane stress ratio, ����, which is defined as [46]: 

 

���� ∗ +∙−.,+
/0

 1 −.,0
/0

           (1) 

 

In definition (1) � ,�,  � ,!, &! are respectively the mean normal stress, the normal stress amplitude 

and the maximum shear stress amplitude relative to the critical plane. According to Kaufmann and 

Topper’s model [47], material property � is a mean stress sensitivity index which ranges between 0 

and 1. When � equals zero, the considered material is assumed to be insensitive to superimposed 

static stresses. In contrast, when � equals unity, the assessed material is fully sensitive to the 

presence of non-zero mean stresses [28, 46]. Further, according to the way ���� is defined, this stress 

ratio models not only the presence of superimposed static stresses, but also the degree of 

multiaxiality and non-proportionality of the applied loading path [46]. 

The way the MWCM works is illustrated schematically using the log-log modified Wӧhler diagram 

of Fig. 2 that plots the shear stress amplitude on to the critical plane, &!, against the number of cycle 

to failure, ��. With this presentation, any modified Wӧhler curve is defined via its slope, -1/
�
�����, 

and the reference shear stress amplitude, &�,∋��
�����, at a given number of cycles to failure, ��. It is 

worth recalling here that ���� = 1 is the fully-reversed uniaxial fatigue curve, whereas ���� = 0 is the 

torsional fatigue curve [28]. As shown schematically in Fig. 2, experimental evidence demonstrates 

that, for conventional engineering metals, the modified Wӧhler curves move downward in the 

diagram as ���� increases [28, 48, 49]. In other words, for a given amplitude of shear stress on the 

critical plane, the extent of fatigue damage increases with stress ratio ���� . 

Recent investigations demonstrate that the functions 
�
����� and &�,∋��
����� can be expressed 

effectively by linear equations, i.e. [36, 38]: 
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�5����6 =  

 − 
��. ���� + 
� for ���� ≤ ����                   (2) 

&�,∋��5����6 =  ;<=
> − &�? ∙ ���� + &�  for ���� ≤ ����                   (3) 

 

where 
 and �� are the negative inverse slope and the endurance limit (extrapolated at �� cycles to 

failure) characterising the fully-reversed uniaxial fatigue curve, whereas 
� and &� are the 

corresponding quantities associated with the torsional fatigue curve. In Eqs (2) and (3) ���� is an 

intrinsic fatigue strength threshold [50]. In more detail, the use of the MWCM under large values of 

stress ratio ���� gives conservative estimates since when the mean stress perpendicular to the critical 

plane reaches a certain material-dependant threshold value, a further increase of � ,� does not lead 

to additional fatigue damage [46, 50]. This can be explained by observing that, once the mean stress 

normal to the critical plane is larger than a threshold, micro/meso cracks are fully open and therefore 

the shear forces driving the Mode II propagation are fully transmitted to the crack tips rather than 

being partially supported by crack face friction [46, 47]. Hence, for ���� > ����, the MWCM can still 

be applied by keeping the slope and reference point constant [51], i.e.: 

 


�5����6 =  

 − 
��. ���� +  
� for ���� > ����                   (4) 

&�,∋��5����6 =  ;<=
> − &�? ∙ ���� +  &�  for ���� > ����                   (5) 

 

where 

 

���� = �=
>�=ΑΒ=

                        (6) 

 

In definition (6) �� and &� are the amplitudes of the fully-reversed plain endurance limit extrapolated 

at �� cycles to failure under uniaxial and torsional fully-reversed fatigue loading, respectively. It is 

useful to recall here also that, as demonstrated in Ref. [48], Eq. (6) can be derived directly from Eq. 

(3) by simply re-writing the MWCM in terms of shear stress amplitude and maximum stress normal 

to the critical plane. In particular, the assumption can be made that the intrinsic mathematical limit 

that can be determined by reformulating our criterion in terms of &! and � ,�!∀ corresponds to a 
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change in the physical mechanisms resulting in the initiation of fatigue cracks [28]. Therefore, Eq. 

(6) represents a material threshold above which the critical plane concept can be applied provided 

that it is modified to take into account the role of large values of the stresses perpendicular to the 

critical plane [46]. 

Turning back to the fatigue assessment problem, after determining the required modified Wӧhler 

curve from Eqs (2) to (6), the number of cycle to failure can be predicted directly as follows [28]: 

 

��,� = �� ∙ Χ�=,DΕΦ
ΓΕΦΦ�
�0

Η
	/ 
ΓΕΦΦ�

                       (7) 

 

where ���� and &!  are values on the critical plane associated with the specific load history being 

investigated. 

To estimate finite lifetime of notched components, the MWCM can be used in conjunction with the 

TCD applied in the form of the PM [36, 52]. This approach takes as its starting point the idea that 

the multiaxial stress gradients in the vicinity of the crack initiation location are modelled effectively 

by the TCD. In parallel, the MWCM is used to account for the presence of non-zero mean stresses as 

well as the degree of multiaxiality and non-proportionality of the local stress history under 

investigation [28, 35]. 

The TCD formalised in the form of PM was proposed by Peterson [53] in the middle of the last 

century. In particular, he argued that, as far as stress concentation phenomena are concerned, the 

linear-elastic reference stress to be compared to the plain fatigue limit of the material, σ�, can be 

determined directly at a given distance from the tip of the notch being designed. A few decades later, 

Peterson’s intuition was further developed by Tanaka [54] and by Taylor [29] who proposed a simple 

way of determining the required critical distance by combining the long crack threshold value of the 

stress intensity factor range with the plain fatigue limit. At the beginning of the current century, the 

accuracy obtained by using the PM to estimate high-cycle fatigue strength of notched components 

prompted a further development to make the TCD suitable for assessing notched components in the 

finite lifetime regime [35]. The extension is based on the observation that, in the medium-cycle 

fatigue regime, the critical distance, ��, decreases as the number of cycles to failure, ��, increases. 
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This trend can be explained by observing that, in the vicinity of the notch tip, the size of the plastic 

region increases as the magnitude of the applied cyclic loading increases. The TCD as employed in 

the present investigation is based on the assumption that the mechanical behaviour of engineering 

materials can be modelled effectively by simply using a linear-elastic constitutive law. Therefore, the 

fact that the size of the plastic zone increases as the magnitude of the cyclic loading decreases is 

captured by the linear-elastic TCD by making the critical length increase as the number of cycles to 

failure decreases [28, 35]. This behaviour can be modelled by using a simple power, i.e. [28, 35]: 

 

�� = ϑ ∙ ��
Κ                         (8) 

 

In Eq. (8) A and B are material constants to be determined from the un-notched fatigue curve 

together with a fatigue curve for specimens containing a known geometrical feature [35, 36]. Fig. 3 

summarises the strategy that is recommended to be followed to determine fatigue constants A and 

B. In more detail, using the PM argument, the distance from the notch tip, ��/2, at which the linear 

elastic maximum principal stress equals the stress which breaks the plain material at ��= ��,� cycles 

to failure can be calculated using either analytical methods or FE models. The critical distance can 

then be estimated for any number of cycles to failure, allowing constants A and B to be determined. 

It is important to point out here also that, according to the key features of the TCD, the LM vs. Nf 

relationship is a fatigue property that is different for different materials [35]. Further, given a 

material, the values of constants A and B are seen not to be affected markedly by the 

sharpness/profile of the notch being used for their calibration [28]. 

The procedure for using the MWCM in conjunction with the PM to estimate fatigue lifetime is 

summarised in Fig. 4. The first step is to determine the linear-elastic stress distribution along the 

focus path, i.e. the straight line normal to the free surface that emanates from the assumed crack 

initiation location (point A in Fig. 4a). The next step is to calculate the maximum shear stress 

amplitude, &!, and the associated value of the critical plane stress ratio, ����, along the above focus 

path (Fig. 4b). At any distance r from the assumed crack initiation point, A, given the corresponding 

values for &! and ����, the resulting Modified Wöhler curve can be estimated from the MWCM’s 

governing equations (2) to (6) – see Figs 4c and 4d. Hence, the number of cycles to failure, ��, can 
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be estimated at any point along the focus path (Fig. 4d) and then used together with Eq. (8) to 

calculate, for any value of r, the associated critical distance value, ��. Finally, the notched component 

being assessed is assumed to fail at the number of cycles to failure, ��, where the value of r matches 

the required critical distance from Eq. (8) (Fig. 4e) [28, 36], i.e.: 

 

ΛΜ
ΝΦ,Ε�
> = Ο                        (9) 

 

In practice, a simple recursive procedure is employed to vary r, as schematically shown in Fig. 4. 

 

3. The Maximum Variance concept to determine the stress quantities relative to the 

critical plane under CA loading. 

In order to apply the MWCM to estimate multiaxial fatigue lifetime of mechanical components, one 

of the most complex tasks is certainly the determination of the stress quantities relative to the critical 

plane, i.e. � ,�,  � ,!, and &!. In the present investigation it is proposed that fretting fatigue damage 

can be assessed by defining the required critical plane stress quantities according to the Shear Stress-

Maximum Variance Method (τ-MVM) [43]. This approach defines the critical plane as that 

containing the direction which experiences the maximum variance of the resolved shear stress, 

&�(
�� [41, 43]. An algorithm which can be used to implement this approach was developed by 

Susmel [55]. The method has the advantage that, as soon as the variance and co-variance terms 

characterising the time-variable stress components of the stress tensor at the critical location are 

known [55], the computational time required to determine the orientation of the critical plane does 

not depend on the length of the assessed input load history. In particular, to use the conventional 

definitions to determine the critical plane, the load history under investigation must be projected on 

a large number of planes so that those experiencing the maximum shear stress amplitude can be 

identified [55]. In other words, according to this modus operandi, the load history being assessed 

must be post-processed a number of times equal to the number of material planes being explored to 

determine the critical one. In contrast, to identify the potential critical planes according to the τ-

MVM, the load history being assessed is post-processed two times: one iteration is required to 
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determine the mean values of the stress components and a second iteration is needed to determine 

the variance and co-variance terms associated with the time-variable stress tensor at the material 

point being assessed. This unique feature makes the τ-MVM very effective from a computational 

point of view. Therefore, the τ-MVM is more efficient than the other existing method not only in the 

presence of variable amplitude load histories, but also in the presence of constant amplitude fatigue 

loading. 

In order to understand the way the MVM works in practice, consider the component shown in Fig. 

5. The algorithm proposed in Ref. [55] allows the plane containing the direction, MV, experiencing 

the maximum variance of the resolved shear stress to be determined. As soon as the orientation of 

the critical plane is known, the mean value, � ,�, and the amplitude, � ,!, of the stress normal to the 

critical plane, � 
��, can directly be determined according to the following standard definitions [41]: 

 

� ,� = �
> 5� ,�!∀ +  � ,�� 6                     (10) 

� ,! = �
> 5� ,�!∀ − � ,�� 6                     (11) 

 

where � ,�!∀ and � ,��  are the maximum and minimum values of � 
��, respectively. 

Since the direction of &�(
�� is fixed [41], the mean, &�, and the amplitude, &!, of the shear stress are 

also straightforward to determine, i.e.: 

 

&� = �
> 5&�(,�!∀ +  &�(,�� 6                     (12) 

&! = �
> 5&�(,�!∀ − &�(,�� 6                     (13) 

 

For the sake of clarity, the way the stress quantities relative to the critical plane are defined is also 

explained in Figs 5c and 5d graphically. 

 

4. Proposed methodology to estimate finite lifetime under CA fretting fatigue loading 

The flow-chart reported in Fig. 6 summarises the design methodology that is proposed in the present 

paper to use in situations of practical interest to estimate fretting fatigue lifetime. Firstly the linear-
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elastic multiaxial stress distribution along the focus path has to be estimated using either numerical 

or analytical methods. In this context, as shown in Fig. 6, the focus path is defined as the straight 

line emanating from the assumed crack initiation location, A, and perpendicular to the contact 

surface. Secondly, calibration functions &�,∋��(����) and 
�(����) - Eqs (2) to (6) - and the critical 

distance vs. number of cycles to failure law, ��
��� - Eq. (8), have to be determined through the 

parent material fatigue properties as described in Section 2. 

Having calibrated functions ��
���, &�,∋��(����), and 
�(����), finite lifetime under fretting fatigue 

can be estimated directly according to the recursive procedure summarised in Fig. 6. In particular, 

this procedure takes as a starting point the fact that the stress quantities relative to the critical plane 

– i.e., &!
Ο� , � ,!
Ο�, � ,�
Ο� – and, consequently, the critical plane stress ratio, ����
Ο�, can be 

determined, along the focus path, at any distance r from the assumed crack initiation location, A 

(Fig. 6). According to the τ-MVM, at any point belonging to the focus path the critical plane has to 

be determined by locating that material plane containing the direction experiencing the maximum 

variance of the resolved shear stress. For a given distance, r, from the assumed crack initiation 

location (Fig. 6), after calculating ����
Ο� and &!
Ο� as well as the corresponding values of the 

MWCM’s calibrating functions - i.e., &�,∋��(����) and 
�(����), the resulting number of cycles to 

failure, ��, can be predicted according to Eq. (7). As soon as ��  is known for the r value under 

investigation, the associated critical distance, ��
���, can be estimated directly via Eq. (8). Since, 

according to this modus operandi, ��, can be estimated at any point on the focus path, the 

mechanical assembly being assessed is assumed to fail at the number of cycles to failure, ��,�, as 

given by Eq. (9) [36]. 

 

 

5. Validation by experimental data 

5.1. Summary of the experimental results being used 

In 1988 Nowell carried out a fretting fatigue experimental investigation by using the Dartec servo-

hydraulic fatigue testing machine available in the Engineering Department of the University of 

Oxford, UK [18]. The set-up of the experimental rig that was used by Nowell is similar to the one 
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shown in Fig. 1. In particular, the tests were run using a pair of cylindrical fretting pads that were 

pushed by a normal constant force, P, against flat-dog-bone specimens. The pads were attached to a 

rigid base via springs, while the specimens were clamped using a fixed and a movable jaw to enable 

the fatigue machine to apply to the specimens a fully-reversed sinusoidal bulk stress. The springs 

connecting the pads were designed to result in a fully-reversed oscillatory tangential force that was 

in-phase with the bulk stress applied to the specimens. The fretting pads and the specimens were 

made of Al/4%Cu. The relevant mechanical properties of the material being tested were as follows: 

σA=124 MPa (at 5·108 cycles to failure), E=74 GPa and σUTS=500 MPa. 

Four different series of fretting fatigue trials were run by recording the number of cycles to failure 

resulting from any specimens being tested. In each series, unless failure occurred earlier, the fretting 

fatigue tests were run up to 107 cycles. For a given series, the peak constant pressure, ��, the remote 

bulk stress and the ratio between tangential and normal load, Q/P, were kept all constant. During 

testing, different fretting pads were used, with these pads having radius of curvature, Rp, ranging 

from 12.5 mm to 150 mm. The effect of this approach was to vary the size of the contact, and hence 

the stress gradient in the specimen without changing the maximum stress. All tests were run in a 

partial slip condition, i.e., Q<f⋅P, where the friction coefficient, f, was equal to 0.75. Tab. 1 

summarises the relevant experimental data which will be used below to check the overall accuracy 

of the proposed design method. 

The second set of experimental data considered in the present investigation was generated by 

Szolwinski et al. [6] who carried out CA fretting fatigue experiments at a frequency of 10 Hz by using 

an experimental set-up similar to the one sketched in Fig. 1. In more detail, the testing device 

consisted of two fretting pads pushed against the specimens being tested by a constant force, P. A 

cyclic tangential force Q was then applied in phase with a CA cyclic bulk stress. The fretting pads and 

the specimens were made of Al 2024-T351, i.e. an aluminium alloy having yield stress, Poisson’s ratio 

and Young’s modulus equal to 310 MPa, 0.33 and 74.1 GPa, respectively. The fretting flat-dog-bone 

specimens being employed had thickness equal to 12.7 mm and length equal to 330 mm. The 

cylindrical fretting pad had thickness equal to 12.7 mm and contact radius equal to 127 mm, 178 mm 

or 229 mm. Several experimental tests were conducted in partial slip conditions, i.e. Q<f⋅P, and the 

friction coefficient, f, was estimated to be equal to 0.65. Szolwinski et al. [6] also varied the contact 
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force, P, in the range 5201N-7226N, the Q/P ratio in the range 0.21-0.52, and the remote bulk stress 

in the range 81 MPa-115.8 MPa. The load ratio characterising all the tests being run was treated as 

being fully-reversed (i.e., R=-1). Tab. 2 summarises the relevant experimental data that will be used 

below to assess the accuracy of the proposed methodology in estimating fretting fatigue lifetime. 

The third set of experimental results being re-analysed in the present investigation were generated 

by Wittkowsky et al. [56]. The fretting pads and the specimens used in this experimental campaign 

were made of a 7075-T6 aluminium alloy with σUTS=572 MPa, ν=0.33 and E=72 GPa [14, 56]. The 

fretting pads were spherical with a radius of 25.4 mm, whereas the fretting specimens had square 

section of 5 mm x 5 mm. The coefficient of friction used in this experiment was 1.2. The experimental 

set-up used by Wittkowsky et al. [56] to generate their experimental results is again similar to that 

shown in Fig. 1. In more detail, during testing, two fretting pads were pushed against the specimens 

by a constant force P, with the fully-reversed CA cyclic tangential force, Q, being in-phase with the 

fully-reversed CA cyclic bulk stress. The relevant experimental data generated by Wittkowsky et al. 

[56] are summarised in Tab. 3. 

The fourth set of validation data being considered was produced by Venkatesh et al. [57]. They 

performed a series of CA fretting tests run, at 10 Hz, using spherical pads and specimens made of Ti-

6Al-4V. The material yield stress, ultimate tensile strength, Poisson’s ratio and Young’s modulus 

were equal to 963 MPa, 1016 MPa, 0.34 and 116 GPa, respectively. The fretting flat-dog-bone 

specimens had thickness equal to 12.7 mm and length to 136 mm. The fretting pads were 

manufactured with a contact radius equal to 12.7 mm as well as to 25.4 mm. During testing, the 

specimens were subjected to constant normal force P (that was generated by pushing two fretting 

pads against the samples themselves) as well as to a fully-reversed CA cyclic tangential force Q 

applied in-phase with the fully-reversed CA cyclic bulk stress, σb. Several fretting fatigue tests were 

run in a partial slip regime, i.e. Q<f⋅P, where the friction coefficient, f, was equal to 0.95. A number 

of experimental trials were carried out by making the remote bulk stress vary in the range 225 MPa-

394 MPa, the contact force in the range 22 N-70 N, and the tangential force in the range 10 N-30 N. 

Table 5 summarises the relevant experimental results generated by Venkatesh et al. [57] according 

to the experimental protocol briefly summarised above. 
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The last data set being considered was produced by Ferry et al. [58] by using cylindrical pads and 

specimens made again of Ti-6Al-4V. Three different pads having radius equal to 20 mm, 50 mm and 

70 mm were employed, with the experimental set-up used to generate these results being similar to 

the one of Fig. 1. In more detail, two fretting pads were pushed against the specimens by a constant 

force, P, resulting in a peak contact pressure of 500 MPa. Further, a fully reversed CA cyclic 

tangential force, Q, was applied in-phase with a CA cyclic bulk stress. Al the tests were run at a 

frequency of 10 Hz, with the bulk stress being characterised by a load ratio, R, equal to 0. All tests 

were conducted under partial slip condition, i.e. Q<f·P, with the friction coefficient, f, being equal 

0.5. As to this value for f, it is interesting to observe that it is different from the one reported by 

Venkatesh et al. [57] for the same material. This can be ascribed to the fact that the pads used by 

Ferry et al. [58] were cylindrical, whereas those employed by Venkatesh et al. [57] were spherical, 

with this resulting in different values for the friction coefficient. Finally, run-out tests were stopped 

at 106 cycles. Tab. 5 lists the results that were generated by Ferry et al. [58] according to the 

experimental procedure being summarised above. 

To conclude, it can be pointed out that all the experimental results being considered in the present 

investigation were generated by testing relatively small specimens. This resulted in the fact that, in 

general, the number of cycles required to initiate the fatigue cracks was larger than the number of 

cycles needed to propagate them until complete breakage took place. Accordingly, the experimental 

values of Nf that will be used in what follows to check the accuracy of the approach being proposed 

can be treated as the number of cycles resulting in the initiation of technical fatigue cracks, with this 

assumption resulting just in a little loss of accuracy. 

 

5.2. Stress analysis 

Much experimental evidence suggests that, under fretting fatigue loading, cracks tend to initiate 

mainly at the trailing edge of the contact zone. Therefore, the hypothesis can be formed that fretting 

fatigue damage can be estimated accurately by directly examining the stress fields in the vicinity of 

the contact. If the methodology described in Section 4 is adopted, then the linear-elastic stress 

distribution along the focus path defined in Fig. 6 needs to be determined either using suitable 

analytical solutions or by solving conventional FE contact models. Owing to the fact that the 
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experimental results being re-analysed in the present investigation (Section 5.1) were all generated 

by using standard testing configurations (see Fig. 1), the required stress fields were determined by 

taking full advantage of the analytical framework described in Ref. [1]. The linear-elastic stress 

distributions along the focus path due to the normal force, the tangential load and the remote bulk 

stress were computed separately for any experimental tests being considered. Subsequently, the 

resulting surface and sub-surface stress tensors at any point along the focus paths were obtained by 

simply using the superposition principle. Finally, as reviewed in Section 3, critical plane stress 

components � ,�, � ,! and &! were determined along the focus paths by making use of the τ-MVM. 

 

5.3 Calibration of the MWCM’s governing equations 

In order to use the MWCM according to the design methodology discussed in Section 4, governing 

equations (2) to (6) have to be calibrated via conventional fatigue results generated by testing un-

notched specimens. This requires the slopes, −1/
 and −1/
�, and the endurance limits, �� and &�, 

for the uniaxial and torsional fully-reversed plain fatigue curves. Unfortunately, for the materials 

tested in fretting, this information was not always explicitly given. Accordingly, a number of 

simplifying hypotheses were formed in order to calibrate the MWCM governing equations.  

For the results generated using specimens of Al/4%Cu, it is reported in Ref. [18] that this material 

had a fully-reversed endurance limit, σA, extrapolated at �� = 5 ∙ 10Ρ cycles to failure equal to 124 

MPa, with the ultimate tensile strength being equal to 500 MPa. According to the empirical rules 

reported in Refs [59-61], the negative inverse slope of the uniaxial fatigue curve for R=-1 was 

estimated as: 

 


 = �ΣΤ
Ν=/ΝΥ�
�ΣΤ
<ς/<=�                      (13) 

 

where 

 

�� = 0.75 ∙ �∃%� at �� = 10Ξ cycles to failure                  (14) 
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Owing to the fact that the fully-reversed torsional fatigue curve for Al/4%Cu is not reported in Ref. 

[18], it was estimated as follows [59-61]: 

 

&� = 75 MPa at �� = 5 ∙ 10Ρ cycles to failure                  (15) 

 


� = �ΣΤ
Ν=/ΝΥ�
�ΣΤ
�ς/�=�  with &� = 0.63 ∙ �∃%� at �� = 10Ξ cycles to failure               (16) 

 

As to the amplitude of the fully-reversed torsional endurance limit for Al/4%Cu, the reported value, 

Eq. (15), is the one that is recommended in Ref. [60] for aluminium alloys having a material ultimate 

tensile strength larger than 336 MPa and is derived from the axial endurance limit according to von 

Mises’ criterion. 

Turning to the specimens of Al 2024-T351 [6], the ultimate tensile strength for a similar material 

was suggested by Hojjati-Talemi et al. [21] to be equal to 506 MPa. Using this material property, the 

fully-reversed endurance limit, ��, at �� = 5 ∙ 10Ρ cycles to failure was estimated to be equal 130 MPa 

[59-61], with the associated negative inverse slope, 
, being derived via Eqs (13) and (14). As with 

Al/4%Cu, the constants characterising the fully-reversed torsional fatigue curves were estimated 

directly by using Eqs (15) and (16). For aluminium alloy 7075-T6 [56], the uniaxial and torsional 

fully-reversed endurance limit determined at �� = 10[ cycles to failure were directly taken from Refs 

[62, 63]. Observing that this material had an ultimate tensile strength, �∃%�, equal to 572 MPa [62], 

the negative inverse slopes of the uniaxial and torsional fatigue curves were estimated, for R=-1, 

according to Eqs (13) to (16). 

Finally, the constants of the relevant plain fatigue curves for Ti-6Al-4V [57, 58] were directly taken 

from Ref. [64]. 

The values for 
, 
�, ��, &�, and �� used to calibrate the MWCM governing equations are summarised 

in Tab. 6. For all the materials listed in Tab. 6, the assumption was made that the mean stress 

sensitivity index, �, needed to determine stress ratio ���� in Eq. (1) was equal to unity (i.e., full mean 

stress sensitivity). This conservative assumption was made because of the unavailability of specific 

experimental results suitable for determining index �. 
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5.4 . Calibration of the ∴] vs. ⊥_ relationships 

As explained in Figure 3, the calibration of the �� vs. ��  relationship, Eq. (8), should ideally be 

carried out by using the fully-reversed plain fatigue curve and a fully-reversed fatigue curve 

generated by testing specimens containing a known geometrical feature [35]. Since, unfortunately, 

no notch fatigue data were reported in the original literature sources, initially the required notch 

fatigue curves were estimated as described in what follows. 

For Al/4%Cu, Al 2024-T351 and Al 7075-T6, suitable notch endurance limits, σAn, were derived by 

making use of Peterson’s approach [65]. In particular, σAn was directly estimated from the notch 

fatigue strength reduction factor, Kf, which is defined as [65]: 

 

�� = <=
<=.

,                      (17) 

 

It is important to point out here that, in definition (17), both the plain, σA, and the notched material 

high-cycle fatigue strength, σAn, have to be determined at the same reference number of cycles to 

failure, NA. 

For the aluminium alloys under investigation, three reference values for Kf were taken from Refs [66-

68]. In these papers the experimental values for the fatigue strength factors for aluminium alloys 

having similar characteristics/composition to the ones considered in the present study were reported 

explicitly. In particular, for aluminium alloy Al/4%Cu, a notch endurance limit at 2·107 cycles to 

failure equal to 93.4 MPa was derived from a Kf value of 1.74, with this Kf value being determined 

from a set of experimental results generated by testing cylindrical specimens with fillet radius, rn, 

equal 0.635 mm and net stress concentration factor, Kt, equal to 1.79 [68]. For Al 2024-T351, σAn at 

107 cycles to failure was estimated to be equal to 64 MPa, with this value being determined from an 

experimental trial run by testing flat fillet specimens with notch radius equal to 0.5 mm (Kt=4 and 

Kf=2.8) [66, 67]. Finally, a notch endurance limit of 149.3 MPa (at NA=106 cycles to failure) was 

estimated for Al 7075-T6 from a Kf value of 1.41 that was determined experimentally by testing 

cylindrical specimens with fillet radius, rn, equal 0.635 and Kt equal to 1.79 [68]. 
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As to the values of the notch endurance limits reported above for Al/4%Cu, Al 2024-T351, and Al 

7075-T6, it is important to point out that they were estimated from the employed fatigue strength 

reduction factors by re-calculating, via the fatigue curves listed in Tab. 6, the corresponding plain 

endurance limits at the same number of cycles to failure as the one for which the different Kf values 

being used were given in the original sources (see Tab. 7). 

After estimating σAn for the three aluminium alloys of interest, the inverse negative slopes of the 

virtual notch fatigue curves being used to calibrate the corresponding LM vs. Nf relationships were 

determined by assuming that, under fully-reversed loading, the amplitude of the notch net stress 

equals the material ultimate tensile stress at NS=103 cycles to failure [60, 69]. The virtual notch 

fatigue curves estimated according to the assumptions discussed above are summarised in Tab. 7 in 

terms of notch endurance limit, σAn, at NA cycles to failure and negative inverse slope, k. 

In order to employ the procedure summarised in Fig. 3 to estimate the LM vs. Nf relationships for 

Al/4%Cu, Al 2024-T351 and Al 7075-T6, the required local linear-elastic stress fields were estimated 

by using the well-known analytical solution due to Glinka and Newport [70]. In these equations, the 

values for Kt and rn were taken equal the corresponding values characterising the notch specimens 

used to determine the notch fatigue curves (see Table 7). This simple procedure returned the 

following LM vs. Nf relationships: 

 

Al/4%Cu    �� = 15.2 ∙ ��
Α�.Ξ�> [mm]                 (18) 

Al 2024-T351   �� = 12.6 ∙ ��
Α�.>Ξ� [mm]                 (19) 

Al 7075-T6    �� = 21.7 ∙ ��
Α�.Ξα[ [mm]                (20) 

 

For Ti-6Al-4V instead, constants A and B in Eq. (8) were directly determined from the notch results 

reported in Ref. [64]. In particular, Berto et al. [64] tested, under fully-reversed axial loading, V-

notched cylindrical specimens of Ti-6Al-4V with rn=0.1 mm (resulting in a Kt value of about 7.5). The 

notch fatigue curve determined by testing these samples is reported in Tab. 7 in terms of σAn and k. 

Since for this set of data the relevant dimensions of the notched specimens were all available, the 

linear-elastic stress field in the vicinity of the notch tip was determined numerically using FE code 
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ANSYS®, with a simple axisymmetric model where the mesh density in the region of interest was 

gradually increased until convergence occurred. The obtained stress-distance curve together with 

the corresponding plain (Tab. 6) and notch (Tab. 7) fatigue curves were then used, as shown in Fig. 

3, to determine the constants in the LM vs. Nf relationship, obtaining: 

 

Ti-6Al-4V    �� = 0.42 ∙ ��
Α�.�Ξχ [mm]                (21) 

 

The reasoning discussed above makes it evident that constants A and B in Eq. (8) were estimated 

using a number of simplifying hypotheses. Although the assumptions made were based on state-of-

the-art understanding and experimental data from the literature, the use of these simplifications is 

clearly expected to affect the overall accuracy. Therefore, with the aim of reducing the level of 

uncertainty, an alternative procedure was also followed to obtain more reliable values for parameters 

A and B in Eq. (8). These constants were determined by post-processing, for each material, a set of 

experimental data generated under fretting fatigue loading. This was justified since, according to the 

TCD, fatigue damage depends solely on profile and magnitude of the local linear-elastic stress 

gradients. 

The procedure to determine the �� vs. ��  relationship following this second approach is summarised 

in Fig. 7. According to the PM [16, 28, 29], given the value of the number of cycles to failure 

determined experimentally from a fretting fatigue test (i.e., �� = ��,� in Fig. 7), the linear-elastic 

stress field determined analytically as described in Section 5.2 was used to estimate the distance, 

��
��,��/2, from the assumed crack initiation point (i.e., point A in Fig. 7b) at which the linear-elastic 

maximum principal stress, ∆��,�, was equal to the stress to be applied to the plain material to generate 

a failure at ��,� cycles to failure. This simple methodology allowed us to estimate the critical distance 

value in the medium- and in the high-cycle fatigue regime for any considered material (Fig. 7b). 

Finally, the least-squares method was used to interpolate the values of the characteristic lengths 

determined according to this simple procedure, so that constants A and B in Eq. (8) could be 

determined directly. The chart of Fig. 8 summarises the results that were obtained according to the 

methodology summarised in Fig. 7 for the materials under investigation, with the calculated values 

for constants A and B being also reported in this diagram. 
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5.5. Accuracy of the proposed fretting fatigue design methodology 

For the experimental results listed in Tabs 1 to 5, the estimated, ��,�, vs. experimental, ��, number 

of cycles to failure diagrams are reported in Figs 9 and 10. The predictions were made by determining 

the relevant stress fields along the focus paths (Fig. 6) using the analytical method described in Ref. 

[1] (see Section 5.2), whereas the required plain material fatigue properties and the associated �� vs. 

��  relationships were estimated as discussed under 5.3 and under 5.4, respectively. 

The error charts of Figs 9 and 10 demonstrate that the use of the proposed fretting fatigue design 

methodology resulted in reliable predictions, despite the assumptions that were made to derive the 

calibration information. By comparing the estimates shown in Fig. 9 to those reported in Fig. 10, it 

can be seen that, as expected, the predictions obtained by using the �� vs. ��  relationships calibrated 

from fretting fatigue results (Fig. 8) resulted in a higher precision. However the predictions in Fig. 9 

are remarkably accurate, with this holding true even if the notch curves used to determine the �� vs. 

��  relationships were estimated. 

The agreement between experimental results and estimates shown by the charts of Figs 9 and 10 

strongly supports the idea that the MWCM used in conjunction with the PM and τ-MVM is capable 

of capturing the main physical processes of crack initiation under CA fretting fatigue loading. In this 

setting, clearly, the overall accuracy of the proposed approach is expected to increase remarkably 

when the required calibration information is determined experimentally according to the different 

strategies discussed earlier. At the same time, the good level of accuracy as seen in Figs 9 and 10 

suggests that the proposed fretting fatigue design methodology might be used in practical situations 

to perform assessment by simply estimating the necessary material fatigue properties via classical 

empirical equations [59-61], with this reducing the time and costs associated with the design process 

itself. 

 

6. Conclusions 

• According to the proposed fretting fatigue design methodology, stress gradients in the 

vicinity of the crack initiation locations are directly handled via the TCD, whilst the MWCM 

accounts for the presence of non-zero mean stress as well as for the degree of multiaxiality 

and the non-proportionality of the local load history. 
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• The MWCM applied in conjunction with the τ-MVM and the PM is seen to be capable of 

predicting finite lifetime of metallic materials subjected to CA fretting fatigue loading. 

• Since the required stress analysis can be performed by solving conventional linear-elastic FE 

models, the proposed fretting fatigue assessment technique is suitable for design of real 

mechanical assemblies against fretting fatigue. 

• Because the stress components relative to the critical plane are determined via the τ-MVM, 

rapid fretting fatigue lifetime estimates can be obtained independently from the complexity 

of the load history. 

• More work needs to be done in this area to extend the use of the proposed design 

methodology to those situations involving variable amplitude fretting fatigue loading. 
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Tables 
 
 

Series 
P0 

Qmax/P 
σB,max Rp a Nf 

[MPa] [MPa] [mm] [mm] [Cycles] 

1 157 0.45 92.7 

12.5 0.1 107 

25 0.19 107 

37.5 0.28 107 

50 0.38 1290000 

75 0.57 670000 

100 0.76 850000 

125 0.95 730000 

150 1.14 670000 

2 143 0.45 92.7 

12.5 0.09 107 

25 0.18 107 

37.5 0.27 4040000 

50 0.36 1500000 

75 0.54 800000 

100 0.72 610000 

125 0.9 1240000 

150 1.08 690000 

3 143 0.45 77.2 

12.5 0.09 107 

25 0.18 107 

50 0.36 107 

75 0.54 1200000 

100 0.72 1420000 

125 0.9 1020000 

4 120 0.45 61.8 

25 0.14 107 

37.5 0.21 107 

50 0.28 107 

75 0.42 107 

100 0.57 107 

125 0.71 1570000 

150 0.85 1230000 

 
Table 1. Summary of the experimental results generated by Nowell by testing specimens of 

Al/4%Cu (run outs at 107 cycles to failure) [18]. 
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Rp P Po 
Q/F 

σb,a a Nf 

[mm] [N] [MPa] [MPa] [mm] [Cycles] 

121 
4880 202.7 0.35 100.7 1.21 241016 

6316 230.6 0.31 110.3 1.37 217061 

127 

7562 246.0 0.22 110.3 1.54 314000 

4893 197.8 0.28 84.7 1.24 422000 

5427 208.4 0.31 110.3 1.31 241475 

6228 223.2 0.23 84.8 1.40 668277 

5370 207.3 0.35 88.4 1.30 563946 

7226 240.4 0.31 101.9 1.51 545489 

5201 204.0 0.52 115.8 1.28 465000 

6215 223.0 0.35 109.2 1.40 302804 

7070 237.8 0.27 108.8 1.49 253883 

6275 224.0 0.36 98.2 1.40 464166 

5462 209.0 0.33 97.1 1.31 311516 

7118 238.6 0.27 85.4 1.50 381535 

178 

6268 189.2 0.27 100.0 1.66 349520 

5310 174.2 0.38 85.8 1.53 582922 

6994 199.9 0.34 113.1 1.75 455759 

7085 201.2 0.21 85.2 1.77 665073 

7251 203.6 0.31 99.4 1.79 552250 

6176 187.9 0.27 84.7 1.65 621442 

5319 174.3 0.36 97.4 1.53 459882 

6460 192.1 0.34 106.4 1.69 225535 

5351 174.9 0.38 110.6 1.53 330695 

229 

5454 155.7 0.38 111.7 1.76 238000 

5427 155.3 0.37 112.9 1.75 249574 

6223 166.3 0.32 97.0 1.88 739250 

6268 166.9 0.32 85.4 1.88 856524 

7072 177.3 0.24 81.8 2.00 747135 

7073 177.3 0.25 81.8 2.00 729715 

5293 153.4 0.31 81.0 1.73 867330 

5325 153.8 0.26 82.9 1.74 768364 

7002 176.4 0.34 109.5 1.99 320864 

6187 165.8 0.33 110.8 1.87 479540 

7153 178.3 0.24 97.9 2.01 463324 

 
Table 2. Summary of the experimental results generated by Szolwinski et al. by testing 

specimens of Al 2024-T351 [6]. 
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Rp P Q Q/F σb,a Po Nf Spec. 
status [mm] [N] [N]   [MPa] [MPa] [Cycles] 

25.4 

13.0 7.0 0.538 83.0 183 10000000 Run out 

7.3 6.6 0.904 83.0 151 3450000 Run out 

20.0 16.0 0.800 62.5 211 2190000 Run out 

20.0 15.0 0.750 56.0 211 1540000 Run out 

20.0 15.0 0.750 63.0 211 2940000 Run out 

20.0 15.0 0.750 59.0 211 1780000 Run out 

20.0 15.0 0.750 84.2 211 549000 Failure 

10.3 7.5 0.728 83.6 171 2940000 Failure 

30.0 15.0 0.500 85.0 241 480000 Failure 

20.8 15.0 0.721 83.0 214 449000 Failure 

15.6 15.0 0.962 85.0 194 395000 Failure 

18.5 13.6 0.735 77.0 206 551000 Failure 

16.0 11.7 0.731 83.0 196 530000 Failure 

13.9 10.0 0.719 83.0 187 803000 Failure 

20.0 15.0 0.750 70.0 211 516000 Failure 

 
Table 3. Summary of the experimental results generated by Wittkowsky et al. by testing 

specimens of Al 7075-T6 [56]. 
 
 

Rp F Q 
Q/F 

σb,a Nf 

[mm] [N] [kN] [MPa] [Cycles] 

12.7 

50 14.5 0.29 394 107899 

50 14.5 0.29 300 474656 

50 15.0 0.30 341 266176 

50 30.0 0.60 300 142746 

50 33.0 0.66 225 691612 

50 30.0 0.60 315 117183 

50 23.0 0.46 300 307653 

50 30.0 0.60 250 278238 

40 16.0 0.40 300 401153 

25.4 

50 15.0 0.30 341 192000 

50 15.0 0.30 325 872863 

50 32.0 0.64 300 207258 

50 21.0 0.42 300 598191 

50 30.0 0.60 375 85957 

50 30.0 0.60 320 212491 

 
Table 4. Summary of the experimental results generated by Venkatesh et al. by testing 

specimens of Ti-6Al-4V [57]. 
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Rp Po σb,a 
Q/f·P 

Nf Spec. 
Status [mm] [Mpa] [Mpa] [Cycles] 

20 500 

340 0.47 225780 Failure 

320 0.47 488632 Failure 

320 0.47 477861 Failure 

310 0.47 1000000 Run out 

50 500 

300 0.46 164690 Failure 

300 0.46 168472 Failure 

300 0.46 189447 Failure 

300 0.46 203759 Failure 

200 0.44 541220 Failure 

200 0.44 548,69 Failure 

160 0.49 1000000 Run out 

70 500 

300 0.46 166150 Failure 

300 0.46 168266 Failure 

200 0.42 195225 Failure 

180 0.47 1000000 Run out 

 
Table 5. Summary of the experimental results generated by Ferry et al. by testing specimens of 

Ti-6Al-4V [58]. 
 
 

Material Ref. 
σUTS σA 

k 
τA 

k0 
NA 

[MPa] [MPa] [MPa] [Cycles] 

Al/4%Cu [18] 500 124.0 11.9 75.0 9.1 5·108 

Al 2024-T351 [6, 21] 506 130.0 12.2 75.0 9.1 5·108 

Al 7075-T6 [56, 62, 63] 572 166.0 9.7 95.8 7.0 107 

Ti-6Al-4V [57, 58, 64] 978 475.7 9.3 388.3 22.1 2·106 

 
Table 6. Adopted values for the constants of the plain fatigue curves used to 

calibrate the MWCM. 
 
 

Material 
rn 

Kt 
σAn 

k 
NA 

[mm] [MPa] [Cycles] 

Al/4%Cu 0.635 1.79 93.4 5.9 2·107 

Al 2024-T351 0.5 4.0 64.0 4.5 107 

Al 7075-T6 0.635 1.79 117.7 5.1 106 

Ti-6Al-4V [64] 0.1 7.5 100.9 6.3 2·106 

 
Table 7. Adopted values for the constants of the virtual notch fatigue curves used to calibrate 

the LM vs. Nf relationship. 
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Figures 
 

 
 

Figure 1. Typical experimental set-up of a fretting fatigue test. 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 2. Modified Wöhler diagram. 
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Figure 3. Procedure to determine the critical distance value in the medium-cycle fatigue regime 
by using two calibration fatigue curves. 
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Figure 4. MWCM applied along with the PM to estimate finite lifetime of notched components 
subjected to in-service fatigue loading. 
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Figure 5. Amplitude and mean value of the stress components relative to the critical plane 

determined according to the τ-MVM. 
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Figure 6. In-field use of the MWCM applied in conjunction with the PM to estimate finite 
lifetime under fretting fatigue loading. 
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Figure 7. Determination of the LM vs. Nf relationship by post-processing experimental results 
generated under fretting fatigue loading. 
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Figure 8. Calibration of the LM vs. Nf relationships for the different materials considered in the 
present investigation using fretting fatigue results. 
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(a) (b) 

 

(c) (d) 

 

Figure 9. Accuracy of the MWCM applied along with the PM and τ-MVM in estimating fretting 
fatigue lifetime when the LM vs. Nf relationships are calibrated from notch fatigue curves 

estimated by using Kf. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Accuracy of the MWCM applied along with the PM and τ-MVM in estimating 
fretting fatigue lifetime when the LM vs. Nf relationships are calibrated from fretting fatigue 

results (see also Figure 8). 
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