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Summary: 

The selection of robust parameters for normal tissue complication probability models poses a 

challenge due to the high number of parameters and potential collinearity. In this work an 

automatic method is developed that aims to overcome these challenges using principal 

component analysis, genetic algorithms and bootstrap methods. The results of the proposed 

algorithm are compared to a published model, using the same patient cohort, and are found to 

provide equivalent predictive performance. 

 

 

 

 

 

 

 

 

 

 



Abstract: 

Purpose: In this study we present a fully automatic method to generate multiparameter 

normal tissue complication probability (NTCP) models and compare its results with a 

published model of the same patient cohort.  

Methods and Materials: Data were analysed from 345 rectal cancer patients treated with 

external radiotherapy to predict the risk of patients developing grade 1 or ≥2 cystitis. In total 

23 clinical factors were included in the analysis as candidate predictors of cystitis.  

Principal component analysis (PCA) was used to decompose the bladder dose volume 

histogram (DVHs) into 8 principal components (PCs), explaining more than 95% of the 

variance. The dataset of clinical factors and PCs was divided into training (70%) and test 

(30%) datasets, with the training dataset used by the algorithm to compute an NTCP model. 

The first step of the algorithm was to obtain a bootstrap sample, followed by multicollinearity 

reduction using the variance inflation factor (VIF) and genetic algorithm optimisation to 

determine an ordinal logistic regression model that minimises the Bayesian information 

criterion (BIC). The process was repeated 100 times and the model with the minimum BIC 

was recorded on each iteration. The most frequent model was selected as the final 

‘automatically generated model’ (AGM). The published model and AGM were fitted on the 

training datasets and the risk of cystitis was calculated. 

Results: The two models had no significant differences in predictive performance both for 

the training and test datasets (p-value>0.05), and found similar clinical and dosimetric factors 

as predictors. Both models exhibited good explanatory performance on the training dataset 

(p-values>0.44) which was reduced on the test datasets (p-values<0.05).  

Conclusions: The predictive value of the AGM is equivalent to the expert-derived published 

model. It demonstrates potential in saving time, tackling problems with a large number of 

parameters and standardising variable selection in NTCP modelling. 



Introduction 

The use of radiotherapy techniques like 3D-conformal radiotherapy (3D-CRT) and 

intensity modulated radiotherapy (IMRT) makes it possible to modify the dose distribution to 

accommodate for patient-to-patient anatomical variations and different tumour geometries. 

To maximize patient benefit and make the most of this capability, the clinician needs to be 

able to make informed decisions on how the patient outcome can change depending on the 

dose distribution. The clinical aim would then be to maximise the probability of achieving 

tumour control while at the same time minimizing the probability of adverse effects. With the 

development of models that can predict the normal tissue complication probability (NTCP) 

(1, 2) dosimetric parameters can be used to estimate such risks.  

In addition to the metrics derived from the treatment planning dose distribution, clinical 

factors have also been shown to contribute to NTCP. Smoking is a predictor of treatment-

related pneumonitis(3); also previous surgery and bowel disease contributes to the risk of late 

gastrointestinal toxicity(4). However as the number of clinical and dosimetric parameters 

increases, to maximize the predictive performance of models (5), there is the danger of 

overfitting the model onto noise in the data. It is thus important that the model parameters are 

selected using methods aimed at maximizing predictive performance while avoiding overfit. 

A straightforward method would be to evaluate all possible models that can be derived 

from a set of parameters but this can be prohibitively time consuming since the number of 

models increases exponentially with the number of parameters. Although there is no widely 

accepted consensus on how parameters should be selected, some methods have been 

investigated in the literature using sequential parameter selection(6), the least absolute 

shrinkage and selection operator (LASSO)(7) and genetic algorithms(8). There are also 

several methods that can be used to assess the predictive performance of a model for 

parameter selection, with El Naqa et al(6) using leave-one-out cross-validation. Caution is 



needed when using such techniques in which there is an overlap between the datasets used in 

evaluating performance, as such a test dataset independent of model parameter selection 

should be used to report final predictive value. Ideally such a test dataset should be external 

to the institute deriving the model(9, 10). Furthermore it is important to compare newly 

derived models with already established models to remove any intra-institutional biases(11).   

Multicollinearity also imposes a significant challenge in NTCP modelling, particularly 

when volume data from a dose-volume histogram (DVH) are used as a way to extract useful 

dose metrics from the 3D dose distribution. A straightforward approach in trying to reduce 

multicollinearity from the DVH is to resample the volume data considered in the NTCP 

model, for example use volume data at 5 Gy increments (12). Alternatively principal 

component analysis (PCA) can be used to reduce the DVH to linearly uncorrelated 

components(13, 14).  

In this work a fully automatic algorithm is developed and evaluated to address the 

challenges in NTCP modelling, using a combination of PCA, genetic algorithms, bootstrap, 

and independent model evaluation from a test dataset. Furthermore the generated model is 

compared with an independently-derived model(15) of the same patient cohort from another 

institution in an effort to link knowledge-based and machine learning modelling approaches.   

Methods and Materials 

Automatic modelling algorithm 

The algorithm developed was designed to address the challenges of multicollinearity, 

parameter selection to balance overfit and underfit, and independent assessment of model 

predictive performance. Ordinal logistic regression was used to calculate the probability of 

presenting with the different grades of cystitis, to match the previously published model on 

the same patient cohort(15).  



The implementation of the algorithm was performed in Python v2.7.12 (64bit), using the 

NumPy numerical Python library (v1.11.1), the scientific SciPy library (v0.18.1) and the 

Pandas data analysis library (v0.18.1). Fitting of the ordinal logistic regression models was 

performed using the VGAM library of R (R Foundation for Statistical Computing, Vienna, 

Austria), accessed from Python using the rpy2 module (v2.7.8). 

Normalised cumulative DVHs were used in the analysis. PCA was performed as described 

in Dawson et al(13), to extract the principal components (PCs) explaining >95% of the 

variance data, resulting in the first 8 PCs being used (Supplementary material: Appendix A). 

The clinical parameters were combined with the PCs resulting in a total of 31 parameters to 

be used by the algorithm. The dataset was then split into training (70%, N=241) and test 

datasets (30%, N=104), maintaining the proportionality between the different cystitis grades 

(grade 0=48%, grade 1=40%, grade ≥2=12%); with the 70%/30% ratio selected as a general 

rule of thumb. The training dataset was used to determine the optimal model, whereas the test 

dataset was used to evaluate the model.  

Bootstrap was used to obtain random samples (N=241) with replacement from the training 

dataset, this was done to be able to analyse the stability of the model selection process in the 

presence of random fluctuations in the data. The issue of multicollinearity was addressed 

using the variance inflation factor (VIF) calculated by (1) ܸܨܫ ൌ ଵଵିோమǡ                                                          (1) 

where ܴ ଶ is the coefficient of determination of fitting a linear regression model with the ith 

parameter as the independent variable and the rest of the parameters as the dependent 

variables. As a general rule of thumb(16) a value of 5 was set to indicate if a variable was 

excessively collinear with the other parameters included in the analysis, as such if max{ܸܨܫ} 



≥5 then the parameter with the maximum VIF was removed. The multicollinearity reduction 

process was repeated until max{ܸܨܫ} <5. 

Ideally all possible models would be considered in the next step to determine the model 

with the best predictive performance but since there were 31 parameters overall this would 

lead to ~2 billion potential models. Instead a genetic algorithm was used to optimise the 

parameter selection process, since genetic algorithms have the advantage to be capable of 

converging to the global minimum in complex optimisation problems with a large number of 

parameters(17). For this work the genetic algorithm was implemented to select a model that 

minimises the Bayesian information criterion (BIC) (Fig. 1). 

In total 100 bootstrap samples were used in the algorithm, for each sample the VIF was 

used to remove collinear parameters and an optimised model was selected that minimised the 

BIC. At each step of the bootstrap process the model parameters were recorded and the model 

with the highest recorded frequency was chosen to be fitted on the training dataset without 

bootstrap sampling. The resulting model was denoted as the ‘automatically generated model’ 

(AGM) and was compared with the published model(15). The full algorithm flowchart is 

shown in Fig. 2. The code used in this work can be found at online at 

https://github.com/blindedauthor/AutoRegression; including the eigenvectors, mean DVH 

and example code necessary to transform new bladder DVHs into principal components that 

can be related directly to this work. 

Final model evaluation 

The final model evaluation was performed by fitting both the AGM and the model 

published in (15) onto the training dataset (N=241). The predicted probability of presenting 

with a toxicity grade ≥1 and ≥2 could then be calculated using these models and compared 

with the observed values, both on the training (N=241) and test (N=104) datasets. By 

grouping the data into 6 groups of increasing probability of toxicity the two-sided Fagerland-

https://github.com/blindedauthor/AutoRegression


Hosmer test(18) was performed to determine the goodness-of-fit between the predicted and 

observed data. In addition the discriminative ability of the models fitted on the training 

dataset was assessed using receiver operating characteristic (ROC) curves with any 

differences between the ROC areas under the curve (AUCs) determined using the one-sided 

test proposed by Delong et al(19).  

Fisher’s exact test was used to evaluate whether the selection frequency of the final model 

was significantly higher compared to the second most frequently selected model. The level of 

significance for all tests was set at a p-value of 0.05. 

Patient data 

This study included 345 patients treated for rectal cancer with long course chemotherapy 

and external radiotherapy between January 2007 and May 2012. The data has previously been 

published in a paper on dose response modelling of acute bladder toxicity(15). 

Radiotherapy treatments were planned using the Oncentra Masterplan (Elekta, Stockholm, 

Sweden) treatment planning system with either three-field 3D-CRT or with IMRT. 

Radiotherapy prescriptions to the tumour and elective volumes were 50.4 Gy in 28 fractions 

(N=219), 60 Gy in 30 fractions (N=117) with the remaining 9 patients receiving between 27 

Gy in 15 fractions to 62 Gy in 31 fractions. A small minority of patients (11%) received an 

external boost to the tumour using 3D-CRT (up to a total dose of 60-62 Gy) and 40% of the 

patients received additional brachytherapy tumour boosts (5-10 Gy in 1-2 fractions), as part 

of a clinical trial (20, 21). The brachytherapy tumour boost dose was handled as an 

independent continuous variable in the outcome modelling, whereas the brachytherapy status 

as a binary variable of 0/1 values. Potentially relevant clinical factors were retrospectively 

extracted from the available data including gender, disease stage, age, chemotherapy status; 

as well as brachytherapy status and dose. The Computational Environment for Radiotherapy 



Research (CERR)(22) software was used to extract the DVHs from the DICOM files of the 

plans.  

During the course of the treatment, cystitis was scored weekly by trained nurses using 

CTCAE v3.0; the weekly scores were concatenated and the highest score was used for NTCP 

modelling. In total there were 166 patient presented with grade 0 toxicity, 138 with grade 1, 

39 with grade 2 and two with grade 3. It was decided to concatenate the patients that had 

grade 2 and grade 3 into one group of grade 2/3, since only 2 patients presented with CTCAE 

grade 3 cystitis. Patients with missing data values were filled based on the predictive mean 

matching technique via the R (R Foundation for Statistical Computing, Vienna, Austria) 

package ‘MICE’ (23); these included diabetes status (Nmissing=4), partner (Nmissing=5), prior 

operation (Nmissing=8), and metastatic stage (Nmissing=1).  

Results 

The execution time of the proposed algorithm (Fig. 2) was approximately 4 hours running 

in parallel on an Intel i7-6700 CPU with 16 GB of RAM. The algorithm was run four times to 

investigate the repeatability of model selection and the same model was chosen in all 

calculations with a mean selection frequency of 16.5% (range=13%-19%) (Supplementary 

material: Appendix B), with the second most frequent model varying and having a selection 

frequency of less than 5%. The lowest selection frequency of the final model of 13% was 

significantly higher compared to the highest of the second most selected model of 5% (p-

value<0.05). Furthermore the robustness of the AGM model is demonstrated by considering 

the mean selection frequency over the four repeated runs of the algorithm, with both the 

AGM and its parameters selected with statistically significant higher mean frequency 

compared to other models and parameters (Supplementary material: Appendix C). 



The model derived in (15) identified the V35.4Gy as a significant dosimetric predictor of 

cystitis along with gender and the brachytherapy dose. The model derived from the proposed 

method also established three parameters as important predictors of cystitis, including gender 

with the coefficient values calculated from both models overlapping over their 95% 

confidence intervals (Table 1). The dosimetric parameter identified by AGM was PC1 which 

was found to be highly correlated with the V35.4Gy with a Pearson’s r of -0.98. The remaining 

parameters differed with the external boost selected for the AGM and brachytherapy dose for 

the published model(15).  

The calibration of the two models in predicting the observed risk of presenting with 

grade≥1 or grade≥2 cystitis was visualised using scatter plots with good agreement for both 

models on the training dataset and worsening results on the test dataset (Fig. 3). The 

Fagerland-Hosmer test(18) found no significant deviations on the goodness-of-fit for the 

training datasets of both models (p-values>0.44) but with significant disagreement for the test 

datasets (p-values<0.05), confirming the significant worsening of the calibration observed 

visually (Fig. 3). 

The discriminative ability of the models was further tested by calculating ROC curves for 

the probabilities of having grades ≥1 and ≥2 cystitis for both the training and test datasets 

(Fig. 4). The results show that the AGM has marginally improved discriminative ability for 

cystitis risk grade ≥2 with an AUC of 0.67 compared to 0.62 for the published model when 

used on the test dataset however the AUC differences between the AGM and the published 

model were not statistically significant, for all grades and datasets used (p-values>0.05). Both 

models had a significant reduction in ROC AUC between training and test datasets for risk 

grade ≥1 (p-value<0.05) however this reduction was not statistically significant for risk grade 

≥2 for both the AGM (p-value=0.16) and the published model (p-value=0.12) (Fig. 4). 



The dose response relationship of the V35.4Gy and PC1 was visualised to assess the 

agreement of the observed probability of complication with the calculated NTCP from the 

models (Table 1), across the range of the dosimetric values found in the total patient sample 

(N=345) (Fig. 5).   

Discussion 

There is a clinical need for robust NTCP modelling to guide clinical decisions in the 

context of personalised radiotherapy, especially for sites with a limited number of available 

studies investigating toxicity such as rectal cancer. In this work a fully automated algorithm 

is presented that can remove operator bias in NTCP modelling parameter selection. The 

performance of the algorithm is evaluated by comparing the results obtained to a published 

model(15) on the same patient cohort. The published model and the AGM are shown to have 

equivalent discriminative ability, both quantitatively using statistical metrics of predictive 

performance and qualitatively by comparative plots (Fig. 3-5). The agreement shows the 

potential of machine learning methods in complementing classical knowledge-based NTCP 

modelling. 

The selection of the variables to include in a multivariate NTCP model is a challenging 

task which should lead to a desirable balance between overfit and underfit, otherwise the 

model’s predictive performance could suffer. In this work the optimal parameters to include 

in the NTCP model were calculated based on a genetic algorithm used to minimise the BIC. 

The use of genetic algorithms allows for simultaneous search for both the model order and 

parameters compared to forward variable selection used by El Naqa et al(6) in multivariate 

NTCP logistic regression models of esophagitis and xerostomia. Gayou et al(8) also used a 

genetic algorithm to determine an optimal multivariate logistic regression models that 

explained the incidence of radiotherapy-induced lung injury. The application of genetic 

algorithms by Gayou et al is markedly different from this work since they run optimisations 



with constant model order having individuals being represented by strings of integers rather 

than bits, this enabled them to compare their findings with the DREES software tool that uses 

sequential forward variable selection(24). One of the aims of this work is to compare the 

algorithm proposed to published results, as such the model order was not predefined since an 

expert with radiobiology-specific knowledge would not start from a pre-defined order to 

derive the model. 

A limitation of this study is the poor predictive performance of both the expert-derived 

model and AGM on the test dataset compared to the training dataset (Fig. 3, Fig. 4). Mbah et 

al (25) has demonstrated that good predictive performance of models on the training dataset 

does not necessarily translate to good performance on the test data. In general statistical 

models like ordinal logistic regression, although they do provide for better interpretation of 

the results (parameter coefficients, p-values, confidence intervals), they do not have as good 

predictive performance as machine learning models(25). However the models presented do 

have an explanatory value, rather than predictive, by highlighting statistically significant 

parameters that explain the risk of cystitis (Table 1). Modelling approaches like LASSO, 

ridge regression and elastic net allow handling of overfit by tuning of their hyper-parameters. 

However using this approach would not allow for direct comparison of the resulting model to 

the published results (15), an important validation step in this work.  

The final output model of the proposed algorithm can potentially vary depending on the 

selection of the variable values. To test the robustness of the method algorithm calculations 

were performed a total of twelve times, with different parameter values, demonstrating the 

stability of the model selection (Supplementary material: Appendix B). The only instance in 

which the algorithm did not select the AGM presented (Table 1) was when the VIF was equal 

to 3; instead a model including only PC1 and male was selected, with a frequency of 13%. 

This can be explained from the VIF threshold value of 3 corresponding to a relatively small 



R2 of 0.67 (eq. (1)) that resulted in the removal of a greater number of collinear parameters 

before the genetic algorithm stage (Fig. 2); this caused the overall algorithm to favour models 

with fewer parameters. The robustness analysis also highlights the long execution time of the 

proposed algorithm of approximately 4 hours, running in parallel on an Intel i7-6700 CPU 

with 16 GB of RAM. Although the execution time is not excessively long, considering that 

the algorithm is automatic and can be run unsupervised, it can be limiting in how many tests 

can be performed to investigate its robustness, with a total calculation time in this study of 52 

hours (Supplementary material: Appendix B).  

Technical and statistical considerations need to be taken into account when applying the 

proposed method to other datasets. One consideration is the minimum number of patients 

needed for the analysis. There needs to be enough patients to ensure that the bootstrap 

process provides a rich enough set of distinct bootstrap samples to perform the analysis. We 

would recommend at least 20 patients for the training dataset resulting in ~6.9x1010 distinct 

bootstrap samples, enough to reliably perform model selection. Furthermore it is important 

that the user performs repeatability measurements, similar to this work (Supplementary 

material: Appendices B and C), to ensure that the model selection is robust. This might 

require increasing the number of bootstrap iterations in the presence of varying population 

sizes, number of events, effect size and level of significance of the features; we have 

investigated the effect of population size and number of bootstrap iterations in Supplementary 

material: Appendix D. It also needs to be emphasized that the algorithm might not be able to 

provide a robust model because of excessive noise in the data and very little or no 

dependence of the outcome on the features under consideration. It is important that the user is 

familiar with the statistical and machine learning techniques used by the algorithm to 

diagnose such problems and to already have performed descriptive statistical analysis to 

investigate the characteristics of the dataset. The issues mentioned make evaluating the final 



model on a test dataset crucial and in all cases this must be performed with a test dataset size 

that provides sufficient confidence on the model. The run time of the method might also be a 

concern for larger datasets. In such cases we would recommend running the algorithm using 

cloud computing on high performance servers or clusters of servers. 

Ideally NTCP models should be validated against datasets external to the institution that 

produced the model to determine the generalizability (9, 10). This type of external validation 

has been performed in the literature, with Jayasurya et al(26) reporting very good predictive 

performance of Bayesian network and support vector machine (SVM) models on datasets 

collected from three different cancer centres. In this study the predictive performances of the 

published model(15) and AGM were reported on a test dataset that was not used in the 

training and fit of the models, since an external validation was not available. Although this is 

a limitation the main aim of the study is to provide a general framework for generating NTCP 

regression models, and compare it against an expert-derived model already published(15). 

In this study PCA was used to decompose the DVH data into linearly uncorrelated PCs. 

This has the advantage of removing multicollinearity and enabling better feature selection, 

since the standard errors of the features are not inflated due to collinearity. However the 

disadvantage of using PCs is that it is difficult to interpret them and thus use them practically 

in treatment planning and evaluation. A method to overcome this limitation is to find 

correlations with established dose metrics and use them as surrogates in treatment planning 

optimisation and evaluation, for example Sohn et al (14) found correlations of PC1 with 

V60Gy and Dmean in their investigation of modelling rectal toxicity following prostate 

radiotherapy. Another approach would be to use the corresponding eigenvector of a PC to 

derive theoretical DVHs that can result in a reduction of the predicted risk and use them as a 

guide in treatment plan optimisation (27).    



The good agreement of the parameters of the AGM and the published model should be 

noted (Table 1).  Both models selected gender as a significant parameter with its significance 

indicated from the percentage increase of male patients from 54%, 65% and 76% with 

increasing cystitis grade. Also the dosimetric parameter of PC1, included in the AGM has a 

high correlation with V35.4Gy (r=-0.98), explaining similar dosimetric differences in the 

patient sample. The disagreement between the models is in the AGM having the external 

boost as a third parameter instead of brachytherapy dose found in the published model (Table 

1). However there is an inter-dependence between the brachytherapy dose and external boost 

since patients that had brachytherapy did not have an external boost, with the external boost 

parameter having a negative regression coefficient (Table 1) expressing the reduced risk of 

cystitis for patients that did not have brachytherapy. This point highlights the importance of 

the clinical explanation of any NTCP modelling to avoid erroneous clinical conclusions. 

Conclusions 

A method is presented to automatically generate NTCP models addressing the challenges 

of variable selection, collinearity and model validation. The automatically-generated 

multivariate NTCP model was validated against a knowledge-based published model from 

the same patient cohort, and was found to have equivalent explanatory and predictive 

performance. The algorithm presented can complement knowledge-based approaches to 

produce NTCP models providing additional confidence in the derived model. In addition it 

can potentially save time, tackle problems with a large number of parameters and standardise 

variable selection in NTCP modelling. 
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Figure Captions 

Fig. 1. Illustration of the genetic algorithm optimisation method used to select the parameters 

in the model that minimize the Bayesian information criterion (BIC). The algorithm 



repeatedly modifies an initial population of 200 models, defined as ’individuals’, based on 

principles of biological evolution.  The convergence criteria used for the optimisation were 

20 consecutive generations without an improvement to the BIC of the best model; with a 

minimum number of generations of 30. Note that in the illustration shown there are 9 

individuals in the population with a number of parameters of 10, whereas in the actual 

implementation there were 200 individuals and the number of parameters was 31. 

 

Fig. 2. Flowchart of the method for the automatic generation of ordinal logistic regression 

models. The variance inflation factor (VIF) was used to remove collinear parameters before 

the genetic algorithm optimisation (Fig. 1) minimised the Bayesian information criterion 

(BIC). 

 

Fig. 3. Calibration plots comparing a) the published model(15) and b) the automatically 

generated model (AGM)  showing the predicted versus observed grade ≥1 and grade ≥2 risk 

for the training and test datasets (with 68% confidence intervals).  

 

Fig. 4. Receiver operating characteristic (ROC) curves of a) the published model(15) and b) 

the automatically generated model (AGM) calculated on the training and test datasets. 

 

Fig. 5. NTCP curves for the model derived from the parameters in a) (15) and b) the 

automatically generated model (AGM) using PCA. The curves were calculated across the 

range of the V35.4Gy and PC1 values found in the whole patient dataset (N=345) with the 

remaining parameters kept constant using their median values. Data points represent observed 



toxicity for the training and test datasets, shown for the different grades ≥1 and ≥2 with 68% 

confidence intervals. 

 


