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Abstract

The complex mixtures of colorants present in different madder speciesoséaepsignificant information about which
plant species or technique was used to dye the fibres of historical textile arte¢ate, when extracting and analysing
colorants from textile artefacts as much of this information as possitddshe preserved. Historical textiles are most
commonly extracted with 37% hydrochloric acid: methanol: water (2:1:1) bt this solvent system hydrolyses dye
glycosides and may also induce chemical reactions. Ome pfitnary components in Dyers’ madder (Rubia tinctorum

L.) is lucidin primeveroside, but it is rarely seen in artefacts, idhé corresponding aglycon lucidin. It has been
demonstrated that the hydrochloric acid method causes hydrolysisitiofaquinone glycosides to their aglycon
counterpart. Herein it is demonstrated that lucidin is not stable in such aciditiams and degrades rapidly to
xanthopurpurin. This is confirmed by HPLC, LC-MS ahtiINMR, which also provide evidence of the mechanism of
degradation being a retro-aldol process.
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1. Introduction

Natural colorants are complex mixtures of many different moleculeslantdyes are often a mixture of aglycons of the

parent colorant moiety and their glycasidounterparts. The ratio of the abundance of these molecules can provide

significant information about which plant species was used to dye tks fib the technique used for the dye pradess
the context of historical textiles, this information is of paramount impoetéor conservation and restoration purpgses
as well as the generation of information on the ethnographic origthe aftefacts.

Colorants obtainettom the roots of Dyers” madder (Rubia tinctorum L.), are grouped collectively in the Colour
Index as C. |. Natural Red 8, and have been used as a red dyesteffitimies. Over 35 anthraquinonoid compounds
havebeen reported to be extractable from madder roots [1], howevey,ahtirese compounds are artefacts of inherent
reactivity during analytical extraction methods and are suspected as notnio¢ipgesent in planta; for example,
anthraquinones that contain a 2-methoxymethyl- or a 2-ethoxyethy gre formed during extraction with hot methanol
or ethanol, respectively [1,2]. When extracting and analysing coldranigextile artefacts as much information should
be preserved as possible in order to gain better insight on how they wedrardy the plant species from which the dye
originated, hence, it is important to limit the damage to the colorant molectite iaxtraction process. However,
extraction of artefacts is not straightforward as the dyes are stiooghyl to the substrate \éanordant metal (typically
Al®Y); the most common literature extraction procedure uses a 37% hydrochloricnatiiginol: water (2:1:1, viyv
mixture [3-8], as the strong acid enables displacement of the dye mol&omesheir mordant metal complex [9].
However, such conditions may also ind@ehemical reaction, hence, it is vital that fundamental understandihg of
reactivity of such natural dyes is developed alongside the analysiscoitip@nents within the mixture. If the conditions
of extraction and analysis of these dyextiles changes the ratios of the compounds present, or modifies theiursty

then valuable information on that artefact will be lost or potentially misinterpreted
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Figure 1. Possible inter-relationships between anthraquinone compounds foRabia tinctorum based on chemical or

biochemical interconversion.
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Only relatively recently has there been significant evidence confirmingitnary anthraquinone components
in Rubia tinctorum roatasthe glycosides ruberythric acid)(and lucidin primeveroside3) [10-14]; the majority of
literature has pointed to alizari®)(as the major anthraquinone present, and whilst it does occur in the péaimtnituch
lower concentrations than its glycoside [11,12,34F have previously suggesteth] that acidic conditions used in
extraction and analysis of dyes in previous studies may have leddovations that alizarin was the primary component,
it being the product of ruberythric acid hydrolysis¥2). However, despite high concentrations of lucidin primeveroside
(3) in Rubia tinctorum roots [11,12,14], the aglycon lucidd) i rarely detected (and then only in low and trace
concentrations in planta and in textile artefad®12,16]) even when acidic conditions are used that would promote
hydrolysis B—4); it is suspected that the reactive nature of lucidin means that it issreanilerted to other compounds.
As Figure 1 shows, lucidird] can be oxidised to nordamnacanttgl énd studies have suggested this is catalysed by
endogenous oxidase enzymes in the plant [171tli8 possible that nordamnacanth)l ¢an form munjistin by the action
of endogenous oxidase; subsequently xanthopurpryimdy be formed through decarboxylation of munjiséin [t has
also been proposedq] that another enzymatic reaction can occur that converts lucidin intaitheng methide (Figure
1). Itis thought this intermediate may be able to be formed by acidilitioms, but the actual intermediate is too difficult
to isolate due to it being a very strong electrophile and addition at tidedoand by any nucleophile is highly likely
[12].

However, these enzymes are probably denatured in the dyeing processnaedHis mode of degradation
probably is not responsible for these compounds in historic artefactsi &duaursen [12] recently confirmed that,
unless R. tinctorunroots were “warmed in water” for prolonged periods (hence, providing enzymatic incubation
conditions), significant concentrations of anthraquinone glycosides weserprin the dyebath and on dyed wool fibre.
They demonstrated that steaming madder roots or boiling them in wa@d geconds was sufficient to deactivate the
hydrolytic enzymes. An initial extraction process by boiling the madutwrwas typically performed in the Japanese
Kusaki-zome dyeing method and typical European madder dyeingspeschistorically involved heating the dyebath to
75-80 °C, which would most probably also denature the endogenoyunespresent0].

We have previously suggestekb] that xanthopurpurin may also be formed directly from lucid)rtifrough an
acid (or base)-catalysed loss of formaldehyde through a retro-aldgbitypess (Figure 1), but there is no literature to
support this proposal. The absence of lucidin in the analysis chetgafyed with madder is rarely acknowledged, or it
is stated that lucidin is degraded into unknown products [9]. Lucidiheisonly commonly reported anthraquinone
detected in the roots of Rubia tinctorum to contain a primary alcohol, wbigld make its degradation unique. As
described in our previous researdh|[ use of the 37% hydrochloric acid: methanol: water (2:1:1, \wa@lvent system
causes hydrolysis of anthraquinone glycosides present in mawbderith the result that only aglycons are detected in
back extraction experiments.

Herein it is suggested that when such acidic methods of extraction are usddate the dye compounds,
degradation of the aglycon lucidin may also occur. The purpose oégbarch described is to study the degradation of
lucidin under the conditions of extraction involved with the common 37&6dahloric acid: methanol: water (2:1:1,

viviv) solvent method.

2. Materials and methods

2.1. Materials and solvents

All chemicals were purchased from Sigma-Aldrich. All solvents used weHPbC grade and atspurchased from

Sigma-Aldrich. HPLC grade water was obtained by distillation on site.
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a0 2.2. General Proceduresand | nstrumentation

91  Nuclear magnetic resonance (NMR) spectra recordedHfdiMR at 300.13 MHz and 500.21 MHz ahi@ at 75.45 MHz
92  on a Bruker DPX300 and DRX500 spectrometer. Chemical shifts ag@ givparts per million (ppm) downfield of
93 tetramethylsilane (singlet at 0 ppm) for proton resonances. The moipling constants are corrected and given in Hz
94  and expresse@.g as multiplicities, singlet (s), broad singlet (bs), doublet (d), douhlbldb(dd), triplet (t) and quartet
95  (q). High resolution electrospray (ESI+) mass spectrometry was pedasma Bruker MaXis Impact spectrometer, m/z
96 values are reported in Daltons to four decimal places. Liquid Chromakygvath Mass Spectrometry (LC-MS) was
97 carried out for analysis synthetic references. LC analyses were caatiet room temperature on a Phenomenex
98  Hyperclone @gcolumn, 5um particle size, 250 x 4.6 mm L.D. column equipped with a pre-column. Chromatography
99  was carried out using two solvents: (A) water and 0.1% formicsatidion and (B) acetonitrile and 0.1% formic acid
100 solution. A linear gradient programme was applied: of 0-3 minute3006 increase of solvent B. The flow rate during
101 the experiment was 1.0 mlimt. Injections were made by a Basic Marathon autosampler equipped witkl &2ap. The
102  method was carried out on an Agilent 1200 LC using a Bruker HIBa lon Trap for the MS detection and a Diode
103  Array Detector. The ESI (electrospray ionisation) parameters in the regatiimode were as follows: spray voltage
104 4000 V (applied to the spray tip needle), dry gas 1®im?, dry temperature 365 °C, capillary 60 nA, nebulizer 65 psi,
105 nebulising gas N UV/visible spectrophotometry was carried out using a Jasco V-530 iblééIR spectrophotometer
106 at 2 nm intervals. Spectral properties and wavelength of maximum absorbanrevére evaluated. Infrared spectra
107  were recorded on a Bruker Alpha Platinum ATR. Samples were anatybedsolid phase and absorption maximaj

108 are given in wave numbers (@rto the nearest whole wavenumber.
109  2.3. Synthesisof referencesfor chemical components of madder root
110 2.3.1 Xanthopurpurin

111  This method was based on that of Murti et 21].[ Anhydrous aluminium chloride (4.8 g, 40 mmol) and sodalneride

112 (1.2 g, 20 mmol) were heated to 150 until molten. To this, a mixture of phthalic anhydride (1.848 gamol) and

113 resorcinol (0.80 g, 8 mmol) was added slowly. The temperature waddakéy iscreased to 168C and maintained for
114 4 hours. The reaction mixture was then cooled %6 @nd 2 M aqueous hydrochloric acid solution was added and stirred
115 for 15 minutes. The reaction mixture was then heated to reflux faniBQtes, after which it was cooled to room
116  temperature and extracted with ethyl acetate (3 x 30 ml). The ethyl acetate everactisen washed successively with

117  saturated sodium bicarbonate solution (30 ml), dried with magnesiuhaseiignd evaporated to dryness.

118  Xanthopurpurin T) was collected as a yellow/orange amorphous s28dng, 1.2% yield, m.p. 26264 °C. IR (ATR),

119 v (cnth): 3360, 1633, 1598, 1451, 1258ux(loge) in MeOH:412 nm (4.15)*H NMR (500 MHz, DMSO0):5 12.76 (s,

120  1H, OH), 11.32 (s, 1H, OH), 8.23 (dd, J= 7.5, HZ 1H), 8.18 (dd, J= 7.5, 1.7 Hz, 1H), 7.95 (app td, J= 1.6 Hz,

121 1H), 7.92 (app td, J= 1.7, 7.6 Hz, 1H), 7.15 (d, J= 2.31HD), 6.62 (d, J= 2.3 Hz, DHC NMR (101 MHz, MeOD)

122 158.2, 157.8, 157.4157.0 134.0, 133.8, 126.6, 126.2, 118.9, 116.0, 113.,411108.1, 107.5. HRMS: m/z (E}I-
123  calculated for @HgO4[M-H] :239.0423; found [M-H] :239.0354. HPLC retention time and mass data of negative ion
124  can be found in Table 1.

125 2.3.2 Lucidin

126  In order to gain a better understanding of the effect that 37% hydrochéid has on lucidin during extraction, a pure

127 sample of lucidin was synthesised to observe any changes in its gtruntier the back extraction conditions. This
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method was based on that of Murti et[&l]. Xanthopurpurin (20 mg, 0.08 mmol) was dissolved in 5% aqusmdisim
hydroxide solution (0.5 ml). Aqueous formaldehyde 37%(B3®.4 mmol, 5 equivalents) was then added and stirred at
room temperature for 3 hours and the reaction was monitore€by$. Once completion was observed the solution
was precipitated with 10% aqueous hydrochloric acid solution (~1 ml) wetilcav precipitate was observethe yellow
precipitate was then extracted with ethyl acetate (3 x 1 ml), dried withesiagmsulphate and then evaporated to dryness.

This was then separated on a short flash silica column with 70% ethyl agétatbexane.

Lucidin (4) was collected as a yellow amorphous sdlitl mg, 87.5% yield, m.p. 303085°C. IR (ATR),v (cntl): 3400,
1634, 1558, 1365, 1338max(l0g ¢) in MeOH: 410 nm (3.66}H NMR (500 MHz, DMSO):5 11.33 (s, 1H, O} 8.22
(dd, J= 7.5, 1.5 Hz, 1H), 8.15 (dd, J= 7.0, 1.5 Hz, 1H) {app tdJ= 1.6, 7.2 Hz, 1H), 7.74 (app t& 1.6, 7.2 Hz, 1H),
7.26 (s, 1H), 4.83 (broad s, 1H, QPK.55 (s, 2HCH,). 3C NMR (126 MHz, MeOD)s 159.9, 159.6, 159.4, 159.1, 158.7,
158.4, 119.4, 117.1, 114.8, 112.6, 54.7, 54.5, 5882, 54.0. HRMS: m/z (ESI-) calculated foks100s [M -
H] :269.028; found [M-H] :269.%164 HPLC retention time and mass data of negative ion can be foundlenTrab

2.4. Chemical degradation of lucidin
2.4.1. With methanol

Pure lucidin (2 mg) synthesised and purified as described above wsalselisin 37% hydrochloric acid: methanol: water
(2:1:1, viviy (0.5 ml) and heated to 100 °C for 15 minutes. After this time an al@fube reaction mixture was taken
for LC-MS and HPLC analysis. The remaining reaction mixtureevaporated to dryness and re-dissolved in deuterated
acetone for NMR analysis. Deuterated DMSO was also evaluated as a solvent for alj#is abut deuterated acetone
provided better solubility. Deuterated methanol could not be used as it wimunfdri@ with the results forming the methyl

ether adduct.
2.4.2. Without methanol

Pure lucidin (2 mg) synthesised and purified as described above wasatissa 37% hydrochloric acid: water (1:1, M/iv
(0.5 ml) and heated to 100 °C for 15 minutes. After this time an aliga®taken for LC-MS and HPLC analysis. The

remaining reaction mixture was evaporated to drynesseadidsolved in deuterated acetone for NMR analysis.

3. Results and discussion

The HPLC chromatogram of lucidin after heating in 37% hydrochloric a@ter (1:1, v/v) (Figure 2) showed a decrease
in the lucidin peak (4) and a peak appearance at retention time 11.57)ntivis new peak has the same UV/vis data and
retention time as that of the synthesised xanthopurpurin standarleé [jahhe LC-MS also shows two peaks with the

same molecular weighgslucidin (m/z= 269) and xanthopurpurin (m/z = 239). These results suggest thatamasrus

acidic conditions that mimic those used in textile back extractions [20]irusigartially degraded to xanthopurpurin.



159

160

161

162

163

164
165
166
167
168
169
170

171

172

120 —
100 —
80 —
60

40

Absorbance

20 +

7)

S

-20

Figure 2. HPLC chromatogram of lucidin after heating in 37% hydrochloric agder (1:1, v/v).
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Table 1. Compounds identified by HPLC-DAD and LC-MS in hydrochloric atégradation of lucidin.

Solvent Anthraquinone Retention | UV Amax valuesfor Molecular ion,

derivative assigned to time compound m/z, fromLC-M S
HPLC peak (min) identification (nm) [M-HT
37% hydrochloric acid: water lucidin (4) 9.9 244.6, 280.9 269.0
(1:1, viv) xanthopurpurin (7) 11.6 243.5, 280.7 239.0
37% hydrochloric acid: lucidin (4) 9.9 2445, 280.2 269.4
methanol: water (2:1:1, viviv) xanthopurpurin (7) 11.6 2435, 280.7 2394
lucidin methyl ether (8) 12.3 2445, 281.3 283.4

It is hypothesised that in this case the reaction probably proceeds throetghr-aldol type mechanism (Scheme
1). The abilityof this reaction to occur is unique to aromatic systems containing mulyigtextyl groups as hydroxyl
groups on an aromatic ring are electron donating, and usually in equilityith a low concentration of the keto tautomer
The keto tendency of the hydroxyl groups in positions onetlarg@ on the lucidin aromatic ring in acidic conditions
drive the reverse aldol condition. The electron donating ability of the ojfdeoxtyl group in the ring also provides

stabilisation to the ketone tautomer. The loss of formaldehyde also providesogicedriving force for this potentially

reversible reaction.

- LD gy
CoC — ooy, — o, - A
OH OH OH H H

o} o] o

Scheme 1. Mechanism of the proposed retro-aldol type mechanism of lucidindit azjueous conditions.
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Figure 3. HPLC chromatogram of lucidin after heating in 37% hydrochloric ac&dhamol: water (2:1:1, v/iviv).

The HPLC chromatogram of the madder extract prepared using 37% hydiomahld: methanol: water (2:1:1,
vivilv) (Figure 3) showed a decrease in the lucidin peak (4) and fomw@tite xanthopurpurin peak (7). However, in
this reaction there was also the formation of a third peak (Table 1k Wwhagthe largest peak height and peak area in the
chromatogram. LC-MS also showed three peaks in the chromatogi@din I(m/z = 269), xanthopurpurin (m/z = 239)
and the third peak which gives a mass of m/z = 283, which corréspto the methyl ether of lucidiB)([13]. It is well
documented that ether products can be formed when using alcohol in #m& sgtem when extracting dye compounds
and in extraction from textile artefacts [1,2,13]. The methyl ether ptadexpected to be much more stable than the
methyl hydroxyl present in lucidin; the primary alcohol in lucidin catepially be displaced by nucleophilic attack of
alcoholic solvents such as ethanol or methanol. Under dry or acidiitioos this primary alcohol is most likely removed
as water and formation of the quinone methide can take place. The guaietinide is very susceptible to nucleophilic
addition [12] and this process is reversibladdition of water will reform lucidin whereas attack by methanol will form
the lucidin methyl ether. It is important to note that whilst lucidin can undergettioealdol process, this is not feasible
for the methyl ether, and reformation of the quinone methidédimithe main reaction pathway availathl€-MS also

showed evidence of the formation of a dimeric sped@ewith the mass of m/z = 491.

(o] OH
Coer”
OH
(0]

It is noted herein that the UV/vis spectra of each peak was very sforildrese compounds. For this reason,
mass spectra data aHd NMR were usedo fully assign the peaks and observe the reaction as it proceeds. The NMR
experiments are not trivial to analyse as lucidin has limited solubility ist malvents or is only soluble at low

concentrations. In addition to this the NMR signal corresponding to xanfhwpucan appear diminished due to the
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proton between the two hydroxyl groups being labile for excharitpedeuterium providing further evidence for the

presence of the keto-equilibrium form.

The!H NMR spectra shown in Figure 4 shows an increase in the protonssigglalighted in the coloured box;
this proton corresponds to the aromatic signal between the two hydroxyls in xanthopurpurin [22]. The appearance
of this signal shows that lucidin has degraded to xanthopurpwoshlikely through the retro-aldol type reaction proposed.
There is also evidence for the formation of formaldehyde (as indicaSstheéme 1). Under the reaction conditions, where
water (or methanol) is present, formaldehyde would not be expecteddioskrved as it would exist primarily as the
hydrate (HOCHOH). This equilibrium, and resultingd NMR signals are quite sensitive to concentration, temperature
and pH, but it is known that HOGBH has a chemical shift b 4.6 ppm and the oligomer HO@BICH,OH slightly
higher around 4.ppm[23]. There are definitely appropriate (if small) signals in this regfdihe spectrum consistent
with this explanation however unambiguous assignment has not besgbl@a far. It is feasible that liberated
formaldehyde may re-add to xanthopurpurin at a different positionGéd.gather than C2) to form an isomeric product,
although the presence of the adjacent carbonyl makes this centreleasiafiucleophilic, and so is unlikely. Other
reactions, such as O-alkylation on phenolic groups, are feasible, buistimerevidence to suggest this could occur at

anything more than a small equilibrium concentration.
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Figure 4. Stacked'H NMR of lucidin breakdown experiments. From top to bottorsOHHCI; MeOH: HO: HCI;

xanthopurpurin standard; lucidin standard.
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Figure 5 shows th&H NMR spectra expanded in the aromatic region which displays the appeafanet
coupling (2-3 Hz), which indicates that there is a hydrogen in the meaitiopoof the ring, further confirming the
degradation to xanthopurpurin (which displays this meta couplifigire A.1 shows th&#H NMR spectra of lucidin
methyl ether and displays integration between the singlet (H4,pp30 and the methyl group corresponding to the
methyl ether (OCkl 3.27 ppm). Upon closer inspection, the meta-coupling constaneéetthe two protons on the
xanthopurpurin can be observed in the degradation studies, whiblerfuwonfirms the degradation of lucidin into
xanthopurpurin. A singlet corresponding to lucidin present in thé&kbosen experiments is also observed, indicating that
the breakdown of lucidin is not complete and some remains in the reatium. This result is confirmed in the HPLC

chromatograms (Figure 2 and 3) where lucidin is still present in hotlege experiments, but in lower concentrations.
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Figure5. StackedH NMR spectra showing meta-coupling of the aromatic sigmalsthopurpurin standard (blue; top);
H20: HCI (green; middle); MeOH: #D: HCI (red; bottorn

This reaction was also examined in deuterium oxide and deuterated metiemeVer, this resulted in the
deuterated reaction product of the lucidin methyl ether (m/z = 286), ségguire 6, which caused probleimsanalysis
by NMR due to the methanol adduct being the deuterated product and, f@ndsible in thefH NMR spectrum [24].
However, the mass spectrum shows the lucidin methyl ether ion=(883 + 3) for the deuterated methanol adduct,

which confirms formation of the lucidin methyl ether product.
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Figure 6. Mass spectrum of deuterated methyl ether product of lucidin.

Degradation of lucidin into xanthopurpurin is important for the fafldonservation scientists and conservators.
Previously the presence of xanthopurpurin has been used asaatanthat the sample probably contained munjistin,
which is a carboxylic acid derivative of xanthopurpurit?][ Munjistin can be easily decarboxylated to form
xanthopurpurin 18], this reactivity is again due to the keto tendency of the hydraxylgs on the ring. Munjistin is a
marker pigment which can be used to prove the presence of R. Garuifdyed textiles20], therefore, by employing
an acid extraction process information relevant to the analysis afy#te materials is potentially lost as munjistin is
decarboxylated to xanthopurpurin and lucidin is degraded to xaniain, causing problems in determining whether
the original artefact was dyed with R. tinctorum or R. cordifolia. Tikidurther complicated by the fact that
xanthopurpurin and alizarin elute very closely on a C18 column aemcehcould co-elute as one peak in many systems.
The two compounds also have the same mass, hence, if their UV/viasprectrot analysed in detail they could be

mistaken for the same compound and hence alizarin could be wessiiyned in the sample.

4. Conclusions

It has been demonstrated herein that lucidin is not stable in acidic conditionsgaades rapidly to xanthopurpurin
when heated in aqueous acid conditions that are typically used factextrof historical textiles dyed with madd&his

is confirmed by HPLC, LC-MS anéH NMR, which have also provided support for the proposed mechasfism
degradation being a retro-aldol process. Different madder varieties and specidiffeandt origins have different
chromatographic profiles in planta, hence, the most effective artefacttexti@chnique would be the one that preserves
the colorants in the dyeings in the form as applied. As most existingodsetause some form of acid-catalysed
degradation to colorant moieties, it is vital to future development of analytical teebrimexamine historical textiles,
that milder and effective extraction techniques are developed to enable better-inidemté#tcation of the original

dyestuff and to provide more information about the botanic, geoigrapt ethnographic origins of the dyes.
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