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Abstract: 

We present a magnetic and structural properties study of epitaxially grown B2-ordered full 

Heusler Co2FeSi0.5Al0.5 single crystal films on Ge(111) substrates, as a function of annealing 

temperature. Hysteresis loop measurements reveal that the magnetic properties 

of Co2FeSi0.5Al0.5 are stable up to 450 °C while ferromagnetic resonance linewidth measurements 

show a reduction of Gilbert damping from 5.6×10-3 to 2.9×10-3 for as-grown and annealed film, 

respectively. Above 500 °C, the films have increased coercivity, decreased saturation magnetization, 

and show characteristic two-magnon scattering resonance line-shapes. Magnetic inhomogeneities 

developed within the film when annealed above 500 °C were correlated to significant interdiffusion 

at the film-substrate interface, as confirmed by scanning transmission electron microscopy and 

electron energy loss spectroscopy. By performing first-principles calculations based on atomistic 

models developed from atomically-resolved microscopy images, we show the magnetic moment of 

the Co2FeSi0.5Al0.5 film reduces upon Co substitution by Ge atoms.  
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1. Introduction 

Efficient spin-injection from half-metallic ferromagnets into semiconductors is crucial for the 

development of hybrid spintronic devices such as spin transistors [1-4]. Half-metallic ferromagnets 

such as Co-based full Heusler alloys that are 100% spin-polarized at the Fermi-level are ideal 

candidates for such devices [5-8]. In particular, Co2FeSi0.5Al0.5 (CFAS) shows great promise due to its 

high Curie temperature, high magnetic moment, mid-gap Fermi level, and low Gilbert damping 

constant [9-14]. In addition to its thermal stability, CFAS has excellent lattice match with Ge (only 

∼ 0.4% lattice mismatch). Furthermore, in comparison to the CFAS/Si interface previously 

investigated by our group [5], recent studies show that the CFAS/Ge interface preserves both the 

high spin-polarization of the CFAS film as well as its magnetic moment in the interface vicinity, 

making this system an excellent platform for spin-based device applications [5, 6].  

Despite the predicted ideal properties of fully ordered L21 single crystal half-metallic Heusler 

alloys, structural defects and chemical disorder can drastically change the spin polarisation  [7, 15, 

16] in Heusler thin films. In order to improve spin-electronic properties, thermal treatment is 

essential not only to remove the point- and extended structural defects but also to achieve the 

chemically-ordered L21 phase throughout the film [17, 18]. Annealing at elevated temperatures in 

the range of 500-700 °C is a standard approach undertaken for various heterostructures such as CPP-

SVs and MTJs based on half-metallic Heusler electrodes [11, 15, 19, 20]. In the case of hybrid 

heterostructures, annealing at such relatively high temperatures presents a large barrier for 

improving the film properties due to an extensive intermixing between the semiconducting 

substrate and Heusler film which usually occurs even at lower temperatures. In contrast to CFAS/Si 

where extensive intermixing has been observed even for room temperature deposition [5], recent 

studies of CFAS films on Ge(111) have demonstrated atomically and chemically sharp interfaces for 

room temperature deposition [6]. The structural phase of the room temperature deposited CFAS is 

B2 and defects such as antiphase boundaries, which locally destroy the spin polarisation, have been 

observed [7]. Therefore, it is important to determine how the annealing affects overall film structure 

as well as the atomic and chemical structure of the CFAS/Ge interface. Keeping the structural and 

chemical integrity of the half-metal/semiconductor interface is crucial since it determines the 

heterostructure band alignment, Schottky barrier height and ultimately the spin injection efficiency.  

In this letter, we present a systematic study of the effect of annealing temperature on the 

CFAS/Ge heterostructure with a goal of establishing a correlation between structure, magnetic 

properties and interface integrity in the temperature range from 350-550 °C. Vibrating sample 

magnetometer (VSM) measurements show stable overall magnetisation and film coercivity up to 

450 °C. The decrease of the Gilbert damping constant, measured by ferromagnetic resonance (FMR), 

within the same temperature range indicates improved structural/chemical ordering of the CFAS 

film. A further increase in the annealing temperature results in an increase of resonance linewidth 

suggesting secondary magnetic phase formations, which is also reflected in a decrease of 

magnetisation and an increase of coercivity of the film. Aberration-corrected scanning transmission 

electron microscopy (STEM) and electron energy loss spectroscopy (EELS) measurements reveal that 

the changes in magnetic properties of the CFAS film are correlated to structural changes, mainly as a 

result of an interdiffusion between the Ge substrate and the CFAS film. Based on the structural data 

obtained by electron microscopy, we also perform first-principles calculations which correlate the 

drop of observed magnetisation with the structure of the annealed specimens. This work clearly 

shows that forming the L21 phase on Ge substrates is hindered by the strong interdiffusion of the Ge 

and the Heusler film. Hence the standard annealing procedures that require annealing above 500 °C 

are not suitable for hybrid spintronic structures.  
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2. Experimental 

The samples were prepared by co-deposition of Co, Fe, Si and Al using low-temperature 

molecular beam epitaxy [21, 22]. A 18 nm-thick CFAS film was deposited on a pre-cleaned 

10 × 10 mm2 Ge (111) substrate at room temperature. Prior to loading Ge(111) substrates into the 

chamber, their surfaces were chemically cleaned with an aqueous 1% HF solution to remove any 

native oxide and contamination. Annealing experiments were carried out inside a UHV chamber with 

a base pressure of 8 × 10-11 mbar. Each 3 × 3 mm2 cut sample was annealed under the same 

condition for an hour at a given temperature.   

Cross-sectional transmission electron microscopy samples were prepared by conventional ion-

thinning method. Selective area electron diffraction (SAED) patterns were recorded using a JEOL-

2011 transmission electron microscope (TEM) operated at 200 kV. Atomic-level structural studies 

were performed by high-angle annular dark-field (HAADF) STEM imaging on a Nion UltraSTEM 100 

microscope, operated at 100 kV, with a convergence angle of 30 mrad; at these optical conditions 

the electron probe size is determined to be 0.9 Å; the inner detector angle for HAADF STEM imaging 

and the EELS collection angle were 76 mrad and 32 mrad, respectively. The native energy spread of 

the electron beam for the EELS measurements was 0.3 eV; with the spectrometer dispersion set at 

1 eV/channel. EELS chemical maps were generated from 2D-spectrum images after denoising by 

Principle Component Analysis, using the HREM Research MSA [23] for Digital Micrograph by 

integrating the signal above the relevant ionisation edge onset over a 30 eV window, after 

subtraction of the decaying background using a power-law model.  

Density functional theory (DFT) calculations were performed with the CASTEP code [24]. The 

PBE+U exchange-correlation functional was used, and a Hubbard-U term set to 2.1 eV for both d-

block elements Co and Fe. This value for the Hubbard-U term has previously been shown to open up 

the minority band-gap, approximately correcting for the delocalising effect of self-interaction with 

PBE alone [25]. The plane wave cut-off energy was set to 600 eV, while the Brillouin zone was 

sampled using a Monkhorst-Pack grid with a k-point sampling spacing of 0.035 2πÅ-1.  

DMS model 10 VSM was used for recording hysteresis loops. A custom VNA-FMR system built 

around a Rohde and Schwarz Vector Network Analyser (ZNB20) was used for collecting resonance 

spectra using both field sweep and frequency sweep modes.  

 

3. Results and discussion 

Fig. 1(a) is an overview of the as-grown film, showing a well-defined interface with the Ge 

substrate. The SAED pattern (not shown) taken from a region including both the Ge(111) substrate 

and CFAS film demonstrates that the as-grown film is a single crystal structure; it also reveals the 

epitaxial crystallographic relationship between the film and substrate: CFAS(111)||Ge(111) and 

CFAS(11�0)||Ge(1�10). Fig. 1(b) is a HAADF STEM image, showing a detailed view of the interface 

region, where the CFAS film is observed along [11�0] zone axis. The arrangement of the atomic 

columns confirms that CFAS film is B2 phase.  

Next we proceed with presenting the magnetic properties of the films as a function of the 

annealing temperature. The films were annealed at 350 °C, 450 °C, 475 °C, 500 °C, 525 °C and 550 °C. 

The initial condition prior to all annealing treatment was the same, starting from as-prepared B2 

structured films at room temperature. The magnitude of magnetisation, coercivity as well as Gilbert 

damping coefficient of the films depend on the chemical and structural ordering of the films. To find 
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the changes in magnetic properties of CFAS, in-plane magnetisation versus applied field hysteresis 

loops were measured using VSM. Fig. 2 shows the values of coercivity (HC) and saturation 

magnetisation (MS) of annealed Co2FeAl0.5Si0.5 films on Ge(111) substrates, extracted from in-plane 

hysteresis loops, at a range of anneal temperatures. A stable saturation magnetisation is observed 

up to 450 °C, followed by a continuous decrease of magnetisation with temperature. The value of HC 

remains approximately constant up to 500 °C, and above this annealing temperature it increases 

from 7 ± 2 Oe to 60 ± 3 Oe at 550 °C. These results indicate that starting from 450 °C onwards the 

film undergoes structural and chemical changes which are more pronounced at higher annealing 

temperatures.  

In order to gain further information on the changes in the magnetic properties with annealing 

temperature, Vector Network Analyser (VNA) ferromagnetic resonance measurements were carried 

out on all samples.  A 2D resonance map was obtained by measuring the s-wave parameter S12 as a 

function of frequency and applied field. FMR provides information on the Gilbert damping 

parameter, α, from the linearly fitted slopes of the measured resonant field line width vs frequency. 

Fig. 3 shows the resonant field linewidth dependence on frequency for the as-grown (a) and 

annealed samples (b-e). The frequency dependent linewidth, ∆H(f) is related to the damping 

parameter, α, by [26]  

 

∆���� = ∆��0� +
��
�

�
         (1) 

where γ is the gyromagnetic ratio. From linear fits to the plots in Fig. 3 using Eq. (1) we are able to 

extract both the intrinsic damping, α, and the extrinsic damping, ∆H0, as a function of anneal 

temperature. 

The Gilbert damping parameter, α, decreases for both the 350 °C and 450 °C annealed samples, 

α = 3.8×10-3 and 2.9×10-3 respectively, compared to the as-grown sample, α = 5.6×10-3,  whilst the 

extrinsic damping remains approximately constant. The sample annealed at 450 °C shows a Gilbert 

damping parameter 2-3 times smaller than that of Permalloy [27, 28] and compares well to values 

found in the literature for CFAS and other full Heusler films [29, 30]. Above 500 °C, the line width vs 

frequency data shows a characteristic two-magnon scattering line-shape indicating magnetic 

inhomogeneities likely due to the presence of mixed magnetic phases within the sample. The FMR of 

the sample annealed at 550°C became very noisy due to a decreased magnetically active volume.   
 

To understand the change of magnetic properties described above, in correlation with the 

annealed film structures, we performed aberration-corrected STEM imaging and elemental mapping 

of the annealed films. Fig. 4 shows HAADF STEM images and corresponding EELS chemical maps of 

the Co L2,3 and Ge L2,3 edges (presented in a false coloured RGB overlay for reading clarity) from 

samples in the as-prepared state (a), after annealing at (b) 350 °C, (c) 500 °C and (d) 550 °C. 

Comparing Fig. 4 (a) and (b), there is no discernible change of the interfacial atomic structure 

between the RT grown and 350 °C annealed films, though in both cases the onset of Ge mixing with 

the CFAS film can be observed. As indicated by the magnetic measurements, the drastic changes in 

magnetic properties appear at 500 °C. Fig. 4(c) clearly shows the origin of such behaviour; the 

interdiffusion of Ge and CFAS film is intensified and as a result a Ge rich secondary phase with ~3 nm 

thickness at the interface is formed. This thickness accounts for 18% of the total initial film thickness, 

in line with the magnetisation reduction of the same sample (10 % drop in magnetisation). The 

further increase of the annealing temperature (e.g. 550 °C) increases the intermixing Ge-CFAS region 

as shown in Fig. 4(d); the depth of the secondary phase increases to around 14 ± 1 nm (~82% of the 

initial film thickness).  We note that the reduction of the magnetisation is around 50%, indicating 

that the intermixed phase is magnetically inhomogeneous and in average has significantly lower 
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magnetisation than CFAS, i.e. a lower magnetic moment per formula unit. In addition, the total 

thickness of the film increases from ~18 nm to 24 nm after annealing at 500°C, and to 27 nm after 

annealing at 550°C due to heavy intermixing (see Supp. Fig. S1). Integrated elemental distribution 

profiles of Co and Ge across the interface from corresponding EELS maps are given in Supp. Fig. S2, 

where the signature of intermixing can be clearly seen by the reduction of Co and Ge signal 

intensities at the interface.  

In order to provide some insights into how the magnetic moment per unit cell of CFAS changes 

with substitution of Fe-Al/Si and Co with progressive integration of Ge into the structure, we 

performed DFT calculations. For relatively small outdiffusion of Ge, i.e. for non-annealed specimens, 

it has been shown [6] that Ge substitutes Fe-Si/Al atoms in the Heusler film, due to the low energy of 

such a substitution. However, for an increased presence of Ge into the film, as observed for the 

specimens analysed in this work, a substitution of Ge atoms on Co sub-lattices is expected. While in 

Ref. [6] it has been shown that the outdiffusion of Ge into the Fe-Si/Al sub-lattice does not 

considerably modify the magnetic moment (unless only Fe atomic positions in unit cell are 

substituted by Ge), here we show that when Ge substitutes Co atoms the magnetic moment is 

drastically affected, Table 1. We consider five configurations where Ge atoms gradually replace Co 

atoms starting from a bulk CFS lattice (Al has been omitted in our calculations for simplicity due to 

the similar magnetic moment of pure CFAS and CFS). In the second configuration only one Ge atom 

is replacing a Co atom, while on the last considered configuration half of the Co sites are occupied by 

Ge. It can be observed that in the latter case the magnetic moment decreases by 54% compared to 

the bulk CFAS. It is obvious that calculations presented here are not meant to extensively cover all 

possible configurations of Ge as a substitutional element in the CFS/CFAS lattice. However this initial 

set of configurations clearly shows a trend of significant reduction of the magnetic moment per unit 

cell when Ge is substituting either Co or Fe.  

4. Conclusion 

We showed that Co2FeAl0.5Si0.5 films deposited at room temperature on Ge(111) substrates have 

B2 ordering with magnetic properties strongly dependent on further annealing at a range of 

temperatures. The decrease of Gilbert damping for the films annealed up to 450 °C indicates 

improved chemical ordering of Co2FeAl0.5Si0.5. Consequently due to the very similar magnetic 

moment per unit cell we did not observe any change in saturation magnetisation up to 450 °C. 

Annealing at higher temperatures drastically changes the magnetic properties of Co2FeAl0.5Si0.5. The 

saturation magnetisation of the films decreases by nearly 40%, while the coercivity increases almost 

five-fold when annealed at 525 °C. Equally the ferromagnetic resonance data for films annealed 

above 450 °C show the presence of magnetically inhomogeneous regions in the annealed films. 

Atomic resolution imaging and spectroscopy revealed that the changes in magnetic film properties 

originate from structural changes due to interdiffusion of Ge and Co2FeAl0.5Si0.5, which is directly 

related to the annealing temperature. First-principles calculations correlate the decrease of the 

magnetisation with the change of the atomic structure of the CFAS films, mainly via substitution of 

both Fe and Co with Ge. This work clearly shows that forming the desired L21 phase of CFAS on Ge is 

hindered by the strong outdiffusion of the Ge into the Heusler film.  
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Figures: 

 

Fig. 1. (a) HAADF STEM image showing that the as-grown film (at RT) is uniform with a thickness of 

~18 nm. (b) HAADF STEM image acquired along the [11�0] crystallographic direction, showing the 

abruptness of the CFAS/Ge interface and characteristic of B2 phase.  
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Fig. 2. Saturation magnetization (black hollow circles) and coercivity values (red squares) extracted 

from hysteresis loops recorded after each annealing condition.  

 

Fig. 3. Resonance field linewidth vs frequency for, (a) as prepared, (b) annealed at 350 °C, (c) at 

450 °C, (d) at 500 °C and (e) at 525 °C CFAS/Ge(111). 

 

Fig. 4. a) HAADF STEM images paired with corresponding EELS chemical maps across the interface, 

showing overlaid Co L2,3 edge (red) and Ge L2,3  edge (green) elemental maps of (a) as-prepared state, 

after annealing at (b) 350 °C, (c) 500 °C and (d) 550 °C. 
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n (Ge) n(Co) M [�� ����	����]⁄  

0 8 24.0 
1 7 20.5 
2 6 16.9 
3 5 15.2 
4 4 13.0 

 

Table 1. First-principles calculation results showing the dependence of the magnetic moment M as a 

function of the concentration of Ge substituting Co atoms in CFS. n(Ge) and n(Co) stand for the 

number of Ge, Fe and Co atoms in a considered configuration. The first row represents bulk CFS 

where the unit cell has 16 atoms. 
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