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An Anomalous Event Detection and Tracking Method

For A Tunnel Look-ahead Ground Prediction System

Lijun Wei, Derek R. Magee, Anthony G. Cohn

School of Computing, University of Leeds, United Kingdom

Abstract

The complicated geological conditions and unexpected geological hazards beyond the face of a tunnel are challenging problems

for tunnel construction, which can cause great loss of life and property. While the geological surveys conducted before tunnel con-

struction can provide rough information of construction site, they are not sufficiently accurate for predicting the sudden geological

condition changes in local areas. Within the EU NETTUN project, an on-board ground prediction system consisting of multiple

ground penetrating radars (GPR) and seismic sensors were developed to “see through” the ground and provide the local ground

information behind the excavation front surface of a TBM (Tunnel Boring Machine). In order to facilitate the interpretation of the

imaging data captured by this system, an automatic event detection and tracking method is presented in this paper. Anomalous 2D

features are detected on each radar profile and reconstructed into a 3D accumulator; then, probable 3D events are detected from the

accumulator and tracked at subsequent locations based on the information from multiple sets of radar data. The detection results

can be used to generate alarms or be sent to human operators for interactive interpretation. The proposed method was evaluated

using two sets of GPR data captured in a designed test field. Experimental results show that the buried targets can be correctly

detected by the proposed event detection and tracking method. The proposed method is sufficiently flexible to cope with variations

on the spatial configuration of on-board sensors.

Keywords: GPR data; Event detection; Tunnel construction; Ground prediction system

1. Introduction1

The complicated geological conditions and geological haz-2

ards are challenging problems for tunnel construction, which3

can cause great loss of life and property. For example, large4

obstacles like boulders, building foundations, archaeological5

remains and other tunnels can obstruct the digging; geologi-6

cal defective features like cavities, sudden ground changes (e.g.7

from gravel to fractured rock), groundwater in adverse geolog-8

ical bodies (e.g. faults, karst caves and coal mine collapse col-9

umn) [1]) can also make the construction dangerous. While10

geological surveys conducted before the tunnel construction11

can provide rough information of the construction site, they12

are not sufficiently accurate for predicting the sudden geolog-13

ical condition changes in local areas. In order to improve the14

safety and efficiency in tunnelling, geophysical sensors and15

computer algorithms have been proposed or applied to pre-16

dict the ground conditions ahead the excavation front surface17

such that appropriate ground treatment and effective support18

installation can be conducted. Probabilistic models like neu-19

ral network [2], Markov random process [3] were proposed to20

dynamically predict the ground conditions based on the exca-21

vated ground data. These methods are useful for determin-22

ing the short range geology ahead the tunnel face. In addi-23
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tion to these, tunnel look-ahead ground prediction systems (Fig-24

ure 1), equipped with different types of on-board ground prob-25

ing/imaging geophysical techniques, have also been proposed26

for predicting the ground conditions [4, 5], such as tunnel seis-27

mic prediction (TSP) method [6], electrical resistivity method28

[7], transient electromagnetic method (TEM) [4] and ground29

penetrating radar (GPR) method[8, 9]. These systems can help30

assess the local geology conditions a few metres ahead of the31

excavation front surface. An overview of the existing tunnel32

look-ahead geological prospecting systems in tunnelling con-33

struction was given by Li et al. in [10].34

Currently, most existing ground prediction systems require35

stopping tunnel construction activities for several hours so ex-36

perts can install sensors on tunnel front surface/side walls or37

to drill a borehole through the tunnel front to insert measure-38

ment devices. These works usually lead to delay of tunnel con-39

struction. For tunnels constructed using a TBM (Tunnel Bor-40

ing Machine), an on-board ground prediction system with the41

functionality of automated data acquisition/storage, 3D visual-42

isation, human-machine interactive interpretation and a direct43

communication with the TBM operator can potentially make44

the drilling operation safer and even increase the excavation45

speed. A prototype of such a system, named Tunnel Look-46

ahead Imaging Prediction System (TULIPS) [11, 12] has been47

developed within the EU NETTUN project 1.48

1http://nettun.org/
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(a) Survey on the ground surface (b) In-ground survey

(c) (Left) In-tunnel survey for ground inspection with multiple sensors. (Right) Anomalous features detected by

different sensors are associated to the same event.

Figure 1: A detailed illustration of continuous survey for tunnelling construction prospecting. The sensing devices are pushed forward and are getting closer and

closer to the targets. Anomalous features are detected from sensor data captured at consecutive locations and associated to the corresponding event.

The TULIPS system consists of multiple sets of GPR anten-49

nae of different frequencies as well as a seismic imaging sys-50

tem. There are three sets of complementary GPR antennae on51

TULIPS: a low frequency GPR to provide a large inspection52

operating range and two high frequency GPR sensors to de-53

tect small-sized targets like rock fractures which might be a54

few centimetres in length. The imaging system is placed on55

three different radii sequentially (along an arm), and on each56

radius the system is rotated in an anti-clockwise direction with57

a constant rate to collect data, so each GPR sensor can provide58

one data set per radius and three sensors can generate nine im-59

ages in total which can guarantee the best coverage of the space60

in front of the ground prediction system[11]. Examples of the61

generated three images by a GPR sensor are shown in Fig. 262

(left). The ground prediction system is designed to be installed63

in front of a TBM cutter head, so the imaging process is re-64

peated each time a tunnel segment ring is being erected along65

the tunnel axis. An anomalous target detection method has been66

proposed for this system by Wang et al. in [12], in which GPR67

data is preprocessed to remove noise, then back-projected into68

3D for analysis. However, in practice, the surrounding ground69

could be heterogeneous so the received signal strength (GPR70

image intensity) could vary in different parts of a GPR image.71

Directly projecting the image pixel intensities into 3D may not72

help reveal the targets in areas which are relatively challenging73

for GPR sensors.74

Therefore, in this paper, an automatic event detection and75

tracking method is proposed for detecting and tracking anoma-76

Figure 2: (Left) Example of three circular GPR images captured by a GPR sen-

sor on TULIPS; (right) Planar view of the GPR image on the innermost radius.

The detected anomalous regions are marked by green boxes (For interpretation

of the references to colour in this figure legend, the reader is referred to the

electronic version of this article).

lous 3D events from the GPR data acquired by this system.77

Potential features are first analysed in local image regions by78

examining the dissimilarity of a pixel to its surroundings. Then79

the obtained feature maps are back-projected into a 3D accumu-80

lator for analysis. As the detections from a single image profile81

may not guarantee the existence nor indicate the type/size of a82

target, the data fusion step correlates all information sets from83

different GPR sensors at different radii and subsequent tunnel84

locations in 3D. When the sensor platform moves forward, a85

3D target tracking scheme is applied for consistently tracking86

the targets from frame to frame. Then these corresponding 3D87
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targets are re-projected to individual GPR images as the final88

anomalous 2D features. Information of the detected 3D events89

and the associated 2D image features are stored in a database90

and can be visualised to TBM-operator to facilitate the interpre-91

tation by geo-experts. The processing pipeline of the proposed92

event detection and tracking method is shown in Figure 3.93

Figure 3: Pipeline of the proposed event detection and tracking method.

The remaining sections of this paper are organized as fol-94

lows: detection of potential features in individual images is in-95

troduced in Section 2, then the data fusion and events identifi-96

cation/tracking method is presented in Section 3, followed by97

experimental results in Section 4 and conclusions in Section 5.98

2. Detection of Potential Features in Ground Penetrating99

Radar data100

The objective of this step is to identify potential anomalous101

features in individual GPR images. Features are local changes102

in the sensor data which could indicate the presence of an103

“event” in the physical world, such as geology events (e.g. fault,104

karst) and anthropic structures (e.g. building foundation, pipes).105

As areas in GPR images with large intensity (except those from106

ground echo and noise) are generally relating to the reflections107

from underground objects with high dielectric contrast to the108

surrounding medium, a GPR image is usually separated into109

background and foreground (interesting) regions using intensity110

based thresholding methods [13], i.e. background is related to111

the areas without obvious/strong signal reflections, and regions112

of interest are areas with stronger signal reflections. A com-113

parison of three types of thresholding methods for interesting114

region extraction is given in experimental section 5.115

In this work, instead of considering each GPR image pixel116

separately, features are considered as local pixels/regions with117

different intensities with respect to their local neighbouring ar-118

eas according to image local statistics [14, 15, 16]. After apply-119

ing the common preprocessing steps on a raw GPR image (i.e.,120

signal de-wow correction, programmed gain control, horizontal121

filter, bandpass filter and time/depth correction) using an IDS122

standard processing software2, a 3 × 3 median filter is applied123

to the GPR image to remove background noise, followed by124

subtracting the average of each horizontal trace from all traces125

to remove ground echo. Then, the potential feature map is cal-126

culated based on the image Laplacian pyramid by comparing127

the sub-sampled images in different scales.128

As shown in Figure 4, an input GPR image is firstly sub-129

sampled to s resolutions as Is, s ∈ [S 1, S 2, S 3 · · · , S m], such130

2OneVision, IDS, Pisa, Italy.

Figure 4: Feature extraction method from individual GPR image.

Algorithm 1 Extraction of potential features in a radar image I

1: for s ∈ [S 1, S 2, S 3 · · · , S m] do

2: Is := sub-sample image I with scale s

3: for σ = [2, 8] do

4: Iσs := convolve Is with Gaussian filter g(σ)

5: end for

6: Id
s := norm(

∑

σ‖Is − Iσs ‖)

7: Id
s := resize Id

s to the size of input image I

8: Imin
s : = find the average of local maxima in Id

s

9: ps:= calculate the weight of Is using (1 − Imin
s )2

10: end for

11: Iout =
∑

s ps ∗ Id
s

as [1/2, 1/4, 1/8]. Each pixel in the higher level of a pyra-131

mid contains the local average of its pixel neighbourhood on a132

lower level image. In order to find regions with different ampli-133

tude to their surroundings, each sub-sampled image is blurred134

using a set of Gaussian filters with different standard deviations135

(σ1, σ2). Differences of the Gaussian-blurred images with re-136

spect to the original sub-sampled image are summed up and137

normalized as Id
s to represent the dissimilarity of pixels with138

their surroundings in the current scale. The weighted sum of Id
s139

at different image scales is used as the image intensity feature140

map. The algorithm is given in Algorithm 1. This step is ap-141

plied to images from different imaging sensors (low frequency142

and high frequency GPR) on different radii, and data captured at143

subsequent locations. The extracted pixels and their associated144

values are sent forward to the next fusion stage.145

3. Integration of the Feature Maps from Multiple Sensors146

in A 3D Accumulator for Event Identification147

By assuming that the tunnel is locally linear, the space ahead148

of the tunnel construction face is discretized into a 3D voxel149

grids, which are used as an accumulator to store the “possibil-150

ity” of each grid being occupied by potential anomalous events.151

With the locations of on-board GPR sensors known and the fea-152

ture maps of individual GPR images being calculated as ex-153

plained in Section 2, in this step, the corresponding feature154

maps are projected into this 3D volume based on the spatial155

configuration of different sensors. When the ground prediction156
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(a) (b) (c) (d)

Figure 5: (a) Local 3D accumulator with origin located at the system centre. Three green circular planes show the scanning planes of GPR sensors on three radii;

and the three blue planes show the locations of the seismic sensors; (b) Conical energy spreading: the locations related to a image pixel could be on a partial surface;

(c) an example of the updated 3D accumulator in front of the prediction system; (d) an example of the extracted events from the 3D accumulator.

system moves forward, the anomalous feature map of new im-157

ages will gradually add evidence into the 3D accumulator. The158

accumulator allows efficient accumulation of small amounts of159

information from individual sensor data and may provide more160

accurate and confident map of the front space. It also allows the161

extraction of probable events from the 3D volume based on the162

voxel values. This step is composed of four stages as explained163

below.164

3.1. Discretization of the 3D space165

As shown in Figure 5(a), the space ahead of the excavation166

surface is discretized into 3D voxel grids and used as a 3D ac-167

cumulator G. The value of each voxel grid indicates its “pos-168

sibility” of being occupied by anomalous events. All the grids169

are initialized with value 0, G = 0.170

Let x − y be the plane where all the GPR antennae are lo-

cated; let z be the direction perpendicular to the x − y plane

and directing to the front of the excavation surface; let origin

of the accumulator (0, 0, 0) be the centre of the prediction sys-

tem at the first scanning location. The size and resolution of the

accumulator are defined by the characteristics of sensors (e.g.

data resolution, effective penetrating range) and the distance

between two consecutive scanning locations of the prediction

system. The accumulator should cover the scanning area of all

the subsystem sensors. Let the size of the 3D accumulator be

(W,H, L) with resolution ∆rs; there are (i × j × k) grids in the

accumulator, where

(i, j, k) ∈ round([W,H, L]/∆rs) (1)

A resolution of 0.1m is used in the following experiments to171

demonstrate the proposed method.172

3.2. 3D accumulator updating173

As explained previously in Section 1, the ground prediction174

system rotates in an anti-clockwise direction with a constant175

rate to collect data; and the data collection process repeats when176

the system moves forward. Given the radius R of a GPR scan-177

ning cross section (Figure 5(a)) and the starting scanning angle178

θ, each 2D pixel on the GPR image plane will contribute a set179

of weighted ”votes” to some 3D spatial locations in the 3D ac-180

cumulator. A pixel at location (x, z) on a 2D radar image3 or181

(x,D) (where D = z × velocity is the distance of the pixel to the182

scanning surface) can be projected to a location (X3d,Y3d,Z3d)183

in the 3D accumulator based on sensor locations and scanning184

directions, where Z3d = Z0+D, (x0, y0,Z0) is the location of the185

centre of the prediction system with respect to the origin in 3D.186

When the radar energy travels in the ground, it spreads out in187

a conical projection, as shown in Figure 5(b), so a pixel (x,D)188

on a 2D radar image could be the reflection from all possible189

spatial locations on a partial sphere surface with radius D and190

centred at (X3d,Y3d,Z3d). For this reason, all the related voxel191

grids on this partial sphere are updated accordingly in the 3D192

accumulator. The size of the cone is dependent on the cen-193

tre frequency of the radar energy, the depth of targets to the194

ground surface, and the average relative dielectric permittivity195

of ground in local area [17], e.g. higher frequency antennae196

usually have narrower propagation cones.197

Let d be the distance between a voxel grid on the sphere

and the related central voxel grid at (X3d,Y3d,Z3d), where d ∈

[0,D× sin(α/2)], and α is the angle of the propagation cone, the

weights of different voxel grids on the sphere follows a Gaus-

sian distribution with zero mean and D × sin(α/2)/3 standard

deviation, noted as:

pd ∼ N(0, (
D × sin(α/2)

3
)2) (2)

All the related voxels on this partial sphere are updated accord-198

ingly by summing up the feature scores in Iout weighted by pd199

in Equation 2. An example of the updated 3D accumulator is200

shown in Figure 5(c). The algorithm for 3D accumulator updat-201

ing is given in Algorithm 2.202

3.3. Events extraction from 3D accumulator203

After updating the accumulator with all the sensor data at a204

certain location (chainage in the tunnel), the voxel grids with205

high votes in the accumulator are extracted and grouped as po-206

tential events. Let isoValue = mean(G) + std(G), the voxel207

3Note: the top-left corner is used as the origin or an image.
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Algorithm 2 Updating 3D accumulator given the location of

system centre (X0,Y0,Z0) in the accumulator.

1: R = [r1, r2, r3], θ = [θ1, θ2, θ3]

2: for each pixel (x,D) with value Ix,z in Iout do

3: % find the location of each pixel in the 3D cell:

4: X3d = Round(R × sin(θ)/∆rrs) + X0

5: Y3d = Round(R × cos(θ)/∆s) + Y0

6: Z3d = Round(D/∆rs) + Z0

7: % find corresponding potential locations G0 on the

sphere where

8:
∣

∣

∣G0 − Z0

∣

∣

∣ < D + 0.1 and d ∈ [0,D × sin(α/2)]

9: % obtain the probability of different locations based on

the weight defined by pd:

10: d =
∣

∣

∣G0 − (X3d,Y3d)
∣

∣

∣, pd ∼ N(0, (
D×sin(α/2)

3
)2)

11: % update all related locations in the 3D accumulator

12: for each location G0 on the sphere do

13: G0 = G0 + pd × Ix,z

14: end for

15: end for

grids in G with higher values than isoValue are kept. Then, the208

connected components are grouped as potential events based209

on three-dimensional 26-connected neighbourhood connectiv-210

ity. Small isolated components (less than (0.4/∆rs)3) are re-211

moved by counting the number of connected voxel grids in the212

component. Examples of the isolated events are shown in Fig-213

ure 5 (d).214

The extraction algorithm is presented in Algorithm 3. The215

detected 3D events are also re-projected onto individual sensor216

image planes as validated features (Figure 2 (b)); this method217

has the advantage of only keeping those image areas with high218

scores or regions detected by multiple sensors.219

Algorithm 3 Events extraction from 3D accumulator G

1: % threshold the 3D volume to keep certain voxels

2: isoValue = mean(G) + std(G)

3: vo ∈ G and vo > isoValue

4: % find connected regions in vo

5: CC26(vo)← 3D 26-connected neighbourhood

6: % remove small isolated regions in CC26(vo)

7: Ot := regions with areas more than (0.4/∆rs)3}

8: Return Ot

3.4. Tracking of detected events at subsequent locations220

Tracking of detected events means finding the correspon-221

dence between previously detected events and the latest de-222

tected events at a subsequent location(s). As the ground pre-223

diction system moves forward in the tunnel, it gets closer to the224

potential objects ahead and more information could be gathered225

by the imaging system. Tracking of detected 3D events can help226

to estimate the global size and nature of the events. Because227

events are extracted from the 3D accumulator, their absolute lo-228

cations, including 3D centroids and bounding boxes, are used229

as the inputs of the tracking method.230

Figure 6: (Left) Simple scenario (no ambiguity): one event is connected with

one event from previous frame; (Middle) Split: when multiple events at time

t+1 intersect with the same event at time t, they may relate to the different parts

of an existing event and can be assigned the same event id; (Right) Nearest

event (ambiguity): when one event at time t + 1 intersects with multiple events

at time t, its nearest object at time t is chosen as the correspondence.

As shown in Figure 6 (a), if the bounding box of a detected231

event at location t + 1 (noted as o
j

t+1
) intersects with the bound-232

ing box of any previously detected events at t (noted as oi
t), the233

events pair {oi
t → O

j

t+1
} can be considered as corresponding234

events. Ambiguities may exist as shown in Figure 6 (b) and (c).235

The case in (b) is considered as an object split so the two latest236

events at t + 1 can both relate to the same event. For the case in237

(c), the event detected at time t+1 is associated to its nearest ob-238

ject at time t based on the Nearest-Neighbour rule. An example239

side-view image of detected events is shown in Figure 7. After240

establishing the correspondences of tracked events, the global241

event id of previously detected events are propagated and as-242

signed to the corresponding events at the subsequent locations.243

Information of the 3D events extracted at a certain location, in-244

cluding global event id, 3D location (centroid), size (bounding245

box), is stored in an event database for further analysis and vi-246

sualisation to the user. Information of the corresponding re-247

projected 2D image features are also stored in the database.248

Figure 7: Example of detected events from multiple sets of GPR data (water

inflow scenario as detailed in Section 4.2).

4. Experimental results249

Test site set-up. A geophysical survey was conducted with250

the aforementioned ground prediction radar system in Park Fo-251

rum, Eindhoven, (Netherlands) in 2015. Several scenarios rep-252

resenting the common hazards in tunnelling construction were253

simulated by burying objects in the ground. In order to simulate254

the tunnel forwarding process of a TBM where sensor measure-255

ments are concurrent with the ring construction operations, soil256

was replaced and compacted gradually at 7 levels. 0m level is257

at the top of the buried targets, and the distance between two258

consecutive levels is 1m. Sensor measurements were collected259
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(a) Water inflow scenario con-

structed using two water-filled

tanks.

(b) Karst scenario constructed us-

ing two polystyrene blocks.

(c) Mock-up of a circular multi-GPR system.

Figure 8: Simulation of two scenarios of hazards in tunnelling construction

(Photo credit: IDS, NFM, Geo2X).

on each level and the acquired datasets are used to test the pro-260

posed event detection and tracking method. Images of the water261

inflow scenario and karst scenario are shown in Figure 8(a) and262

Figure 8(b).263

GPR configuration. The GPR system was developed by264

IDS (Pisa, Italy) and consists of two high frequency antenna265

and one low frequency long range antenna with a control unit266

and a data storage system [11]. In order to simulate the cir-267

cular data capturing process of GPR on a TBM, a mock-up268

GPR configuration was designed, composed of an axis driven269

into the soil to support an arm with two wheels on one side to270

turn around the centre. An encoder mounted on the front wheel271

counts the number of turns of the wheel to encode the position272

of the GPR along the perimeter. The GPR mock up is operated273

by two persons, one pulls it with a rope, the other pushes the274

mock-up towards the ground so that the wheel with the encoder275

always touches the ground (Figure 8(c)). The imaging system276

is placed on three different radii (1m, 1m80, 2m60) sequen-277

tially (along an arm), and on each radius the system is rotated278

in an anti-clockwise direction with a constant rate to collect279

data, so each GPR sensor can provide one data set per radius280

and 3 sensors can generate 9 images in total [12]. The proposed281

event detection/tracking method in this paper is flexible to the282

variations of GPR position set-up, which means the locations,283

number and frequencies of the GPR sensors could be changed284

based on users’ demand. For example, in current experiment,285

GPR data is captured at three different radii: 1m, 1m80, 2m60286

with three sets of GPR antennae (a low frequency GPR and two287

high frequency GPR sensors), but more radii could be added if288

needed.289

In the following sections, all the captured GPR images are290

marked by their: Level (distance from the top of the buried tar-291

get to the surveyed surface): 0m, 1m, · · · , 6m; Radius: R1(1m),292

R2(1.8m) and R3(2.6m); and sensor: S 1 (high-frequency GPR293

antenna 1), S 2 (high-frequency GPR antenna 2) and S 3 (low-294

frequency GPR).295

(a) Direct thresholding method (b) Adaptive area based method

(c) Adaptive row-based method (d) Multi-scale method

Figure 9: Examples of detected anomalous areas by different methods on the

Karst scenario data set, at level-0m, radius 1m and from high-frequency sensor

1. Each image displayed is of 360o. In unit of y-axis in (a),(b),(c) is image pixel

and the unit (d) is in metres.

4.1. Experimental results of extracted 2D anomalous areas296

Three baseline methods were investigated for 2D anomalous297

areas detection (Table 1): a) The direct thresholding method298

(DTM) is based on global statistics of the amplitude in an GPR299

image. A threshold is automatically calculated for the whole300

image based on maximum entropy [18] and image pixels with301

higher values than the threshold are kept. Then, by counting the302

number of pixels in each connected component, clusters with303

fewer pixels than the threshold are considered as outliers and304

removed. However, as the energy levels of the top part and305

the bottom part of the image may not be equal (even after gain306

correction), a global threshold may risk missing objects further307

away from the top. b) The adaptive row-based threshold-308

ing method (ARTM) is used to threshold the image based on309

the image intensity in different time-slice windows. By verti-310

cally scanning the radar image, a local threshold is calculated311

for each local region (every nr rows), the scores of each pixel312

are accumulated and the pixels with low scores are removed.313

Based on the average energy in a local area in the radar image,314

area reflectivity method is a measure of the clutter in the corre-315

sponding surveyed area that may relate to the presence of peb-316

bles, fractures, etc. c) The adaptive area reflectivity method317

(AARM)is used to adaptively find the areas with large aver-318

age reflectivity in different time-slice windows. It combines the319

row-based thresholding method and the area-based method by320

accumulating the areas with large reflectivity in each time-slice321

window. An average filter with size 10 × 10 pixels is applied322

on each input image to calculate the average area reflectivity323

in each time-slice window; then the direct thresholding method324

in [18] is applied on this image to find interesting pixels (relat-325

ing to areas in the original image).326

Some experimental results are shown in Figure 9 and Fig-327

ure 10. Compared with the direct thresholding method, the328

6



Baseline methods Processing steps

Direct thresholding method

(DTM)

A global intensity threshold is computed for each input image based on the method of

maximum entropy thresholding [18]; then, pixels are grouped as connected clusters

and the clusters with small number of pixels are considered as outliers and removed.

Adaptive row-based thresh-

olding method (ARTM)

This method thresholds an image based on the image intensity in different time-slice

windows. Each image is scanned from top to bottom every ns rows and the following

nr rows are considered being in a time-slice window. For each step, a local threshold

is computed for the window using direct thresholding method and the score of each

pixel (i.e., noted as 1 if it is above the threshold; otherwise, noted as 0) is accumulated

as the window moves from top to bottom. Pixels with low scores are removed.

Adaptive area reflectivity

method (AARM)
This method is to adaptively find the areas with large average reflectivity in different

time-slice windows. It combines the row-based thresholding method and the area-

based method by accumulating the areas with large reflectivity in each time-slice win-

dow.

Table 1: Three baseline methods for anomalous area extraction from 2D GPR data.

Figure 10: An example of anomalous image features detection from GPR B-

scan images.

adaptive area reflectivity and row-based thresholding methods329

are more suitable for detecting areas with high reflectivity at330

different depths. Outputs of the adaptive row-based method and331

the multi-scale method are similar to each other but the latter is332

also able to consider the texture information and can detect re-333

gions with relatively weak intensities.334

4.2. Experimental results of the “Water inflow” scenario.335

The water inflow scenario, as seen in Figure 8(a), was con-336

structed using 2 plastic tanks filled with water. The final target337

is 5m long, 0.5m wide and 1.6m deep, the top of the target is338

at level 0m and seven groups of sensor data were captured ev-339

ery 1m on top of the target by gradually filling in materials to340

vertically built up the ground. The top-view of the buried tanks341

and the sensor configurations is shown in Figure 12 (Left). The342

data acquisition on each radius starts from the 0 degree line (dis-343

played in orange colour). In Figure 11(a), the intersection of the344

buried water tank and the scanning cross section of radius 1m345

is displayed, where x-axis indicates the angular location of the346

antenna from the starting edge and y-axis indicates the depth in347

metres. It can be seen that the buried target is located around348

120o and 300o. In Figure 11(b-f), the GPR images and their349

corresponding anomalous areas from three different GPR sen-350

sors at radius 1m, level 0m and level 1m are displayed. As351

seen in the images captured at 1m level, the most anomalous352

image area are shown when sensors are on top of the buried353

water tanks, and these areas are all correctly detected by the354

proposed method in Figure 11(b-d). For images captured at 1m355

level and farther away (Figure 11(e,f)), only the low-frequency356

antenna (sensor 3) can identify part of the water tank and the re-357

flections from the water tank are distinguishable around 120o.358

By integrating the image detections from different sensors, the359

top-view of the detected events is shown in Figure 12(right).360

4.3. Experimental results of the “Karst scenario”361

The karst scenario was simulated by burying 2 packs of362

polystyrene blocks (4m length, 1m wide and 0.5m thick) at363

1.5m depth and gradually adding soil on top of the blocks364

(Figure 8(b)). The top-view configurations of the buried365

polystyrene blocks is shown in Figure 13(a). Theoretically, they366

should be detected by the antennae at 0o, 180o and 360o, as367

shown in Figure 14(a). Examples of GPR images and the de-368

tected anomalous areas are shown in Figure 14. It can be seen369

that the reflections from the buried target were picked up by370

the presented method as anomalous areas. After integrating the371

image detections from different sensors, the detected event is372

shown in Figure 13 (right).373

Discussion. In the above experiment, specific objects were374

buried in the ground as targets, which is different from real375

construction site. In a real tunnel construction site, the ground376

could be more heterogeneous than the designed test site (N.B. it377

could also be less heterogeneous as the ground isn’t disturbed in378

real construction sites). For example, more ground water could379

appear in the real test site, so the GPR data quality may not380

be good enough for anomalous feature detection. The remedy381

for this is to add another type of imaging sensors on TULIPS382

based on the seismic signals, which has already been addressed383

by Pawan et al. in [19]. Another challenge in real construc-384

tion site might be that different types of targets may intertwine385

with each other and the sensor data could be very noisy (large386

and dense scattering), so the proposed method may not be able387

to distinguish different targets. Although the GPR data used in388

the above experiment is from a specifically built test site with389

clayed soil, the proposed method in this paper does not have390

any presumptions of the type of surrounding soils although the391

signal should be strong enough for penetrating the ground.392
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(a) Side-view of buried target (two images are displayed for comparison) (b) Level − 0m, R − 1m, S ensor1

(c) Level − 0m, R − 1m, S ensor2 (d) Level − 0m, R − 1m, S ensor3

(e) Level − 1m, R − 1m, S ensor3 (f) Level − 1m, R − 1.8m, S ensor3

Figure 11: Experimental results of the water inflow scenario: comparison of the anomalous areas detected from different GPR images with the ground truth. (a)

Intersection of the water tanks and the scanning cross section. x-axis: 0-360o degree, y-axis: depth (0.5m for each grid). (b-f) Processing results of different sensor

data captured at different levels. ”Level” stands for the distance between the GPR antenna to the top of the buried target. The water tanks can be well seen by all

antennas at level 0m at a radius of 1m and 1m80 from the centre.

Figure 12: Top-view of the water inflow scenario. (Left) Sketch of the buried water tanks and the sensor configuration, (right) top-view of the reconstructed buried

targets using GPR data at level 0m.

5. Conclusion393

This paper has presented a method for anomalous event de-394

tection and tracking in a tunnel look-ahead ground prediction395

system with multiple ground penetrating radars. Anomalous396

areas are detected from individual GPR images and the inte-397

gration of multiple sets of sensor data can help recover the 3D398

location of the probable events in front of the excavation sur-399

face. The proposed methods were evaluated with two sets of400

data captured at a specifically built test field with buried tar-401

gets, and the experimental results show that the buried targets402

can be correctly detected from the sensor data using the pro-403
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Figure 13: Top-view of the karst scenario. (Left) Sketch of the buried polystyrene blocks and the sensor configuration; (right) top-view of the predicted events from

radar images on three radii at level 0m.

(a) Features from Level − 0m, R − 1m, S ensor1

(b) Features from Level − 0m, R − 1m, S ensor2, S ensor3

Figure 14: Experimental results of the karst scenario: comparison of the anomalous areas detected from different GPR B-scan images with the ground truth.

posed method. The detected 3D events and the corresponding404

2D image areas (features) are stored in a back-end feature and405

event database. For future work, after gathering a large col-406

lection of real tunnel cases with the ground prediction system,407

including the sensor prospecting imaging data, the geological408

sketch, geological hazards, TBM parameters, geological condi-409

tions (as-built events) revealed by excavation, and geo-experts’410

interpretation, alternative methods could be developed to pre-411

dict the type of anomalous events and to combine the seismic412

and GPR data using advanced machine learning methods to fur-413

9



ther improve the reliability of the prediction results.414
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