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Abstract. By speech articulator movement and training a transformation to audio
we can restore the power of speech to someone who has lost their larynx. We sense
change in magnetic field caused by movements of small magnets attached to the
lips and tongue. The sensor transformation uses recurrent neural networks
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1. Introduction

In 2010 it was reported that, worldwide, more thaB,000 people were still alive up to
5years afér being diagnosed with laryngeal cancer [1]. This type of cancer only agcount
for 1% of all cancers [2], but it has a higty@ar survival rate (around 70% according to
[3]). Patients who undergo total laryngectomy as a treatment for kayogncer wil
inevitably lose the power of speech. As speech is a vitabpattman communication,
postlaryngectomy patients often find themselves struggliwih their daily
communication, which can lead to social isolation, fegiof loss of identity and clirat
depression [4].

Currently, there are3 methods available for speech restoration after total
laryngectomy: the electrolarynx, oesophageal speech and valved speech. The
electrolarynx or artificial larynx is a handheld viting device which is plackagainst
the neck to provide excitation of the vocal tract. The electrolaryretasvely cheap and
easy to use, but requires manual dexterity and produces atutainmechanical voice.
Oesophageal speech is a type of alaryngeal speech which doesqoot any
instrumentation. In oesophageal speech, the person injects dirantpper oesophagus
and then releases it in a controlled manner making the oesogbagisate in order to
create the speech sounds (i.e. it is like a controlled belchy. méihod, however, is
difficult to learn and has a low speaking rate. In valved speech, whicmsidered to
be the current gold standard, a am&y valve is inserted in the wall separating the trachea
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and oesophagus. The valve allows air from the ltag® into the oesophagus without
food and liquids passing into the trachea. This method provides the most natural
sounding voice among the three, but it is a masculine voice unpopularemitief
patients and it requires regular hospital visits for @akplacement due to biofilm
formation. In addition to the three methods above, Alternative and Augmentati
Communication (AAC) devices can be also employed to enable communication to
laryngectomees, however, communication using AAC devices is hgrmatthslower

than standard spoken communication.

Silent speech interfaces (SSIs) [7] have emerged in the lastedesath alternative
communication method when the acoustic speech signal is not desirgbte (naintain
privacy when speaking in public plages not available (e.g. after laryngectomy). To
enable speech communication, SSIs rely on-ampustic signals generated when the
person articulates speech sounds, such as electrical activity in therhtznelectrical
activity driving the articulatomuscles or the movement of the speech articulators. From
these signals, a SSI tries to automatically recover thelsgeeduced by the person. A
human example of this is lip reading. SSlIs can be used as assistivedgghadl) to
restore the ability tgpeak to people who have lost their voices after diseasauonar

In this paper, a SSI system aimed at speech restorat@rtattil laryngectomy is
described. The two pillars of the proposed system are (i) a device foringtue
movement of the articulators while the person articalaterds and (i) a speech
synthesis technique driven by the captured articulatory. dateculatory data is acquired
using a technique known as Permanent Magnet Articulography (P8AR]][In PMA,

a set of small magnets are attached to the articulators (tygieallps and tonguend
the variations of the magnetic field generated by the magnetgydipéech articulation
are captured by sensors located close to the mouth. To synthesise spaddiA data,
an artificial neural network [1,23] is trained to convert sensor data iatmustics. The
neural network is trained with simultaneous recordings of PMA padch data made
by the person before she/he loses the voice. This method is suitable fomeeal
processing and, because it is trained with recordings of the persamgso@ce, retain
the speaker’s vocal identity: to approximate their own voice.

To evaluate the potential of the proposed SSI for speech restoratiore
preliminary results are reported here for normal speakers. Both speg¢dPMA data
were simultaneouslyecorded for two noiimpaired subjects and, then, the SSI system
was used to predict the speech acoustics from the captured articdittorm qualitative
comparison between the original and predicted speech signals along with some
preliminary results omhe intelligibility of speech produced by the SSI angoréed in
this work.

2. Methods
2.1. Articulator motion capture

To capture the movement of the vocal trdating spech articulation a magnetic
sensing technique known as Permanent Magnet Articulography YFBvI4] is used in
this work. As illustratedin Fig. 1b,in the currenPMA setupa total of six cylindrical
Neodymium Iron Boron (NFeB) permanent magnets amckdd to the articulators
whose movement want to be monitored: four are attached to the lipsédinm), one



Figure 1. External PMA device. (8)Vearable PMA headset with control unit, battery and-dxial
magnetic sensors. (b) Placementtefmagnets.

to the tongue tip (g2mmx4mm) and one to the tongue blade (g5mmx1mm). These
magnets are currently attached using Histoacryl surgical tissue \sll{Bsaun,
Melsungen, Germany) during the experimental trials,vilitbe surgically implanted

for long term usage. As shown in Fig. 1a, the rest oP¥A system comprises fourri
axial Anisotropic Magnetoresistive (AMR) magnetic sensors mounted onchealie
headset, which capture the magnetic field generated by the magrietsatticulation,

a control unit, a rechargeable battery and a processing unit (e.g. eoftaplgt PC).
Compared to other techniques for the capture of articulator movementt, asu
electromagnetic articulography (EMA) [13surface electromyography (SEMG) [[Lér
electropalatography (EPG) [[LGhe PMA system has the potential advantage of being
unobtrusive, since there are no wires coming out of the mouth or electrzaémsato

the skin, which may cause unwanted attention in public. Moreoswshawn in Fig. 1a,
the PMA system is also relatively lightweight anghty portable.

The PMA device in Fig. 1a is the result of an iterative engineering $soEarlier
PMA-based mptotypes 9] demonstrated acceptable spersstonstruction performance,
but were less dissatisfactory in terms of their appearances, camficetgonomic factors
for the users. To address these challenges, the current pratoBigela was developed
accordingly to the feedback from user questionnaires and through dscugth
stakeholders including clinicians, potentials usetsthgir families [D]. As a result, the
appearance and comfort of the device was extensivelpirag without compromising
the speech performances to its predecessors.

Despite the impvements made on the external PMA prototype in Fig. 1, it is not
without drawbacks: 1) issue with stability under exaggerated movenint,
uncomfortable over a long period of time and 3) undesirable appeaocarsoerfe users.

To alleviate these limitatian an intraoral version of the B\prototype was developed

in [11] that fits under the palate inside the user’'s mouth in a &frandental retainer, as
shown in Fig2. Although the operational of the device remainiedllar to the external
version, the ntraoral circuitry has drastically reduced in size. Moreover, due to the
proximity of the sensors to the magnetic markers, smaller etsigre needed. Since the
denture retainer is completely hidden inside the usealscavity, thus eliminating any
unwarted public attention. Previous studies suggested that the appearaneeoifsthe
most critical factors that affect the acceptability of Ayby their potential users [15].



Figure 2. Intraoral version of the PMA capturing device. (a) Intraoral PMA device tefyped in a form of
a denture retainer. (b) View of the device when worn by the user.

2.2. Jpeech synthesis procedure

Fig. 3 shows a diagram of the procedure used to synthesise speech from captured
articulator movement. As can be seen, the procedure consistsptids®es: training and
conversion. The aim of the training phase is to obtain atitati model (an artificial
neural netwdk in this case) for mappingensor data into acoustics. The parameters of
this model are learned from a set of synchronous recordings with PMA eadhsp
signals made by the person before the laryngectomy (around 30 minutes of those
recordings are required in the current system). To fdeilistomatic learning, the
artificial neural network is trained using a set of parameters (&3textracted ém the
speech and PMA signals rather than with the raw signals. The spiegeis are
parameterised to 3dimensional feature vectors extracted every 25 ms using the
STRAIGHT vocoder 19]: 25 of those parameters are used to represent the vocal tract
filter as Meklfrequency cepstral coefficients (MFCCE0] and the 7 remaining
parameters represent the source signal by aperiodicity values in 5 hahds a
fundamental frequency (FO) with explicit voicing deaisiFor the PMA signals, features

are extractedby applying the principal component analysis (PCA) technique for
dimensionality reduction over short windows spanning 25 ms of sensplesaifinally,

both the PMA and speech features are normalised to have zer@nteanit variance.
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Figure 3. Flow diagranof thetraining and conversion stages of the speech synthesis procedure.



The artificial neural network obtained at the end of the training phaseris the
employed to restore the person’s speech following laryngectoniy iSfwhat is shown
in the conversion phase of Fig. Thus, the neural network is used to map the features
computed from the sensor data into a sequence of acoustic pargspech features),
from which a waveform is finally synthesised and then played back to the iaser v
loudspeakers. The STRAIGHT vocoder is used again to synthesisedotmain signal
from the sequence of speech features predicted by the neuratlnéayided that the
latency of the conversion process is less than 50 ms (i.e. the delayrbatvwatieulatory
gesture and the acoustics generated by the system)) benpgossible to restore the
auditory feedback without inducing mental stressausing disfluencies to the subject
[21]. There is also the possibility that re¢mhe auditory feedbackight enable the user
to learn to produce better speech (like learning to play aminetit).

Considerable efforvasspent on investigating the best machine learning technique
for modelling the PMAto-acoustic mapping. As a result, it was foundt ttecurrent
neural networks (RNNs) [1422 a type of artificial neural especially suited for
modelling sequential data, provide a good compromise between speech reconstructi
performance and conversion latency. A RNN consists of a set of recurremtiscted
blocks, each one implementing a nonlinear mapping from the inputs to the outputs.
During learning, the RNN parameters are iteratively ogthito minimize the error
between the speech features computed from the original speeals sigd the featas
predicted by the network from the sensor data. The RNN employieid iwdrk has four
hidden layers with 164 gated recurrent units (GRU3)g¢ach. The RNN parameters are
randomly initialised and optimized using the stochastic gradienedetechniga with
mini-batches of 50 sentences. Training is run for 100 epochs othénétror computed
over a validation set start increasing.

2.3. Paralld articulatory-speech database

For this preliminary study, data was recorded by twosadritish-English male subjects
(S1 and S2) with normal speakinglap. As the aim of this study is to demonstrate t
feasibility of voice reconstruction from articulator movement, we only Samu non
impaired people in this work. Only one of the subject S1 was familiar with the PMA
device and had used it prior to this study. Each subject recomdedi@m subset of the
CMU Arctic corpus ofphoneticallyrich sentences [24 This corpus was selected
because it is widely used in speech synthesis research and itudltavsvaluate the full
phonetic range. The total aomt of data recorded by the subjects was: 470 sentences (28
minutes) by S1 and 509 sentences (26 minutes) by S2. Each recording lsessstbn
approximately 75 minutes, including the time to fit the magnedsPiMA device to the
subject and the actual reding time. The recordings were conducted in an acoustically
isolated room. During recording, the subject was asked to read alandom subset of
sentences from the CMU Arctic corpus. A visual prompt of each sentesis presented

to the participant ategular intervals of 10 s. PMA and audio signals were recorded
simultaneously at sampling frequencies of 100 Hz and 16 kHz, respectilielautio

was recorded using a sheglounted AKG C1000S condenser microphone via a
dedicated stereo Lexicon Lambda US®&ind card. Articulatory data, was recorded
using the PMA device shown in Fig. 1.



3. Results

As a qualitative evaluation of the speech quality achieved by the speech imstorat
system, Fig.4 compares speech signals recorded by the subjects (Original) and the
corresponding ones predicted from sensor data (SSI) for both subjeatsd S2. The
conparison is made at three levels: at the waveform level (1st row), between th
spectrograms of the signals (2nd row) and, finally, between the FO coni@urs (
evolution of the fundamental frequency across time) of the signals

Secondly, a listening test was conducted to evaluegdntelligibility of speech
generated by the SSI. In the test, listeners were asked to trarescabdom subset of
12 sentences chosen from the ones available for subjects S1 and Sn(&sdotecach
subject). A total of 21 subjects participatedtie test. Listeners were allowed to replay
the speech stimuli as many times as they wanted. Table 1 shows the resudts o
listening test. Two intelligibility measures are repdrtthe percentage of words correctly
identified by the listeners (word cent) and the word accuracy (i.e. ratio of words
correctly identified after discounting the insertion errors). For eaehsure, the 95%
bootstrapped confidence intervals are also presented.
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Figure 4. Examples of speech waveforms (1st row), spectrograms (2nd rowQahtours (3rd row) for
the sentences ‘I was the only one whmained sitting’ and ‘What do you mean by this outrageous conduct?’
spoken by the subjects S1 and B&th original speech signadsmdsignals predicted by the SSI atgown.

Table 1.. Speech intelligibility results for the proposed silent speech system.

Subject Word correct (%) Word accuracy (%)
S1 65.97+8.79 64.80+8.91
S2 65.56+8.25 63.44+8.40




4. Discussion

From thesignal examples shown in Fig,. it can be seen that the SSI is able accurately
to reproduce the speech signals originally uttered by bothcisbja particular, the
speech formants in both cases are well predicted and their trajectersbéagy and stable.
Other detailed characteristics of speech, however, are not accurately mbgetresl
current PMA device, and that is the reason that the spectrogfdahgspredicted signals
appear smoothed compared to the originals.

It is remarkable that the SSI is able to predict FO contthatsseem natural and
relatively similar to the original although PMA only pides information about the
upper pat of the vocal tract and very little information ab®oicing [5,26]. It could be
that the system is learning some latent correlations between the movemést of t
articulators and the excitation parameters. Also, because the &8&psed to each
particular subject, the RNN models can learn the statistics of titafoental frequency
for that subject (i.e. range, average FO value for that subjedt, Bbe problem of
estimating a good excitation signal becomes especially relevantmgétpmy patiets,
who no longer have vocal folds.

Finally, regarding the results in Table 1, there are several reasonsniyhy65%
intelligibility was obtained for both subjects. &tirit is weltknown that the CMU Arctic
sentences are difficult material thaasvnot written to be spoken and contains unusual
words that are not in common usage. Second, the participants cténélj test did not
have access to any visual clues (e.g. movement of the lips) which are aofecabls
help in following a speaker.hiese clues, however, will be normally available when the
SSl is used by laryngectomees. Third, the PMA device used in thisvsasdgesigned
on the basis of an average head size for an adult. In this aenggecttailored design
is expected to impravthe quality of the captured articulatory data.

5. Conclusions

In comparison to other silent speech techniques, our sensor technology isisimebtr
and we can produce speech which resembles the subject’s own voicee Wmatr to
enter a clinical trial. In this, our challenge is hawbtain the parallel sensor/speech data
required to train the transformation. In many cases it will not be possibldin this
data prior to the laryngectomy, but we may be able to have the subject onamdid
recordings once the phants are in place.
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