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REVIEW ARTICLE

Microbial consortia: a critical look at microalgae co-cultures for enhanced
biomanufacturing

Gloria Padmaperumaa , Rahul Vijay Kapoorea , Daniel James Gilmourb and
Seetharaman Vaidyanathana

aChELSI Institute, Advanced Biomanufacturing Centre, Department of Chemical and Biological Engineering, The University of Sheffield,
Sheffield, UK; bDepartment of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, UK

ABSTRACT

Monocultures have been the preferred production route in the bio-industry, where contamination
has been a major bottleneck. In nature, microorganisms usually exist as part of organized com-
munities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is
increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously
increase productivity and product diversity. The feasibility of extending the natural phenomenon
of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and
systematic consideration of several aspects. This article will critically examine and review current
work on microbial co-cultures, with the intent of examining the concept and proposing a design
pipeline that can be developed in a biomanufacturing context.
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Introduction

Axenic monocultures are predominantly used in bioma-

nufacturing, due to the ease of monitoring and to meet

stringent safety regulations [1]. However, such mono-

cultures are at high risk of contamination that results in

capital and product losses during manufacturing [2,3].

Controlled, symbiotic co-cultures possess features that

provide solutions to surmount these bottlenecks.

Though not universally applicable to all cell systems,

co-cultures have shown improvements in yields of bio-

mass, lipids [4] and high-value products [5].

Symbiotic microbial communities have existed from

the beginning of time, within benthic mats and fossil

remains [6–8]. The first human civilizations used combi-

nations of various microbes, for the production of fer-

mented food and alcoholic beverages [9,10]. Nowadays,

industry has harnessed microorganisms as a means of

production, due to their innate abilities to synthesize

complex compounds and the ease of scale-up. Cells

derived from mammals, such as Chinese Hamster Ovary

cells [11,12], HeLA cells and mouse cells are workhorses

of the biopharmaceutical industry, alongside yeast

[13,14] and bacteria [9], which are used predominantly

in the food industry, due to their quick turn-around

times. The need for sustainable production routes has

seen microorganisms deployed for bioremediation of

water and soils and as carbon capture and storage

options to minimize greenhouse gas emissions.

Microbial communities are increasingly being investi-

gated for the production of valuable accessory pig-

ments [15–17] and in microbial fuel cells for electricity

generation [18,19].

Maintaining axenic cultures has proved to be expen-

sive and labor intensive, given the recurrent problem of

contamination by bacteria, viruses, protozoa, yeast,

fungi and microplasma [20]. Parasites or grazers can

out-compete the working cell culture and influence cell

health and production outputs. The Fifth Annual Report

and Survey of Biopharmaceutical Manufacturing

Capacity and Production by Langer [20] reported that a

failure rate of 7%, would amount to US$1–2 billion in

expenses. Across 434 biomanufacturing companies,

contamination was the main reason for batch spoilage.

Biomanufacturing with the help of defined artificial co-

cultures and consortia may hold a key to increase pro-

duction rates and tackle contamination [21–23].

In recent years, researchers have started to question

whether an axenic culture is strictly the best way for-

ward, as in the natural environment, microorganisms

thrive alongside other organisms. As thinking processes

have evolved, research into harnessing consortia into
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biotechnological applications has increased [21] and

thanks to synthetic biology and “omics” analysis, the

knowledge pool on microbial communication is

expanding.

This review aims to examine critically the utility and

characteristics of controlled co-cultures in biomanufac-

turing. An insight into natural consortia and the charac-

teristics that are relevant and transferrable to the

industrial world is presented followed by a case study

scenario of the application of this principle in develop-

ing processes that employ microalgae.

Microbial consortia

Consortia in nature

Microbial consortia are encountered within various nat-

ural habitats, such as mammalian guts [24], foods [25],

soils [26–28], water bodies and wastes [29]. A question

that arises is, ‘Why do naturally occurring microorgan-

isms prefer to live as part of a community? As with

human communities, in which a group of individuals

play a role in the advancement of society, so do micro-

organisms. Microbial associations may be symbiotic

[6,30,31], which include mutualism and commensalism

[32], parasitic or predator–prey type [33–35].

Compared to a single taxon, microbial assemblages

have been proven resilient when faced with adverse

conditions [36] and resist invasion from other species

[37]. A consortium can overcome challenges through

communication [38–41] and division of labor

[22,23,36,37], evolving into a stable assemblage [42,43].

Biofilms are good examples of community assemblages

[44–46]. Studies conducted by Brenner et al. [39] eluci-

date the bi-directional patterns present within complex

systems, which shape and govern the mode in which

the populations within the matrix grow, evolve and

assert their roles [47].

Communication through metabolites [6,48–50] plays

a key-role in defining relationships, protection, evolu-

tion, selection of partners and division of labor [40], as

shown in Figure 1. Primary metabolites shape growth,

development and reproduction, as seen in quorum

sensing. During quorum sensing, bacterial populations

release regulatory metabolites, such as N-acylhomoser-

ine lactones [51–53], as the population density grows

[54]. The same applies to interactions in the rhizo-

sphere, where sugars, polysaccahrides, amino acids and

sterols are chemical cues [55]. Secondary metabolites

facilitate external interactions [10,56]: toxins, pigments,

antibiotics, alkaloids and carotenoids, are accumulated

by cells as responses to abiotic and/or biotic factors

[49,57,58], and can be extracted and marketed. A bal-

anced competition within the consortium does not

allow other microorganisms to be able to “readily

Figure 1. Communication within microbial communities. Metabolite exchanges (arrows) facilitate various modes in which microor-
ganisms (geometrical shapes) exhibit intra- or inter-species interactions. Communication is used for (A) quorum sensing and defin-
ing the abundance of each species and (B) type of symbiosis and roles played by partners, such as in (C) protection and (D)
nutrient acquisition and division of labor. Further to this, as the community evolves, so does the communication, with the effect
of causing changes to the microbial communities that are part of it, for example, by recruiting new partners (E) or by evolving
existing members (F).
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plunder” nutrients. Division of labor has applications in

bioremediation [59,60], with microorganisms working

together, for example, to counteract the effect of toxins

[61–63]. Thanks to these overarching characteristics,

consortia are robust and readily adaptable [64], and bet-

ter at outcompeting microbial contaminants and

predators.

Microbial communities have successfully evolved in

nature, from macro- to micro-sphere natural scenarios.

This widespread natural occurrence gives reason to

believe that synthetic consortia have the potential to

drive production and improve industrial biotechnology.

Artificial co-cultures: learning from nature

The argument for moving towards co-cultures stems

from the following: (a) current technology such as tran-

scriptomics, metagenomics, metabolomics coupled to

computer modeling allow for better understanding of

microbial interactions [65,66], (b) contamination issues

can be minimized or completely eliminated [22,23,67];

(c) growth profiles of primary producers can be

improved [9,68]; (d) the release of new molecules can

be triggered [69]; and (e) bioremediation and produc-

tion can be coupled [70]. From a biotechnological per-

spective, a good consortium would be scalable, robust,

self-sustainable, reproducible, versatile in terms of feed-

stock and/or production [38,71–73] and profitable

[3,74].

When constructing an artificial consortium, factors

to consider include: priority effects, community

backgrounds and competitiveness for resources.

Overyielding or underyielding effects [75] may arise,

with overpowering microorganisms monopolizing the

nutrients or with competition inhibiting growth of all

members [76,77]. Nevertheless, artificial co-cultures

have outperformed monocultures, when used for the

production of antioxidants, pigments and aromatic

compounds, as shown in Table 1.

Co-culture design

A bottom-up pipeline is proposed in Figure 2 to design

and set-up co-cultures. This involves starting with the

end-product to then shortlisting a handful of suitable

primary partners (A). The primary partner will then dic-

tate the nature of the secondary partner (B), usually an

aider, ideally with bioproduction capabilities. A two-way

“trigger and response” system would be ideal, such as

mutualism or a commensal symbiosis [32]. It is import-

ant to realize that growth increments do not always

translate into more products, as productivity can be

additionally dependent on the activity of co-culture

partners. This is true for microalgae, where co-culture of

partner A with B may increase biomass of A, but appro-

priate stress inducers may be needed to increase spe-

cific product yields [78,79].

Shortlisting suitable candidates

The secondary partner (B) should possess some of the

following characteristics: (a) be nontoxic, (b) be capable

of co-habiting [59], (c) match in growth rates, (d) pro-

vide nutrients and/or stimulators to enhance A [80], (e)

not cause underyielding effects [75] (f) enhance the

capability of A to utilize multiple feedstocks [81], (g)

remove inhibitory molecules (h) use A’s waste as a feed

[82], (i) maintain genetic integrity over prolonged peri-

ods of culture, and (j) function as a bioproducer.

Selecting co-culture partners

Co-culture partners are selected according to: (a) com-

munication (metabolite/peptide/protein) profiling and/

or (b) from existing natural associations. Screening

based on communication profiling involves surveying

the literature for secondary partners that release com-

pounds to enhance the primary partner (A). Whilst, the

second method consists of selecting partners from a

natural symbiotic consortium. Angelis et al. [69] tested

combinations between eight Basidiomycetes and four

strains of microalgae, to evaluate the best co-culture

partners. The candidates were selected according to

exopolysaccharide (EPS) production, on the basis that

co-culturing fungi with algae would increase overall EPS

production. An increased yield with a diverse compos-

ition of EPS was recovered, and the co-culture of

Agaricus blazei (Basidiomycete) and Chlorella vulgaris

(microalgae) was chosen for further studies [69].

Similarly, Weissella confusa 11GU-1 (a yeast) and

Propionibacterium freudenreichi JS15 (a bacterium) were

deemed to be a working co-culture in bread-making, as

the molecules released through their association served

to be better antifungal, texture-building and anti-stall-

ing agents [83].

Co-culture media

A communal growth medium is required for co-cultur-

ing. Microorganisms isolated from symbiotic consortia

will thrive in their original media. However, for artificial

co-cultures, a new recipe has to be developed and

tested. Conventionally, a growth medium of the primary

partner, A [4] or a mixed medium of A and B [84] in

which both partners can grow are used. In a mutualistic

symbiosis, co-culturing in growth medium A, should be

CRITICAL REVIEWS IN BIOTECHNOLOGY 3



sufficient. In commensal symbiosis, a supplement to

help partner B may be needed. For example, glucose,

yeast extract [4] and/or corn syrup [85] were added to

the algal media to assist the yeast strains.

Inoculation: ratio and timing

The inoculum density of each partner will affect the

final co-culture outcome. This can be determined by

analyzing the growth rate of the organisms in co-

culture media. Buzzini [85] demonstrated that when the

inoculation ratio of Rhodotorula glutinis (yeast) and

Debaryomyces castellii (starch accumulating bacteria)

was 1:1, it resulted in a 150% increase in b-carotene

production (by the yeast). This is not always the case, as

seen in the C. vulgaris and R. glutinis (algae–yeast) co-

culture where higher yields of lipids and biomass were

achieved compared to monoculture, irrespective of the

starting inoculum [76]. The timing, order and growth

phase at which the inocula are introduced into the cul-

ture vessel will influence the general structure of the

co-culture and its performance. This phenomenon has

Table 1. Microbial co-cultures in bio-production.

Reported product yield/concentration

Product Reported organisms Mode Monoculture Co-culture References

Acetate Weissella confusa 11GU1 P.
freudenreichii JS15

Fermentation at 1:1 cul-
ture ratios

0.08g/kg 0.09g/kg 0.5g/kg [83]

Astaxanthin Haematococcus pluvialis,
Phaffia rhodozyma AS2-
1557

Gas Exchange: CO2 and
O2 3g/L of glucose

3.68mg/L 1.09mg/L 12.95mg/L [5]

Biomass Haematococcus pluvialis,
Phaffia rhodozyma AS2-
1557

Gas Exchange: CO2 and
O2 25g/L of glucose

0.62g/L 5.02g/L 5.70g/L [5]

Scenedesmus obliquus,
Institute of Hydrobiology
Candida tropicalis,
Institute of Microbiology

Direct mixing, 3:1 ratio 3.5g/L n.d. 4.38g/L [145]

Isochrysis galbana 8701
Ambrosiozyma cicatricosa

Direct mixing, 1:1 ratio 1.17g/L 0.31g/L 1.32g/L [143]

Spirulina platensis UTEX
1926 Rhodotorula glutinis
2.541

Direct mixing, 2:1 ratio 0.20g/L 1.7g/L 3.6g/L [156]

Chlorella vulgaris TISTR 8261
Trichosporonoides
spathulata

Direct mixing 0.75g/L 10.23g/L 12.2g/L [77]

Chlorella sp. KKUS2
Toluraspore YU5/2

Direct mixing 1.933g/L 8.333g/L 8.010g/L [157]

Chlorella sp. KKUS2
Toluraspore Y30

Direct mixing 1.933g/L 8.267g/L 8.733g/L [157]

Carotenoids (b-caro-
tene, torulene,
torularhodin)

Rhodutola glutinis DBVPG
3853, Debaryomyces cas-
tellii DBVPG 3503

Fed-batch system with
co-culture 1:1 ratio

5.3mg/L,
batch co-culture

8.2mg/L [85]

EPS Weissella confusa 11GU1 P.
freudenreichii JS15

Fermentation at 1:1,
with 15% w/w added
flour

n.d. 1g/kg 1.52g/kg [83]

Agaricus blazei LPB03,
Chlorella vulgaris LEB106

Direct mixing, 1:1 ratio 4g/L 0.95g/L 5.17g/L [69]

2-keto-L-gulonic acid Gluconobacter oxydans,
Ketogulonicigenium
vulgare

Fermentation with gene
manipulation

n.d. n.d. 76.6g/L (89.7%) [158]

Propionate Weissella confusa 11GU1 P.
freudenreichii JS15

Fermentation at 1:1 cul-
ture ratios

1.15g/kg 0g/kg 0.59g/kg [83]

Lipids Chlorella pyrenoidosa
FACHB-9 Rhodospiridium
toruloides AS2.1389

Wastewater, co-culture
1:1 ratio

3g/L 3.4g/L 4-4.6g/L [159]

Spirulina platensis UTEX
1926 Rhodotorula glutinis
2.541

Direct mixing, 2:1 ratio 0.013g/L 0.135g/L 0.467g/L [156]

Chlorella vulgaris TISTR 8261
Trichosporonoides spathu-
lata JU4-57

Direct mixing 4.14g/L n.d. 5.74g/L [77]

Chlorella sp. KKUS2
Toluraspore YU5/2

Direct mixing 0.052g/L 1.141g/L 2.424g/L [157]

Chlorella sp. KKUS2
Toluraspore Y30

Direct mixing 0.052g/L 0.920g/L 1.564g/L [157]

Co-cultures employed for specific products are listed, along with the organisms employed, cultivation mode and reported product yields/productivity/con-
centrations in mono and co-cultures. The monoculture data provided lists the yield/concentration of the primary partner (A) followed by the secondary
partner, if both organisms produce the desired product (n.d.: not determined).
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been termed the priority effect [86,87], and can be an

integral factor in bioreactor systems, as shown by

Zhang et al. [84]. The co-culturing of C. vulgaris and R.

glutinis, achieved higher levels of biomass and lipids,

reaching 17.3 and 70.9%, respectively, when each cul-

ture was inoculated in their respective log-phase, at a

ratio of 1:1. Similarly, the co-culture of Dinoroseobacter

shibae (a bacterium) and Thalassiosira pseudonana (a

diatom), required T. pseudonana to be in exponential

growth phase before the bacterial inoculation [88].

Reactor design and available technologies for

co-culture

Bioreactors (photo, airlift, pulsed, stirred, packed, fixed-

bed, fluidized, etc.) that can be run in continuous, semi-

batch/fed-batch and batch modes have been devised

for the culturing of axenic cultures, where monitoring

and nutritional requirements are relatively simpler

when compared to co-cultures. The challenges rest

in finding suitable methods to maximize the growth of

co-cultures.

One non-compartmentalized approaches, such as

co-inoculation, pelletization [89], biofilms, and encapsu-

lation [77], allow for close contact of the organisms

facilitating metabolite exchange. However, this

approach has problems with respect to monitoring

population dynamics, third party contamination, and

meeting nutritional requirements of the primary partner

to ensure it is not outcompeted. In compartmentalized

approaches the physical contact of the interacting

organisms is limited [70]. However, it offers the advan-

tage of independent harvesting and easier monitoring

of the bioreactor environment. Each culture is treated

as a monoculture, whilst exploiting co-culture character-

istics. Approaches here include: membrane segregation

[88] including dialysis/hydrogel system [90], transwell

systems [70,91] and adhesion matrix, bead entrapment

[77], agar plate growth [92], growth in microfluidic

channels, gaseous separation [93], cell droplets [94],

and matrix immobilization [95].

Critical considerations

Setting up a co-culture for a biotechnological applica-

tion will involve compromising certain species charac-

teristics. Trade-off between optimal conditions and the

growth conditions, in the two or more species selected,

need to be taken into account. Trade-off may involve a

slower growth rate of the organisms, compared to opti-

mal growth levels, but with higher product yields. This

has an impact on processing times. However, the higher

titers may outweigh the disadvantage. Viabilities of the

co-culture can then be pre-determined with an overall

system mass balance. Monitoring the population

dynamics to prevent competition, over-/under-yielding

effects [96], contamination, toxicity, priority effects

[43,86] and abiotic factors have to be addressed for sys-

tem reproducibility and to prevent production failures

or diminishing yields

Figure 2. Steps involved in constructing an artificial co-culture. A bottom-up approach is shown. The desired product is defined
first (I), the microbial producers are short-listed next. This can be based on metabolite profiling or on natural associations (II).
From selected candidates (III) co-cultures need to be investigated to elucidate the type of partnership (IV). The highest yielding
co-culture is to be selected (V), optimized (VI) and upscaled (VII).
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Case study: microalgae co-cultures for

biotechnological application

Microalgae can be prokaryotic (cyanobacteria) and

eukaryotic photosynthetic microorganisms. They play

a major role in the function of both aqueous and

non-aqueous ecosystems due to their ability to grow

photo-autotrophically, hence converting inorganic to

organic matter that may serve as a source of

nutrition for other microorganisms [97]. The simplicity

of microalgae, in terms of nutrient requirements

and manipulation, makes them ideal candidates for

biofuel production [98–103], with some strains of

Schizochytrium sp. reportedly accumulating oil up to

77% dry wt. [104].

The multitude of high-value biomolecules, such as:

astaxanthin, b-carotene, omega-3 fatty acids, phyco-

cyanin, EPS, organic acids and allelopathic chemicals

[10,105–108], that can be produced by these organisms,

makes them organisms of commercial interest in the

pharmaceutical and nutraceutical industries. However,

their performance is affected by various factors, such as:

contamination, pH, temperature, nutrient limitations,

and light availability [109–113]. Lipid accumulation

[114–118], and accumulation of other bio-active com-

pounds is usually a response to stress caused by nutri-

ent starvation, high light, temperature, pH and salinity

[119–123]. Usually, the biomolecules are chemically

extracted, however, in the case of algae belonging to

the genera Chlorella and Dunaliella, they are also

secreted into the growth medium [124].

Current established industrial productions include:

b-carotene using Dunaliella salina [125], astaxanthin

using Haematococcus pluvialis [126], proteins from

Spirulina platensis [127], fatty acids from Chlorella sp.

[128] and pigments using Nostoc sp. [129]. Other prod-

ucts also include: lutein, xanthophylls, antimicrobials,

anticoagulants in addition to carbohydrates (starch and

other polysaccharides) [71,130–134]. Table 2 lists exam-

ples of high-value products from species of microalgae,

which have been commercially successful. The market

value for lutein, for example, was estimated to be US

$187 million in 2009 [135] with astaxanthin products

being worth about US $200M per year [136]. Though

some of these compounds can be synthesized artifi-

cially, manufacturers are steering towards natural prod-

ucts, due to limitations in biological functions and

implications in food safety [137].

Microalgae co-cultures: current status

Microalgae are good candidates for co-culture, and

research in this field is yet to harness its full potential.

There is a considerable body of work on consortia and

co-cultures in the wastewater treatment and anaerobic

digestion, where microalgae are increasingly being

investigated as co-culture partners. Here, we focus pri-

marily on microalgae co-cultures that can be used in

biomanufacturing. Work with bench scale and small

pilot scale trials have been carried out on the inter-

action between microalgae and other microorganisms.

Popularly, bacteria have been the focus of the investiga-

tion, as many bacterial species are endogenous in most

non-axenic microalgal cultures. The tight-knit relation-

ship that exists between bacteria and algae comes to

the fact that many microalgae rely on exogenous sour-

ces of cobalamin (vitamin B12), thiamin (vitamin B1)

and/or biotin (vitamin B7) to grow [138–140]. These

compounds are widely synthesized by a vast array of

bacterial species [68,139,141] and are available for

consumption.

Investigations have shown that co-culture of the bac-

terium Mesorhizobium loti with the green alga

Lobomonas rostrate [138,139] and the bacterium

Sinorhizobium meliloti 1021 (Ensifer meliloti) with the

green alga Chlamydomonas reinhardtii [140] are based

on vitamin associations. Furthermore, cobalamin pro-

ducing bacteria, such as: Mesorhizobium sp.,

Mesorhizobium plurifurium, Roseomonas mucosa, S. meli-

loti Mn04-gfp, S. meliloti 1021, Alcaligenes faecalis, and

Pseudomonas putida mt2, have also been shown to live

in successful symbiotic associations with the microalgae

C. reinhardtii, L. rostrate and C. nivalis [138]. The studies

concluded that the consortium established a defined

algal morphology development, nutrient acquisition as

well as bacterial growth [140].

A further potentially important relationship is

between microalgae and yeast, where the microalgae

provide O2 for yeast to assimilate carbon substrates

and the yeast release CO2 to aid algal photosynthesis.

Work conducted in the co-culturing of yeast and

algae has shown increases in overall biomass with an

impact on lipid profiles. The coupling of microalgal

species with a symbiotic organism led to an increase

in biomass and desired products, and has gained

popularity in bioremediation and biodiesel production,

as shown in Table 1. When using microalgae assemb-

lages for bioremediation, the waste streams are high

in nutrients, which may cause bacterial strains to out-

grow the algal strains. This would affect the lipid pro-

file for biodiesel production, as bacterial strains are

low lipid producers. Similarly, with no nutrient starva-

tion, lipid synthesis may not occur within the algal

strain. Thus, other forms of energy recovery, such as

anaerobic digestion and hydrothermal liquefaction are

more suitable.
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Factors affecting microalgae co-cultures

As in monocultures, pH, nutrients, N/P ratio, availability

of carbon source, light intensity and salinity will affect

the growth kinetics of the co-culture. Likewise, the pri-

ority effects and history of the community, as discussed

in the section “Co-culture media”, will influence the co-

culture. A limiting step would be co-culturing an organ-

ism with a higher growth rate compared to algae (bac-

teria/yeast), which may result in the algae population

being outcompeted, with light limitation due to shad-

ing, and competition, being factors affecting the final

product yield [37,139,142].

Studies carried out by Cai et al. [143] investigated

the growth and biochemical composition of alga

Isochrysis galbana and the yeast Ambrosiozyma cicatri-

cosa co-cultures for aquaculture food. A co-culture

inoculum ratio of 1:1 was employed yielding a higher

biomass of 1.32 g/L compared to the maximum

obtained from I. galbana 8701 (1.17 g/L) and A. cicatri-

cosa (0.31 g/L) monocultures, with enhancements in

C14 and C18 fatty acid content, 18.85 and 9.03% of the

total fatty acids. At the conclusion of the experimental

period, the co-culture population was 96.64% algae

cells. Zhang et al. [84] demonstrated that inoculating C.

vulgaris and R. glutinis co-culture during logarithmic

growth improved biomass and lipid yields of 17.3 and

70.9%, with seeding ratios of 1:1 and 1:2 (yeast:algae).

Shu et al. [144] investigated Chlorella sp. and

Saccharomyces cerevisiae, at the following seeding

ratios, 1:2, 1:1, 2:1, the best ratio was 2:1. (algae:yeast),

with higher lipid and biomass produced. In the case of

Scenedesmus obliquus with Candida tropicalis and S. cer-

evisiae, a ratio of 3:1 (algae:yeast) increased the algal

biomass yield by 30% [145].

Microalgae co-culture: future potential

In the case of eukaryotic microalgae, the partnership

with other organisms, such as bacteria, yeast or cyano-

bacteria may be beneficial in production outputs.

Selecting symbiotic/synergistic/mutualistic organisms

for artificial co-cultures, that themselves produce mar-

ketable products, allows for a biorefinery mode of pro-

duction [71,72]. Extrapolating this concept to symbiotic

poly-cultures, thus mimicking natural consortia in the

laboratory, would fully exploit the system. A possible

future multi-production scheme, for an algae photobior-

eactor is represented in Figure 3.

Co-cultures and consortia: challenges and

future possibilities

The literature presented in this review describes the

benefits of a co-culture, with the design of co-cultures

on trigger-response mechanisms to increase outputs

[49,58]. However, slight variations in the culturing sys-

tem could modify the behavior of the consortium and

destabilize the synergistic balance, leading to loss of

Table 2. A selection of high-value products derived from microalgae species as monocultures.

Bioproduct Reported species Reported product yield/concentration Reference

Astaxanthin Chlorella zofingiensis ATCC 30412 10.3mg/L [160]
C. zofingiensis, CCAP 211/14 0.1 pg/cell [161]
Haematococcus pluvialis LB 16 91.7 pg/cell [162]
H. pluvialis 26 40.25–51.06mg/L [163]
H. pluvialis, 34/7 2.7% dry wt [164]

b-carotene Dunaliella salina, Sambhar Salt Lake 4.21 pg/cell [122]
D. salina - 19.3 7.05–8.26 pg/cell [165]
D. salina SAG 42.88 3.99 pg/cell [123]
D. salina, CONC-007 72.7 pg/cell [166]
D. salina, CCAP 19/18 31.6 pg/cell [166]
D. salina, Urmia Lake isolate 8.94–11.4 pg/cell [167]
D. salina, KU01 56.25 pg/cell [168]
Dunaliella bardawii – KU01 52.91 pg/cell [168]
D. salina, CCAP 19/18 70 pg/cell [169]

Glycerol Dunaliella sp, Sambhar Salt Lake 94.26 pg/cell [122]
Lipids Botryococcus braunii, UTEX 572 5.51–21mg/L/d [170]

Chlorella vulgaris, KCTC AC10032 6.91mg/L/d [170]
Scenedesmus sp., KCTC AG20831 20.65–39mg/L/d [170]

Lutein Chlamydomonas acidophila 20mg/L [171]
Muriellopsis sp., isolate from Empord�amarsh 1.4–0.8mg/L/d [135]
C. zofingiensis CCAP 211/14 4mg/g dry wt [161]

Phycobilin Nostoc muscorum 0.0229% p/v [134]
Gloeotrichia natans 0.21 g/L [129]

Phycocyanin Galdieria sulphuraria 074G 8–28mg/g dry wt [172]
Spurilina platensis 46% w/w [71]
S. pluriformis 9.6% w/w [71]
Nostoc sp. 20% dry wt [129]

The species involved and reported product yields/productivity/concentration are provided in different units as reported in
the references.
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product. Potential reactor design based on the actual

metabolic fluxes, as proposed by Stenuit and Agathos

[64], is a tool to be used to monitor and predict culture

behavior, and from which to build upon for further

optimization.

Understanding the underlying communication and

population dynamics is necessary to engineer a suc-

cessful industrial consortium. Identifying the extracel-

lular chemical cues (metabolites/peptides/proteins)

released by species within a co-culture/consortium

would provide a canvas from which to develop the

consortium production [34,57]. Various methods have

been used to track molecular exchanges between

microorganisms, outlined by Narihiro and Sekiguchi

[146] and Beale et al. [147]. These include extraction

using organic solvents, cation exchange [148] com-

bined with chromatography techniques and Mass

Spectrometry [149] in combination with intracellular

metabolic profiling [150,151]. Challenges exist with

respect to trapping and concentrating the molecules

of interest [91,147], sample processing, and separation

of intra- and extra-cellular metabolites. In addition,

the interference from matrix components, such as

salts found in growth media of marine algae need to

be considered [151,152].

Co-culture database

Natural consortia have evolved over long periods and

the associations constructed by the microorganisms

themselves have progressed through selection phe-

nomena to produce the extant scenarios. In the bio-

technological environment, it would be unworkable to

screen all positive associations. A valuable tool would

be to have an open access database, detailing success-

ful and failed, co-culture trials, with proper documenta-

tion of extracellular compound yields and relevant

metadata. This would be beneficial for academic

research and facilitate the transition from bench-scale

to industrial applications.

Databases have found their role in engineering and

more recently in synthetic biology. The compilation of

databases, such as the Synthetic Biology Open

Language database allows the user to search and find

the right combinations to meet the research require-

ments. The standardization of key aspects that govern

biological phenomena has propelled research in syn-

thetic biology. In a similar fashion, databases have been

created for the metabolites and metabolic pathways, for

pathogens and drugs, as outlined by the Metabolomics

Society [153]; these databases are viewed by millions of

Figure 3. Representation of a microalgae-based consortium for biotechnological applications. A photo-illuminated bioreactor for
culturing an artificially created synergistic consortium between algae, yeast and bacteria within a small-scale reactor is repre-
sented. The microalgae take up carbon dioxide and produce oxygen (through photosynthesis) that is, consumed by the aerobic
bacteria and yeast, which in turn supply carbon dioxide (through respiration) to be consumed by the algae. Cell secretions and
degradation will release biomolecules (vitamins, proteins, carbohydrates, nucleic acids and secondary metabolites) into the growth
media. The bacteria will break these materials into simpler compounds to be consumed by all members of the consortium.
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users on a daily basis, who consult, update and contrib-

ute data. The identification of communication systems

would benefit structuring future artificial co-cultures.

Some quorum sensing, allelopathic chemical and signal-

ing molecules from various extracellular polymeric sub-

classes have been identified [154,155]. It is important to

preserve the bio-molecular interactions within a data-

base that is easily accessible. Many extracellular sub-

stances are of great interest to the industry. A

compendium incorporating such information also

improves on the understanding and provides a better

framework in which co-culturing can be exploited.

A useful co-culture database would provide stand-

ardized culturing conditions or at least valuable meta-

data. This database should contain information on the

microorganisms, relating to their growth dynamics,

biomolecules released in axenic and in co-cultures, in

addition to bioreactor conditions. The addition of an

online simulator, such as HYSIS and UniSim in

Chemical Engineering, would facilitate analysis, simula-

tion and design of co-cultures and consortia in

biomanufacturing.

Conclusions

Research for the creation of artificial co-cultures in bio-

manufacturing has its merits. As discussed in this

review, benefits include minimization of contamination

and enhanced co-production of similar products.

Assembling and implementing co-cultures, derived nat-

urally or artificially, is not straightforward. The ability to

create very stable lichen-like systems in the laboratory

may not be feasible for at least another decade.

However, the first steps to take should be in the direc-

tion of understanding the trigger-response mechanisms

in co-cultures in order to build a versatile engineering

framework. With the appropriate tools and systematic

approaches, such as the proposed database, the use of

co-cultures can be developed and steered towards

more complex and dynamic consortia, that can be used

in biomanufacturing. In this regard, microalgae-based

co-cultures offer promise, given their natural associa-

tions, versatility and ability to thrive with dissimilar spe-

cies. The advantages of using them as the core on

which to build the consortia rests on the fact that they

are widely available, to produce an array of products

with significant importance in the welfare of humans

and animals. They offer environmentally sustainable

biomanufacturing routes to be developed, given their

ability to fix atmospheric carbon dioxide. In future, sys-

tematic construction of consortia with appropriate

documentation and development should enable co-

cultures to be effectively used in biomanufacturing.
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