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ABSTRACT

Evaluating the terrestrial climate record provides a critical test of the foles o
Chicxulub impact and Deccdmrapsvolcanism dumg the CretaceotBaleogene (KPQ)
mass extinctin. Most evidence has e from marine recordéut our new clumped

isotopes data from paleosol carbonates in the Songliao Basin peowadestrial climate
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history from rorthernChina. This reveals there was a-prgact warming caused by the
onset of Deccan Trap®Icanism, whereas the following short-term cooling then another
warming episode erelikely caused by Chicxulub impact and post-boundary volcanism.
Our study suggests tip€O, levels were probaiplthe main control on the latest
Cretaceous cooling and the climatic fluctuations adtus$-Pg boundary interval in
northern China. In the Songliao Basin, the pngpact Deccan volcanism links to losses of
half of thelacustrine algae species (charophytes) and almost all the lacustrine @sgracod
this suggests that the Deccan Traps volcanism had already destabilized the ecasgistem
caused extinctions prior to the Chicxulub impact.
INTRODUCTION

The cause of the CretaceeRaleogene (KPg) masgxtinction has been one of the
most intense scientific debates of past decaués the relative roles of Chicxulub impact
and Deccarffrapsvolcanism providing the main discussion (Keller, 2014). The key issues
are whether Deccan eruptions caused coincipleb and paleotemperature rises (e.g.,
Nordt et al., 2002Huang et al., 2013); and whether theseipneact climate changes were
already imposing stresses on the global biota (€ajler, 2014 Petersen et al., 2016a
Witts et al., 201p Detailed terrestrial climatic trends over the boundary interval could help
to evaluate the effects of these two closely timed events, but poor temponati oasuoi
often fragmentary sections and ambigsipuoxies usually restrict the significance of

terrestrial recordsTbin et al., 2014 making it difficult to evaluate the global picture.
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By applying clumped isotop@47) paleothermometry to paleosol carbonates, we
present a relatively continuousHgterrestrial climatic record wth high-temporal
resolution in lrthern China that includes paleotemperatué&uwatervalues (soil water),
andpCO; from ca. 76 Ma to c&5 Ma. These new data extend the spatial coverage of
paleoclimatic estimates duriniget K-Pg interval and demonstrate that prgsact climate
changes, caused by Deccan Trapisanism, had already imposed stresses on the global
biota.
MATERIALS AND AGE CONSTRAINTS

Late Cretaceousarly Paleogene stratigraphy was recovered in thénSiKorth
core) borehole (44°124.22'N, 124°1556.78'E; Fig. 1) in the central part dhe Songliao
Basin, morthernChina (Wang et al., 20).3n the Sifangtai and Mingshui Formations,
many distinctive calcareous paleosols, or calcjseése identified and corst of
carbonate nodules, slickensides, mottled colors, and fossil root traces (HuangQdt3al
Gao et al., 2015). In this study, 51 paleosol carbonates (diameters range from 1.0 to 3.0 cm)
were collected from 4galeosol Bk horizons (Fig. DRZables DR4 and DR5n the GSA
Data Repository. All of the samples come from shallow burial depths (no deeper than 1
km), suggesting that they have, at most, only been slightly influenced by burizh ek
or solidstate CO bond reordering (Passey and Henkes, 2012). After petrographic vetting,

based on optical and cathodoluminescence properties (Fig. DR3), all samplésunwdre
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to be &nse micrite except for sam@-31, which has been excluded from the following
discussion.

By using thorium (Th) datadm the Sifangtai and Mingshui Formatioas,
astronomical time scal@as established by tuning filtered 405 k.y. eccentricity cycles to
the astronomical solution La2010d, which calibrates the timitigegdolarity chron
C29rC30n boundary (342.1 £ 1.4 m in depth) to ca. 66.30 Mdtaid- Pg boundary (318
+ 1.2 m in depth) to ca. 66.00 Ma (Wu et al., 20(Hg. DR2).

METHODS

The clumped isotope analyses were conducted at Johns Hopkins University (the
laboratory has now moved to University of Michigan, Anrbéx, USA) following the
methods described in Passey et al. (2010) aahteidelberg UniversityGermany)
following the methods described in Kluge et al. (2015). Ahd¢emperatures are
calculated using the calibration Bassey and Henkes (201@jh an acid temperature
correction of 0.082%. Th&*¥Owater (S0il water)valuesare calculated from thes;
temperatures angt®O of paleosol carbonates using the calibratiokiof and O’Neil
(1997) The paleeatmospheric C®(pCQOy) is calculated followng the methods described
by Breecker and Retallack (201@)able DR3). Thé'C ands'®0 are reported relative to
either the Vienna Peedee belemniteneral) or the/ienna standard mean ocean water
scales TheAs7 values are reported relative tetabstute reference framégnnis et al.,

201)) (TablesDR1 and DR2).
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RESULTS

The As7 temperatures range from 15.2 °C to 42.1WiEh an average value of 24.9
°C (Fig. 2 Table DR4). Initially, temperatures were relatively high (~35 °C at@Ma)
before decreasing to ~15 °C at the CampaMaastrichtian boundary (ca2 Ma). After
that, tempeatures increased to ~30 8@.71 Ma before decreasing agao a low point of
16.7 °Cca.67.24 Ma (except for a short warming between 68 and 67 Ma). Aftery-bf
low temperatures, a rapid waing of ~6 °C occurred between ca. 66.39 Ma and ca. 66.31
Ma, ~300 k.ybefore the KPg boundary. Immediately before the K-Pg boundary (~100
k.y.),the temperatre dropped more than 10 88.66.11 Ma. Finally, temperaturegpidly
increased once again by ~10 €&.65.9 Ma before decreasing to ~22¢&£65.5 Ma Fig.

2; Table DR5). The general cooling trend is consistent with temperature trendboth fr
marine (e.g.Friedrich et al., 20LA.innert et al., 2014Peterseret al., 2016a) and
terrestrial (e.g.Kemp et al., 2014Tobin et al., 2014) sections, indicatitigtthis a global
signal.

We note that thas7 temperatures of the majority of soil carbonates were summer
biased (e.g., Passey et al., 2030ell et al., R14); although a few represent other seasons
(e.g., Peters et al., 201Gallagher and Sheldon, 2016). In a monsoon climate, the soll
carbonate likely formed immediately before the cooling effects of theosnansins and
after the hottest part of the suranBreecker et al., 2009). In the Songliao Basin,

monsoonal rainfall immediately followed the hottest part of sum@ieerg et al., 2013
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We thus speculate that the carbonate nodules imS¥ere formed in summer. It is
noteworthy that our values are swstent with terrestrial climate records from similar
paleolatitudes across the Late Cretacezarty Paleogene in North America (Fig. DR6)
based on temperature estimates from fossil plants (annual temperatures)-at8 °C
clumped isotopes of fossil biweds and paleosol carbonates (summer temperat@esl (
et al., 2014Tobin et al., 2011

ThepCO; values range from 348 py to 2454 ppmvKig. 2 Table DR5) with an
out-of-range value of 3460 ppntivatis excluded fronthe following disussion. The
averagegpCO, is 1575 ppmv for the Campanian, 1180 ppmv for the Maastrichtian, and
1058 ppmv for the Daniaggenerally showing a decreasing trend. The lowest levels of
~600 ppmv occurreda.67.5-66.5 Ma, and then showed a rapid ~500 ppmv isecaa
66.4-66.3Vla. Levels decreased again just before tHegdboundary and increased back to
previous values immediately after theRg boundaryKig. 2).

Previous studies have predicted th@O, levels underwent a lonigrm decling
from ~1975 ppm to 450 pprduring the Late Cretaceoud/éng et al., 2014). The
paleaCO; reconstructed from pedogenic carbonates from North America rose
dramatically from 780 ppm in the Maastrichtian to 1440 ppm near4Rg Boundary, but
declined sharply to 760 ppm at the boundary (Nordt et al., 2002). The pattern is consistent
with ranges and trends predicted in this study. Maastrich@&» levels based o&'C of

paleosol carbonates from the Songliao Basin have been previously estintegbdttoeen
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277 + 115 and 837 + 164 ppmv during the K-Pg boundary interval (Huang et al., 2013
However, these estimates assume a mean annual air temperature instead of summer
temperatureAs7 temperature), and thereby underestimate the temperatures.

The 5*0water values range from10.9%o to—5.0%o, and show a bimodal
distributionwith ~3%o shifts (Fig. 2 Tables DR4 and DR5). Similar bimodality 5130
values of fresh water in the Western Interior during the Late Cretaceoutnilasted to
changes of water sources in the study aregs,{obin et al., 2014Petersen et al., 2016b
The soil water from which the soil carbonates formed mainly comes froeontetvater
(Quade et al., 1989). For two main moisture sourcesmifieasChina, precipitation of the
westerly cold air masses from the Arctic Ocean and Central Asia are ~3%o |0M%D in
than warm air masses from the Pacific Ocean transported by the East Asian summer
monsoon (Gao et al., 2015). Therefore, we assume that the periodic excursions of the
5'80water values may represent periodic fluctuations of relatively warm and cool climate
leading to periodic shifting of either the warm air masses with fi@renriched
precipitation or cold air masses with mé&i@-depleted prdpitation to the Songliao Basin,
reflecting the sensitivity of mithtitudes terrestrial climates in a greenhouse wd@kb(et
al., 2019.

DISCUSSION AND CONCLUSIONS
Both theA47 temperatures and tip€O, records acrosthe K-Pg boundary interval

in northernChina shows a decreasing trend with several fluctuatkigs2); this suggests
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thatpCQO is the main driving factor forcing Late Cretaceous climatic fluctuationsAZ;
temperatures anaCO; levelsca.67 Ma,ca.69 Ma, andta. 72 Ma were close to the
modern levels. During these periods, Maetemperatures are generally@b°C lower than
intervening periods and tip€O; are close to 750 ppm¥ig. 2, which is the threshold for
Antarctic glaciation according to climate moddleConto et al., 2008 adant and
Donnadieu, 2016 Antarctic records also showed near freezeg surface temperatures
and accompanying glacioeustatialevel lowstand at 66.8 Ma and 68.8 M&¢gtersen et
al., 20163

Near thepolarity chron C30n-C29r boundary, ~300-400 ksfore the KPg
boundary, the temperature increased from ~22 °C to ~28.%6.3 Ma Fig. 3. Around
the same time, th&'®0water values increased from-9%o. to ~—6%o Fig. 3. Terrestrial
summer temperatures in North America similarly rose, althoughrbgre modest 5 °C,
and stabilized at ~30 °C prior to the K-Pg boundary (Tobin et al., 2014). In addition,
marine records also show a pre-boundary warming in the latest Cretaceous &ad.,
Keller, 1998 MacLeod et al., 20Q%etersen et al., 2016d hese climatic changes broadly
coincide with the onset of main Deccan eruptions (66.288 + 0.085 Ma or 66.38 + 0.05 Ma
based on different dating methods) (Renne et al.,;ZRdtoene et al., 2015). Based on the
estimations of lava erupted during the main Deccan eruptions andniltded percubic
kilometer of hva,Petersen et al. (2016a) suggested that the pre-boundary volcanism

emitted 276900 ppmv CQonto a background atmospheric concentration of ~360-380
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ppmv (Beerling et al., 2002). According to our results p@é», increased by ~46&%00

ppmv from a background atmospheric concentration of <848 ppmv in orthernChina

(Fig. 3; thisis broadly consistent with the prediction. Therefore, we suggest that the onset
of Deccan volcanism likely caused the temperaturep@ riseca.66.4—66.3Ma in
northernChina and Antarctica.

After the latest Maastrichtian warming, ~100 k.y. beforeitieg boundary,
temperatures dropped sharply by more than 10 °C then recovered to the previous warming
temperature level at the beginning of the Paleogéige §. Simultaneously, thpCO;
records also show a drastic fall then rise across tRg Koundary. This trend was also
identified in North America immediately before theR§ boundary, whetemperatures
fell by ~8 °C (Tobin et al., 2014). In the marine records, a rapid sfrontsea surface
temperatures decrease of 7 °C immediately after the Chicxulub impact was zedogni
using TEXss paleothermometry of sediments from Texas and New J@uk®A)

(Vellekoop et al., 2016). In contrast, clumped isotope paleothermometry ghneséirved
bivalve shells from Seymour Island, Antarctishpwed that sea surface temperatures
decreased immediately before thePl§ boundary and then rose rapidiefersen et al.,
20163, although these marine temperature changes are more modest compared to the
terrestrial ones. Petersen et al. (20Kaa)gested that the post-boundary volcanism
passiblyemitted another 82800 ppmv. However, our records suggest onlya00—-400

ppmv increase onto a background atmospheric concentration of ~700-800 ppmv, lower
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180 than this estimate but similar to the changes durindppumdary volcarsm this may

181 suggest a lower volatile component in these eruptions. The duration of the ~6-8 °C
182 increase is also comparable to thelpoeindary riseKig. 3).

183 The lacustrine and palynological fossils from SK-In reveal distinct pldses

184 turnover across the K-Pg boundary interval (Li et al., 28ttt et al., 201,2Van et al.,
185 2013 (Fig. 3 Fig. DR8). Although the sample density is low (10-25 m spacing),

186 palynological data shothatmajor losses occurred amongst pollen taxa ~500 k.y. prior to
187 the boundarynd left an impoverished assemblage that persisted across the bolunelary (
188 al., 2011). One study has suggested that this palynological change may be due to
189 lithological variation rather than extinctiown et al., 2013). Ostracodes show major
190 extinctions around the K-Pg boundary (Scott et al., 201&n et al., 201Bwith losses

191 beginning 200 ky. (ca.66.21 Ma) before the boundary in the Songliao Bdsim G, Fig.
192 DRS8):11 species disappeared before the boundary and 3 after it. Thus, the ostracode
193 extinctions in orthern China show a good temporal link with the onset of the Deccan
194 volcanism. Abundant charophytes occur from ~340-317 m itnSk¢‘an et al., 2013

195 and theyalsoshow losses (20 of 40 species) beginning after the onset of main Deccan
196 emptions, and-150 ky. (ca.66.15 Ma) before the g boundary. This extinction episode
197 isfollowed by appearance of several shHimed abundant (disaster) taxadott et al., 2012

198 Wan et al., 2013(Fig. 3 Fig. DR8). Further charophyte losses (18 oggécies) occur
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after the KPg boundary. Therefore, like the ostracodes, the charophytes losses begin
around the onset of the main Deccan eruptions.

In total, two-thirds of the extinctions occurred befdhe Chicxulub impact but
after onset oéruption ofthe Deccarfraps and are thus solely linked to Dectazps
volcanism. However, it seems unlikehatthe high temperatures and the rate ofmiag
led to the extinctions inarthern China. The losses#4.66.15 Ma for ostracode amd.
66.21 Ma for charophytes) occurred hundreds of thousands years after the onset of
warming €a.66.4—66.3 Ma). Similar levels of warmth and phases of rapid warming and
cooling had occurred before the extinctions. Therefore, we suggest that it is potssble
Deccanlinked environmental effecis.e., acid rains or emission of toxic substanlesksto
the pre-boundary extinctions immhern China. The remaining one-third of extinction
losses took place at theg boundary, at the time both the Chicxulub impact and the
post-boundary Deccarfrapsvolcanism occurred. Therefore, we cannot strictly
discriminate the relative role of these two events played in thebposidary warming and
extinctions but it is clear that Deccan Traps volcanism had already destabilized the
Songliao Basin ecosystem prior to the impact.
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