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ABSTRACT 16 

Evaluating the terrestrial climate record provides a critical test of the roles of 17 

Chicxulub impact and Deccan Traps volcanism during the Cretaceous-Paleogene (K-Pg) 18 

mass extinction. Most evidence has came from marine records, but our new clumped 19 

isotopes data from paleosol carbonates in the Songliao Basin provide a terrestrial climate 20 
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history from northern China. This reveals there was a pre-impact warming caused by the 21 

onset of Deccan Traps volcanism, whereas the following short-term cooling then another 22 

warming episode were likely caused by Chicxulub impact and post-boundary volcanism. 23 

Our study suggests the pCO2 levels were probably the main control on the latest 24 

Cretaceous cooling and the climatic fluctuations across the K-Pg boundary interval in 25 

northern China. In the Songliao Basin, the pre-impact Deccan volcanism links to losses of 26 

half of the lacustrine algae species (charophytes) and almost all the lacustrine ostracodes; 27 

this suggests that the Deccan Traps volcanism had already destabilized the ecosystem and 28 

caused extinctions prior to the Chicxulub impact. 29 

INTRODUCTION  30 

The cause of the Cretaceous-Paleogene (K-Pg) mass extinction has been one of the 31 

most intense scientific debates of past decades, with the relative roles of Chicxulub impact 32 

and Deccan Traps volcanism providing the main discussion (Keller, 2014). The key issues 33 

are whether Deccan eruptions caused coincident pCO2 and paleotemperature rises (e.g., 34 

Nordt et al., 2002; Huang et al., 2013); and whether these pre-impact climate changes were 35 

already imposing stresses on the global biota (e.g., Keller, 2014; Petersen et al., 2016a; 36 

Witts et al., 2016). Detailed terrestrial climatic trends over the boundary interval could help 37 

to evaluate the effects of these two closely timed events, but poor temporal resolution of 38 

often fragmentary sections and ambiguous proxies usually restrict the significance of 39 

terrestrial records (Tobin et al., 2014), making it difficult to evaluate the global picture. 40 
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By applying clumped isotope (∆47) paleothermometry to paleosol carbonates, we 41 

present a relatively continuous K-Pg terrestrial climatic record with high-temporal 42 

resolution in northern China that includes paleotemperatures, δ18Owater values (soil water), 43 

and pCO2 from ca. 76 Ma to ca. 65 Ma. These new data extend the spatial coverage of 44 

paleoclimatic estimates during the K-Pg interval and demonstrate that pre-impact climate 45 

changes, caused by Deccan Traps volcanism, had already imposed stresses on the global 46 

biota. 47 

MATERIALS AND AGE CONSTRAINTS  48 

Late Cretaceous–early Paleogene stratigraphy was recovered in the SK-In (north 49 

core) borehole (44°12′44.22″N, 124°15′56.78″E; Fig. 1) in the central part of the Songliao 50 

Basin, northern China (Wang et al., 2013). In the Sifangtai and Mingshui Formations, 51 

many distinctive calcareous paleosols, or calcisols, were identified and consist of 52 

carbonate nodules, slickensides, mottled colors, and fossil root traces (Huang et al., 2013; 53 

Gao et al., 2015). In this study, 51 paleosol carbonates (diameters range from 1.0 to 3.0 cm) 54 

were collected from 44 paleosol Bk horizons (Fig. DR2; Tables DR4 and DR5 in the GSA 55 

Data Repository1). All of the samples come from shallow burial depths (no deeper than 1 56 

km), suggesting that they have, at most, only been slightly influenced by burial diagenesis 57 

or solid-state C-O bond reordering (Passey and Henkes, 2012). After petrographic vetting, 58 

based on optical and cathodoluminescence properties (Fig. DR3), all samples were found 59 
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to be dense micrite except for sample SK-31, which has been excluded from the following 60 

discussion. 61 

By using thorium (Th) data from the Sifangtai and Mingshui Formations, an 62 

astronomical time scale was established by tuning filtered 405 k.y. eccentricity cycles to 63 

the astronomical solution La2010d, which calibrates the timing of the polarity chron 64 

C29r-C30n boundary (342.1 ± 1.4 m in depth) to ca. 66.30 Ma and the K-Pg boundary (318 65 

± 1.2 m in depth) to ca. 66.00 Ma (Wu et al., 2014) (Fig. DR2). 66 

METHODS 67 

The clumped isotope analyses were conducted at Johns Hopkins University (the 68 

laboratory has now moved to University of Michigan, Ann Arbor, USA) following the 69 

methods described in Passey et al. (2010), and at Heidelberg University (Germany) 70 

following the methods described in Kluge et al. (2015). The ∆47 temperatures are 71 

calculated using the calibration of Passey and Henkes (2012) with an acid temperature 72 

correction of 0.082%. The δ18Owater (soil water) values are calculated from the ∆47 73 

temperatures and δ18O of paleosol carbonates using the calibration of Kim and O’Neil 74 

(1997). The paleo-atmospheric CO2 (pCO2) is calculated following the methods described 75 

by Breecker and Retallack (2014) (Table DR3). The δ13C and δ18O are reported relative to 76 

either the Vienna Peedee belemnite (mineral) or the Vienna standard mean ocean water 77 

scales. The ∆47 values are reported relative to the absolute reference frame (Dennis et al., 78 

2011) (Tables DR1 and DR2). 79 
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RESULTS 80 

The ∆47 temperatures range from 15.2 °C to 42.1 °C, with an average value of 24.9 81 

°C (Fig. 2; Table DR4). Initially, temperatures were relatively high (~35 °C at ca. 76 Ma) 82 

before decreasing to ~15 °C at the Campanian-Maastrichtian boundary (ca. 72 Ma). After 83 

that, temperatures increased to ~30 °C ca. 71 Ma before decreasing again to a low point of 84 

16.7 °C ca. 67.24 Ma (except for a short warming between 68 and 67 Ma). After ~1 m.y. of 85 

low temperatures, a rapid warming of ~6 °C occurred between ca. 66.39 Ma and ca. 66.31 86 

Ma, ~300 k.y. before the K-Pg boundary. Immediately before the K-Pg boundary (~100 87 

k.y.), the temperature dropped more than 10 °C ca. 66.11 Ma. Finally, temperatures rapidly 88 

increased once again by ~10 °C ca. 65.9 Ma before decreasing to ~22 °C ca. 65.5 Ma (Fig. 89 

2; Table DR5). The general cooling trend is consistent with temperature trends both from 90 

marine (e.g., Friedrich et al., 2012; Linnert et al., 2014; Petersen et al., 2016a) and 91 

terrestrial (e.g., Kemp et al., 2014; Tobin et al., 2014) sections, indicating that this a global 92 

signal. 93 

We note that the ∆47 temperatures of the majority of soil carbonates were summer 94 

biased (e.g., Passey et al., 2010; Snell et al., 2014); although a few represent other seasons 95 

(e.g., Peters et al., 2013; Gallagher and Sheldon, 2016). In a monsoon climate, the soil 96 

carbonate likely formed immediately before the cooling effects of the monsoon rains and 97 

after the hottest part of the summer (Breecker et al., 2009). In the Songliao Basin, 98 

monsoonal rainfall immediately followed the hottest part of summer (Chen et al., 2013). 99 



Page 6 of 22 

We thus speculate that the carbonate nodules in SK-In were formed in summer. It is 100 

noteworthy that our values are consistent with terrestrial climate records from similar 101 

paleolatitudes across the Late Cretaceous-early Paleogene in North America (Fig. DR6) 102 

based on temperature estimates from fossil plants (annual temperatures + 15 °C) and 103 

clumped isotopes of fossil bivalves and paleosol carbonates (summer temperatures) (Snell 104 

et al., 2014; Tobin et al., 2014). 105 

The pCO2 values range from 348 ppmv to 2454 ppmv (Fig. 2; Table DR5) with an 106 

out-of-range value of 3460 ppmv that is excluded from the following disussion. The 107 

average pCO2 is 1575 ppmv for the Campanian, 1180 ppmv for the Maastrichtian, and 108 

1058 ppmv for the Danian, generally showing a decreasing trend. The lowest levels of 109 

~600 ppmv occurred ca. 67.5–66.5 Ma, and then showed a rapid ~500 ppmv increase ca. 110 

66.4–66.3 Ma. Levels decreased again just before the K-Pg boundary and increased back to 111 

previous values immediately after the K-Pg boundary (Fig. 2). 112 

Previous studies have predicted that pCO2 levels underwent a long-term decline, 113 

from ~1975 ppm to 450 ppm, during the Late Cretaceous (Wang et al., 2014). The 114 

paleo-CO2 reconstructed from pedogenic carbonates from North America rose 115 

dramatically from 780 ppm in the Maastrichtian to 1440 ppm near the K-Pg boundary, but 116 

declined sharply to 760 ppm at the boundary (Nordt et al., 2002). The pattern is consistent 117 

with ranges and trends predicted in this study. Maastrichtian pCO2 levels based on δ13C of 118 

paleosol carbonates from the Songliao Basin have been previously estimated to be between 119 



Page 7 of 22 

277 ± 115 and 837 ± 164 ppmv during the K-Pg boundary interval (Huang et al., 2013). 120 

However, these estimates assume a mean annual air temperature instead of summer 121 

temperature (∆47 temperature), and thereby underestimate the temperatures. 122 

The δ18Owater values range from −10.9‰ to −5.0‰, and show a bimodal 123 

distribution with ~3‰ shifts (Fig. 2; Tables DR4 and DR5). Similar bimodality in δ18O 124 

values of fresh water in the Western Interior during the Late Cretaceous was attributed to 125 

changes of water sources in the study areas (e.g., Tobin et al., 2014; Petersen et al., 2016b). 126 

The soil water from which the soil carbonates formed mainly comes from meteoric water 127 

(Quade et al., 1989). For two main moisture sources of northeast China, precipitation of the 128 

westerly cold air masses from the Arctic Ocean and Central Asia are ~3‰ lower in δ18O 129 

than warm air masses from the Pacific Ocean transported by the East Asian summer 130 

monsoon (Gao et al., 2015). Therefore, we assume that the periodic excursions of the 131 

δ18Owater values may represent periodic fluctuations of relatively warm and cool climate 132 

leading to periodic shifting of either the warm air masses with more 18O-enriched 133 

precipitation or cold air masses with more 18O-depleted precipitation to the Songliao Basin, 134 

reflecting the sensitivity of mid-latitudes terrestrial climates in a greenhouse world (Gao et 135 

al., 2015). 136 

DISCUSSION AND CONCLUSIONS 137 

Both the ∆47 temperatures and the pCO2 records across the K-Pg boundary interval 138 

in northern China shows a decreasing trend with several fluctuations (Fig. 2); this suggests 139 



Page 8 of 22 

that pCO2 is the main driving factor forcing Late Cretaceous climatic fluctuations. The ∆47 140 

temperatures and pCO2 levels ca. 67 Ma, ca. 69 Ma, and ca. 72 Ma were close to the 141 

modern levels. During these periods, the ∆47 temperatures are generally 5–8 °C lower than 142 

intervening periods and the pCO2 are close to 750 ppmv (Fig. 2), which is the threshold for 143 

Antarctic glaciation according to climate models (DeConto et al., 2008; Ladant and 144 

Donnadieu, 2016). Antarctic records also showed near freezing sea surface temperatures 145 

and accompanying glacioeustatic sea-level lowstands at 66.8 Ma and 68.8 Ma (Petersen et 146 

al., 2016a). 147 

Near the polarity chron C30n-C29r boundary, ~300–400 k.y. before the K-Pg 148 

boundary, the temperature increased from ~22 °C to ~28 °C ca. 66.3 Ma (Fig. 3). Around 149 

the same time, the δ18Owater values increased from ~–9‰ to ~–6‰ (Fig. 3). Terrestrial 150 

summer temperatures in North America similarly rose, although by a more modest 5 °C, 151 

and stabilized at ~30 °C prior to the K-Pg boundary (Tobin et al., 2014). In addition, 152 

marine records also show a pre-boundary warming in the latest Cretaceous (e.g., Li and 153 

Keller, 1998; MacLeod et al., 2005; Petersen et al., 2016a). These climatic changes broadly 154 

coincide with the onset of main Deccan eruptions (66.288 ± 0.085 Ma or 66.38 ± 0.05 Ma 155 

based on different dating methods) (Renne et al., 2015; Schoene et al., 2015). Based on the 156 

estimations of lava erupted during the main Deccan eruptions and CO2 emitted per cubic 157 

kilometer of lava, Petersen et al. (2016a) suggested that the pre-boundary volcanism 158 

emitted 270–900 ppmv CO2 onto a background atmospheric concentration of ~360–380 159 
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ppmv (Beerling et al., 2002). According to our results, the pCO2 increased by ~400–500 160 

ppmv from a background atmospheric concentration of ~348–870 ppmv in northern China 161 

(Fig. 3); this is broadly consistent with the prediction. Therefore, we suggest that the onset 162 

of Deccan volcanism likely caused the temperature and pCO2 rise ca. 66.4–66.3 Ma in 163 

northern China and Antarctica. 164 

After the latest Maastrichtian warming, ~100 k.y. before the K-Pg boundary, 165 

temperatures dropped sharply by more than 10 °C then recovered to the previous warming 166 

temperature level at the beginning of the Paleogene (Fig. 3). Simultaneously, the pCO2 167 

records also show a drastic fall then rise across the K-Pg boundary. This trend was also 168 

identified in North America immediately before the K-Pg boundary, when temperatures 169 

fell by ~8 °C (Tobin et al., 2014). In the marine records, a rapid short-term sea surface 170 

temperatures decrease of 7 °C immediately after the Chicxulub impact was recognized 171 

using TEX86 paleothermometry of sediments from Texas and New Jersey (USA) 172 

(Vellekoop et al., 2016). In contrast, clumped isotope paleothermometry of well-preserved 173 

bivalve shells from Seymour Island, Antarctica, showed that sea surface temperatures 174 

decreased immediately before the K-Pg boundary and then rose rapidly (Petersen et al., 175 

2016a), although these marine temperature changes are more modest compared to the 176 

terrestrial ones. Petersen et al. (2016a) suggested that the post-boundary volcanism 177 

possibly emitted another 825–900 ppmv. However, our records suggest only an ~300–400 178 

ppmv increase onto a background atmospheric concentration of ~700–800 ppmv, lower 179 
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than this estimate but similar to the changes during pre-boundary volcanism; this may 180 

suggest a lower volatile component in these eruptions. The duration of the ~6–8 °C 181 

increase is also comparable to the pre-boundary rise (Fig. 3). 182 

The lacustrine and palynological fossils from SK-In reveal distinct phases of 183 

turnover across the K-Pg boundary interval (Li et al., 2011; Scott et al., 2012; Wan et al., 184 

2013) (Fig. 3; Fig. DR8). Although the sample density is low (10–25 m spacing), 185 

palynological data show that major losses occurred amongst pollen taxa ~500 k.y. prior to 186 

the boundary and left an impoverished assemblage that persisted across the boundary (Li et 187 

al., 2011). One study has suggested that this palynological change may be due to 188 

lithological variation rather than extinction (Wan et al., 2013). Ostracodes show major 189 

extinctions around the K-Pg boundary (Scott et al., 2012; Wan et al., 2013) with losses 190 

beginning ~200 k.y. (ca. 66.21 Ma) before the boundary in the Songliao Basin (Fig. 3; Fig. 191 

DR8): 11 species disappeared before the boundary and 3 after it. Thus, the ostracode 192 

extinctions in northern China show a good temporal link with the onset of the Deccan 193 

volcanism. Abundant charophytes occur from ~340–317 m in SK-In (Wan et al., 2013), 194 

and they also show losses (20 of 40 species) beginning after the onset of main Deccan 195 

eruptions, and ~150 k.y. (ca. 66.15 Ma) before the K-Pg boundary. This extinction episode 196 

is followed by appearance of several short-lived abundant (disaster) taxa (Scott et al., 2012; 197 

Wan et al., 2013) (Fig. 3; Fig. DR8). Further charophyte losses (18 of 40 species) occur 198 
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after the K-Pg boundary. Therefore, like the ostracodes, the charophytes losses begin 199 

around the onset of the main Deccan eruptions. 200 

In total, two-thirds of the extinctions occurred before the Chicxulub impact but 201 

after onset of eruption of the Deccan Traps and are thus solely linked to Deccan Traps 202 

volcanism. However, it seems unlikely that the high temperatures and the rate of warming 203 

led to the extinctions in northern China. The losses (ca. 66.15 Ma for ostracode and ca. 204 

66.21 Ma for charophytes) occurred hundreds of thousands years after the onset of 205 

warming (ca. 66.4–66.3 Ma). Similar levels of warmth and phases of rapid warming and 206 

cooling had occurred before the extinctions. Therefore, we suggest that it is possible other 207 

Deccan-linked environmental effects, i.e., acid rains or emission of toxic substances, led to 208 

the pre-boundary extinctions in northern China. The remaining one-third of extinction 209 

losses took place at the K-Pg boundary, at the time both the Chicxulub impact and the 210 

post-boundary Deccan Traps volcanism occurred. Therefore, we cannot strictly 211 

discriminate the relative role of these two events played in the post-boundary warming and 212 

extinctions, but it is clear that Deccan Traps volcanism had already destabilized the 213 

Songliao Basin ecosystem prior to the impact. 214 
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 366 

Figure 1. The Songliao Basin in northern China (orange outline), showing location of the 367 

SK-In (north core) borehole (Wang et al., 2013).368 
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 369 

Figure 2. The paleoclimate across the Cretaceous-Paleogene (K-Pg) boundary in northern 370 

China. A: The δ18Owater (Vienna standard mean ocean water, VSMOW) record. B: The 371 

pCO2 (ppmv) record. C: The ∆47 temperature (T) record. The 1σ standard errors are shown 372 

as black vertical bars. Dotted black line marks boundary between the Campanian and 373 

Maastrichtian at 72.1 Ma. Dotted orange line marks onset of the main Deccan eruptions at 374 

66.288 ± 0.085 Ma (Schoene et al., 2015) or 66.38 ± 0.05 Ma (Renne et al., 2015). Dotted 375 

blue line marks the K-Pg boundary at ca. 66.00 Ma (Wu et al., 2014) or 66.043 ± 0.086 Ma 376 

(Renne et al., 2013) and the Chicxulub impact occurred at 66.038 ± 0.098 Ma (Renne et al., 377 

2013). Dotted gray line marks the threshold for Antarctic glaciation (750 ppmv) according 378 

to climate models (DeConto et al., 2008). Da—Danian; C—polarity chron. 379 
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 380 

Figure 3. Climatic records and ranges of selected fossil groups across the 381 

Cretaceous-Paleogene (K-Pg) boundary interval. C—polarity chron. A: The δ18Owater 382 

values (Vienna standard mean ocean water, VSMOW) record. B: The pCO2 (ppmv) record. 383 

C: The ∆47 temperature (T) record. D: The biotic data in the Songliao Basin, northern China 384 

(Scott et al., 2012); note this column is separated into three sub-columns for spore and/or 385 

pollen, ostracodes, and charophytes. The 1σ standard errors are shown as black horizontal 386 

bars. See Figure 2 for legends. 387 
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