
This is a repository copy of Intelligent OS X malware threat detection with code inspection.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/128371/

Version: Published Version

Article:

Pajouh, H.H., Dehghantanha, A. orcid.org/0000-0002-9294-7554, Khayami, R. et al. (1
more author) (2018) Intelligent OS X malware threat detection with code inspection.
Journal of Computer Virology and Hacking Techniques, 14 (3). pp. 213-223. ISSN 2274-
2042

https://doi.org/10.1007/s11416-017-0307-5

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

J Comput Virol Hack Tech

DOI 10.1007/s11416-017-0307-5

ORIGINAL PAPER

Intelligent OS X malware threat detection with code inspection

Hamed Haddad Pajouh1
· Ali Dehghantanha2

· Raouf Khayami1 ·

Kim-Kwang Raymond Choo3,4

Received: 31 July 2017 / Accepted: 27 September 2017

© The Author(s) 2017. This article is an open access publication

Abstract With the increasing market share of Mac OS X

operating system, there is a corresponding increase in the

number of malicious programs (malware) designed to exploit

vulnerabilities on Mac OS X platforms. However, existing

manual and heuristic OS X malware detection techniques

are not capable of coping with such a high rate of malware.

While machine learning techniques offer promising results

in automated detection of Windows and Android malware,

there have been limited efforts in extending them to OS X

malware detection. In this paper, we propose a supervised

machine learning model. The model applies kernel base Sup-

port Vector Machine and a novel weighting measure based on

application library calls to detect OS X malware. For training

and evaluating the model, a dataset with a combination of 152

malware and 450 benign were created. Using common super-

vised Machine Learning algorithm on the dataset, we obtain

B Ali Dehghantanha

A.Dehghantanha@salford.ac.uk

Hamed Haddad Pajouh

hp@sutech.ac.ir

Raouf Khayami

Khayami@sutech.ac.ir

Kim-Kwang Raymond Choo

raymond.choo@fulbrightmail.org

1 Department of Computer Engineering and Information,

Technology, Shiraz University of Technology, Shiraz, Iran

2 School of Computing, Science and Engineering, University of

Salford, Salford, UK

3 Department of Information Systems and Cyber Security, The

University of Texas at San Antonio, San Antonio, TX 78249,

USA

4 School of Information Technology and Mathematical

Sciences, University of South Australia, Adelaide, SA 5095,

Australia

over 91% detection accuracy with 3.9% false alarm rate.

We also utilize Synthetic Minority Over-sampling Technique

(SMOTE) to create three synthetic datasets with different dis-

tributions based on the refined version of collected dataset to

investigate impact of different sample sizes on accuracy of

malware detection. Using SMOTE datasets we could achieve

over 96% detection accuracy and false alarm of less than 4%.

All malware classification experiments are tested using cross

validation technique. Our results reflect that increasing sam-

ple size in synthetic datasets has direct positive effect on

detection accuracy while increases false alarm rate in com-

pare to the original dataset.

Keywords OS X malware detection · RBF–SVM · Mach-O ·

Supervised classification · Cyber threat intelligence

1 Introduction

Malicious softwares (malware) are a serious threat to the

security of computing systems [1,2]. Kaspersky and Labs

alone detected more than 121,262,075 unique malware in

2015 [3] while Panda Labs predicted that half of security

issues are directly related to malware infections [4], McAffe

reported a rise of 744% OS X malware over 2015 in 2016

[5]. The increasing Mac OS X market size (second after

Microsoft Windows [6] and its fast adoption rate motivate

cyber threat actors to shift their focus to developing OS X

malware. The “myth” that OS X is a more secure system

only further increases malware success rate. For example,

OS X Flashback Trojan successfully infected over 700,000

machines in 2012 [7].

Security researchers have developed a wide range of anti-

malware tools and malware detection techniques in their

battle against the ever increasing malware and potentially

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11416-017-0307-5&domain=pdf
http://orcid.org/0000-0002-9294-7554

H. H. Pajouh et al.

Fig. 1 Research methodology

malicious programs, including approaches based on super-

vised and unsupervised machine learning techniques for

malware detection [7]. In approaches using supervised tech-

niques, tagged datasets of malicious and benign programs are

required for training. Approaches using unsupervised tech-

niques generally do not require the separation of malware

and goodware, and programs are generally classified based

on observable similarities or differences [8].

While there have been promising results on the use of

machine learning in Windows and Android malware detec-

tion [9,10], there has been no prior work on using machine

learning for OS X malware detection. This could be, per-

haps, due to the lack of a suitable research dataset and the

difficulties in collecting OS X malware.

In this paper, we propose a machine learning model to

detect OS X malware based on the Radial Base Function

(RBF) in the SVM technique. This provides us a novel mea-

sure based on application’s library calling to detect malware

from benign samples. We then propose a new weighting mea-

sure for classifying OS X goodware and malware based on

the frequency of library calling. This measure weights each

library based on its frequency of occurrence in malware and

benign applications.

These datasets are then evaluated using four main clas-

sification techniques, namely: Nave Bayes, Bayesian Net,

Multi Layer Perceptron (MLP), Decision Tree-J48, and

Weighted Radial Basis Function Kernels-Based Support

Vector Machine (Weighted-RBFSVM). The following per-

formance indicators are used for evaluating the performance

of our machine learning classifiers:

True Positive (TP): shows the ratio of goodware classified

as benign;

True Negative (TN): shows the ratio of malware correctly

detected as malware;

False Positive (FP): shows that the ratio of malware files

identified as benign; and

False Negative (FN): shows the ratio of goodware classified

as malware.

Accuracy (ACC): measures the ratio that a classifier cor-

rectly detected malware and benign samples (goodware), and

is computed using following formula:

ACC =
TP + TN

FN + TP + FP + TN
(1)

The False Alarm Rate (FAR) is the rate that a classifier

wrongly detected a goodware as malware and computed as:

FAR =
FP

FP + TN
(2)

Our research methodology is presented in Fig. 1.

The organization of this paper is as follows. Section 2

discusses related research, and Sect. 3 describes our dataset

development. Sections 4 and 5 presents our malware classi-

fication and a discussion of this work, respectively. Finally,

we conclude in the last section.

2 Literature review

Machine learning techniques have been used for malware

detection. Nauman et al. [11] used game-theoretic rough sets

(GTRS) and information-theoretic rough sets (ITRS) to show

that a three-way decision-making approach (acceptance,

rejection and deferment) outperforms two-way (accept,

reject) decision-making techniques in network flow analysis

for Windows malware detection. Fattori et al. [12] devel-

oped an unsupervised system-centric behavioral Windows

malware detection model with reportedly 90% in accuracy.

Their approach monitors interactions between applications

and underlying Windows operating system for classifica-

tion of malicious applications. Mohaisen et al. [13] proposed

an unsupervised behavioral based (dynamic) Windows mal-

ware classification technique by monitoring file system and

memory interactions and achieved more than 98% preci-

sion. Huda et al. [14] proposed a hybrid framework for

malware detection based on programs interactions with Win-

dows Application Program Interface (API) using Support

Vector Machines (SVM) wrappers and statistical measures

and obtained over 96% detection accuracy.

Nissim et al. [15] proposed an SVM-based Active Learn-

ing framework to detect novel Windows malware using

supervised learning with an average accuracy of 97%.

Damodaran et al. [16] utilized Hidden Markov Models

(HMMs) to trace APIs and Opcodes of Windows malware

sequences and developed a fully dynamic approach for mal-

ware detection based on API calls with over 90% accuracy.

Mangialardo and Duarte [17] proposed a hybrid supervised

123

Intelligent OS X malware threat detection with code inspection

machine learning model using C5.0 and Random Forests

(RF) algorithms with an accuracy of 93.00% for detecting

Linux malware.

Due to the increasing use of smart devices such as Android

and iOS devices, there has been a corresponding increase in

the number of Android and iOS malware [18–20]. Suarez-

Tangil et al. [21], for example, proposed an Android malware

detection model. Yerima et al. [22] utilized ensemble learn-

ing techniques for Android malware detection and reportedly

had an accuracy rate between 97.33 and 99%, with a rela-

tively low false alarm rate (less than 3%). Saracino et al. [23]

designed a system called MADAM which is a host-based

Android malware detection. The MADAM was evaluated

using real world apps.

OS X malware has also been on the increase [24], but

there is limited published research in OS X malware analysis

and detection. For example, a small number of researchers

have developed OS X malware and Rootkit detection tech-

niques, and malware detectors by tracing suspicious activities

in memory (like unwanted access, read, write and execute)

[25–27]. However, applying machine learning to detect OS

X malware is limited to the Walkup approach [28], which

utilized Information Gain (IG) to select effective features for

supervised classification of OS X malware. Hence, devel-

opment of machine learning techniques for OS X malware

detection is the gap that this paper seeks to contribute to.

3 Dataset development

As part of this research, we collected 152 malware samples

from [29–31]. These samples were collected between Jan

2012 and June 2016 thus OS version which can run them

are in following order: OS X 10.8 (Mountain Lion), 10.9

(Mavericks), 10.10(Yosemite) and 10.11(El Clapton). Dupli-

cated samples were detected by performing a SHA-256 hash

comparison and removed from the datasets. Known OS X

malware such as WireLurker, MacVX, LaoShu, and Kitmos

are among the malware in our dataset. Similar to previous

datasets such as those of Masud et al. [32], in order to build

a non-biased dataset for detecting malware as anomalous

samples, we need at least 456 goodware (three times the

number of malware, compared to the number of malware) in

our datasets.

To start with how the dataset collected, we first presented

an overall definition of each MacOS X application in Fig. 2.

As it can be seen if you extract each OS X application bundle

you would usually encounter a directory, named Contents.

This directory also consists files and some component as

follows [33]:

Contents: This directory is main part of each application

bundle and contains several directory and files which is intro-

duce as follows:

Fig. 2 MacOS application bundle structure

info.plist: This fill consist the configuration information for

the application. The Mac Operating System relies on the

presence of info.plist to realize related information about the

application and other relevant files.

MacOS: Consists the applications executable code file

(Mach-O). Usually, this directory comes with only a binary

file with the applications main entry point and constantly

linked code.

Resources: Consists all resource files of the application i.e.

picture, Audio, Video and etc.

Framework: Consists all private shared library of the appli-

cation and the framework which used by executable code.

PlugIns: Consists all loadable files and libraries which

extend application features and capabilities.

SharedSupport: Consists all non-critical resources which

not extend the application capabilities.

123

H. H. Pajouh et al.

Fig. 3 The process of dataset

development

Therefore, we randomly downloaded a total of 460 apps

of top 100 apps listed in Utilities, Social Network, Weather,

Video and Audio, Productivity, Health and Fitness and Net-

work categories of the Apple App Store [34] as of Jun

2016. Dominance of benign samples in the collected dataset

was due to obtain desirable results in False Alarm rate

by training the classifier with more goodware and detect

anomalies from them just like real world benchmark dataset

on anomaly detection which provided in [35–37]. We then

extracted the Mach-O binaries of all malware and bening-

ware samples in the respective datasets manually. Mach-O

binaries are the executable portion of an OS X applica-

tion [38] and consist of three sections as follows (see also

Fig. 3):

1. Header contains common information about the binary

such as byte order (magic number), CPU type, and num-

ber of load commands. Load Commands section contains

information about the logical structure of an executable

file and data stored in the virtual memory such as symbol

table and dynamic symbol table.

2. Load Commands contains information about logical

structure of an executable file and data stored in the vir-

tual memory such as symbol table, dynamic symbol table,

etc.

3. Segments is the biggest part of each Mach-O files which

contains application code and data.

We wrote a Python script [39] to extract features from

Mach-O files (Table 1). Our script parsed each Mach-O

binary and created three separate output files as follows:

Mach-O HD: This file contains all Mach-O Header infor-

mation such as CPU type, number of commands, and size of

commands.

Mach-O LC: This file includes all information about library

import/export, symbol table and string functions.

Mach-O SG: This file provides the raw data of three Mach-O

file sections (i.e. Data, Text and Segment) (Table 1).

3.1 Data preprocessing

Similar to many other malware machine learning datasets,

our datasets include several features with missing values;

thus, we utilized K-Nearest Neighbor (KNN) imputation

technique [40] for estimation of missing values. The impu-

tation technique is performed in two steps, as follows:

• Utilizing Euclidean distance for computing distance

between each missing value (i.e. xi) and all other samples

without a missing value to detect the K nearest samples.

• Impute the missing value of xi by computing the average

value of the K nearest samples.

Since extracted features values are in different ranges, a

normalization technique is used to increase the SVM perfor-

mance. As all extracted features are Integer values (except

Library Name), Eq. 3 can be used to convert them to [0 − 1]

interval.

Xn =
xi − min{featured}

ranged

,

ranged = max{featured} − min{featured} (3)

In Eq. 3, xN and xi denote the respective normalized value

and raw extracted value of the feature in dth dimension. Fig-

ure 4 shows the overlap of the collected datasets between

two features vectors which belong to malicious and benign

class before and after preprocessing. It is clear that there are

minimal overlaps and the class borders are more distinct.

3.1.1 Feature selection

Feature selection techniques are used to find the most rel-

evant attributes for tion. At this stage, the three common

feature selection technique (Information Gain, Chi-Square

and Principal Component analysis) for malware detection

based on code inspection Shabtai et al. [41,42] were applied.

Information Gain (IG) [43] is a technique used to evalu-

ate attributes to find an optimum separation in classification,

123

Intelligent OS X malware threat detection with code inspection

Table 1 OS X dataset features

Feature name Descriptiona Value type File

1. ncmds Number of commands of each sample Integer Mach-O HD

2. sizeofcmds Size of commands of each sample Integer Mach-O HD

3. noloadcmd Number of commands which sample will loaded during execution Integer Mach-O LC

4. rebase_size Define size of the rebase information Integer Mach-O LC

5. bind_size Define size of the information which will be bind during execution Integer Mach-O LC

6. lazy_bind_size Define size of the information which will be bind during execution Integer Mach-O LC

7. export_size Define the size of the lazy binding information Integer Mach-O LC

8. nsyms Define the number of symbol table entries Integer Mach-O LC

9. strsize Define string table size in bytes Integer Mach-O LC

10. LoadDYLIB Define number of DYLIB which called and load for executing of malware Integer Mach-O LC

11. DYLIBnames Define names of loaded DYLIB Nominal Mach-O LC

12. Segments Number of total segments which consist in each sample Integer Mach-O SG

13. SectionsTEXT Number text segments which consist in each sample Integer Mach-O SG

14. SectionsData Number data segments which consist in each sample Integer Mach-O SG

a Feature descriptions are adopted from apple developer guidelines (Mach-O programming topics) [38]

Fig. 4 a Probability density function (PDF) of sizeOfcmds and bind-

Size features before pre-processing b probability density function (PDF)

of sizeOfcmds and bindSize features after pre-processing

based on mutual dependencies of labels and attributes. Chi-

square measures the lack of independence between attributes

[44]. Principal Component Analysis (PCA) can be used to

perform feature selection and extraction. We also used PCA

as a feature selection mechanism to select the most infor-

mative features for classification. After the feature selection

methods were used to calculate the relevant scores, features

with the highest scores will be considered.

Suppose we have m class labels (for binary classification

m = 2), c class and t be the number of attribute dimension

to be evaluated, the IG scores can be obtained using Eq. (4)

as follows:

G(t) = −

m∑

i=1

Pr(ci) log Pr(ci) + Pr(t)

=

m∑

i=1

Pr(ci |t) log Pr(ci |t) + Pr(t̄)

=

m∑

i=1

Pr(ci |t̄) log Pr(ci |t̄) + IG

= G(t) − G(ti)

(4)

Chi-Square method calculates the χ2
avg (t) (see Eq. 5) score

function for attributes as per equation, where N is the sample

size, A is the frequency of co-occurrence of t and c together,

B is the frequency of occurrence of t without c, C is the

times c happens without t , and D is the frequency without

the occurrence of t or c.

χ2(t, c) =
N × (AD − CB)2

((A + C) × (B + D) × (A + B) × (C + D))

(5)

χ2
avg(t) = Pr(ci)χ

2(t, ci) (6)

These feature selection methods provided us a sequence

of effective features after applying them on the collected

datasets based on their parameters (see Tables 2 and 3).

123

H. H. Pajouh et al.

Table 2 Selected features from the three different techniques

Method Selected features

Info-gain 4, 3, 1, 5, 2, 10, 6, 7, 9, 13, 8, 12, 11

χ2 4, 5, 3, 1, 2, 10, 6, 9, 7, 8, 13, 12, 11

PCA 4, 5, 3, 1, 2, 10, 6, 9, 7, 8, 13, 12, 11

Table 3 Features obtained values from ranker search method to select

appropriate feature

Features PCA InfoGain χ2

1. ncmds 0.648 0.2197 178.62

2. sizeofcmds 0.4757 0.1852 151.86

3. noloadcmd 0.379 0.2256 183.25

4. rebase_size 0.3049 0.2794 216.90

5. bind_size 0.2336 0.2368 176.77

6. lazy_bind_size 0.1738 0.1721 132.58

7. export_size 0.1281 0.1062 94.45

8. nsyms 0.0854 0.1026 70.09

9. strsize 0.0553 0.1226 94.30

10. LoadDYLIB 0.0331 0.1841 138.63

11. Segments 0.0 0.0329 33.67

12. SectionsTEXT 0.0 0.0475 39.00

13. SectionsData 0.012 0.1024 87.91

3.2 Library weighting

One of the extracted features is system libraries, which are

called by an application. In this phase, the probability of call-

ing each and every system libraries is calculated. For each

system library, two indicators are calculated. First, the overall

occurrence probability of the library in the dataset. Second,

the occurrence probability of the library in each of the mal-

ware or goodware classes. Then, the sample weight (SW) of

each library is calculated for both malign and benign classes

as per Eqs. (7) and (8).

SW i |m =

∑n
[j=1] freq(lib j |m)i∑n

[v=1] libv|m
(7)

Table 4 Applied collected and synthetic datasets distribution

Dataset Benign Malicious Total record

Original dataset 460 152 612

2x_SMOTE 920 304 1224

3x_SMOTE 1380 456 1836

5x_SMOTE 2300 760 3060

SW i |b =

∑n
[j=1] freq(lib j |b)i∑n

[v=1] libv|b
(8)

In the above equations, SW i |m,b represents ith sample weight

for each class (malign or benign) and freq(lib j |m)i shows

that the occurrence number of j th library (lib) called by i th

application in malign (m) or benign (b) class (i.e. libv|m

means j th library in malign class). After these two mea-

sures are calculated, we use them as the new features for

classification.

3.3 SMOTE dataset development

Synthetic Minority Over-sampling Technique (SMOTE) [45]

is a supervised re-sampling technique to balance minority

classes. SMOTE is using K-Nearest Neighbors (KNN) algo-

rithm to find the best location in each dimension to generate

synthetic samples (see Fig. 5). We used SMOTE to create

three datasets of double size, triple size and quintuple size

of original dataset all in the same proportion with the orig-

inal dataset (see Table 4). We believe our collected datasets

pave the way for future research in application of machine

learning in OS X malware detection.

4 OS X malware classification

Five main supervised classification techniques, Nave Bayes,

Bayesian Net, Multi Layer Perceptron (MLP), Decision

Tree-J48, and Weighted Radial Basis Function Kernels-

Based Support Vector Machine (Weighted- RBFSVM), are

Fig. 5 SMOTE technique uses

KNN to generate synthetic

sample

123

Intelligent OS X malware threat detection with code inspection

Fig. 6 Support vectors and maximizing margin

then evaluated using our datasets. The main classification

task of the proposed methodology is developed using

SVM.

The machine learning algorithm in [46] separates data into

N-dimensions with different categories in each hyperplane.

Then, the dimension with the largest margin will be used

for classification. The given training data samples are paired

and labeled as (X,Y), where X is the dataset feature vector

(which contains features as x1, x2, x3, xn) and Y that repre-

sents labels (malicious or benign) for X features.

Both X and Y are fed as inputs to the SVM classifier. SVM

is the used to maximize the margin between given classes

and obtain best classification result. The boundary of margin

Fig. 8 Accuracy and false alarm rates among original dataset and syn-

thetic dataset

function is defined by support vectors data samples. This

margin is calculated from candidate support vectors which

are those nearest to the optimized margin (the largest margin

that separated two types of data) see Fig. 6.

The problem of maximizing margin in SVM can be solved

using Quadratic Programming (QP) as shown in Eq. (9).

Minimize : W (α)=−

l∑

k=1

αk +
1

2

l∑

k=1

l∑

p=1

γkγpαkαpk(χk, χp)

subject to: ∀k : 0 ≤ αk ≤ C and

l∑

k=1

αkγk = 0 (9)

Fig. 7 Added

library-weighting features and

corresponding support vectors

Table 5 Supervised

classification results by

cross-validation

Classifier Dataset Accuracy False alarm

Nave bayes Original_row 51 36.3

Bayesian net Original_row 82.35 19.78

MLP Original_row 81.37 7.8

Decision tree-48 Original_row 88.07 8

Weighted-linear Original_row 89 4.1

Weighted-sigmoid Original_row 85.95 3.9

Weighted-polynomial Original_row 87.95 3.0

Weighted-RBF Original_normalized 91 3.9

123

H. H. Pajouh et al.

Table 6 Supervised classification results by cross-validation

Classifier Dataset Accuracy False alarm

Nave Bayes SMOTE_2X 54.33 43.15

Nave Bayes SMOTE_3X 55.35 44.72

Nave Bayes SMOTE_5X 54.71 4.87

Bayesian net SMOTE_2X 87.55 13.84

Bayesian net SMOTE_3X 86.88 14.89

Bayesian net SMOTE_5X 84.72 18.84

MLP SMOTE_2X 85.62 7.3

MLP SMOTE_3X 88.15 6.68

MLP SMOTE_5X 89.02 5.1

Decision tree-J48 SMOTE_2X 92.82 7.1

Decision tree-J48 SMOTE_3X 95.75 4.28

Decision tree-J48 SMOTE_5X 96.62 4

Weighted-RBFSVM Original 91 3.9

In the above equation, l denotes the number of training

objects, αk the vector of l variables in which segment αk

belongs to the training sample of xk , and C is the mar-

gin parameter which controls effects of noise and outliers

within the training set. Samples in training set with αks

of greater than zero are the support vector objects. Others

with αk value of zero are considered non-support vector

objects; thus, they are not consider in calculation of margin

function.

For better separation, data points in the SVM kernel func-

tion are used as k(xk, x p) in the QP equation (see Eq. 9).

Kernel functions map training data into higher dimensions

to find a separating hyper plane with a maximum margin

[47].

There are some common kernel functions such as Linear,

Polynomial and RBF and Sigmoid Kernel for SVM classifier.

In this research, due to the proximity of data (see Fig. 4), RBF

kernel function [48] is utilized (see Eq. 10).

k(χk, χp) = exp(−γ ||χk − χp||
2) (10)

Although SVM is a promising supervised classifier, it has

its own drawbacks. SVM technique performance and accu-

racy rely heavily on the training data complexity, structure

and size [49]. In our research, the size of training dataset is

suitable for SVM classification and there are not too many

features. Moreover, our dataset is normalized which reduces

the complexity of the training set.

5 Findings and discussion

Using the library-weighting measure, we created two new

features, namely: lib-w-b (library-weight-benign) and lib-

w-m (library-weight-malware), to increase the accuracy of

classification (see Fig. 7). Table 5 presents the evaluation

results of Nave Bayes, Bayesian Net, MLP, Decision Tree-

J48, and Weighted- RBFSVM on the original dataset with

tenfold Cross Validation (CV) technique. Due to data nor-

malization and well-separated features (shown in Fig. 7),

it is clear that the weighted-RBFSVM offers the high-

est accuracy (91%) and lowest false alarm rate (3.9%)

(Table 6).

Table 6 shows results of evaluating Nave Bayes, Bayesian

Net, MLP, Decision Tree-J48, and Weighted- RBFSVM

against our three SMOTE datasets using tenfold Cross Val-

idation (CV) technique. While accuracy is increased in all

cases and we have received much higher accuracy (i.e.

96.62% detection rate of Decision Tree-J48 on SMOTE_5X);

the false alarm rate is not reduced and more training time is

required due to the bigger size of datasets [50]. In Addition,

the complexity of classification technique had reduction due

to two new added features(lib-w-b, lib-w-m). For instance

J48 classification complexity before adding the two new fea-

tures was 65 nodes and 35 leaves but after providing the new

features reduced to 55 nodes and 33 leaves receptively.

Figure 9 depicts the frequency of occurrence of every

library calls in the original dataset.

Figure 8 depicts accuracy and false alarm rate for orig-

inal and SMOTE datasets. While SMOTE datasets are

Fig. 9 Percentage of library

intersection in the collated

dataset

123

Intelligent OS X malware threat detection with code inspection

Fig. 10 KS density function for segments

Fig. 11 KS density function for SectionsData

significantly bigger in compare with the original dataset,

the proposed model obtained lower false alarm in the

original dataset with almost same accuracy of SMOTE

datasets.

A comparison of low ranked features (i.e. Segments,

SectionsTEXT, SectionsData) using Kernel Smooth (KS)

density estimation shows a significant overlap between low

ranked features of malware and benign applications (see

Fig. 10); hence, these features are not suitable for classi-

fication. The experiments on KS density estimation also

suggested that data and text sections had the most over-

laps in comparison to other extracted features—see Figs. 11

and 12. According to Fig. 13, the KS density estimation

library-weighting provides a distinction between malware

and benign samples, since these two curves (malware and

benign) are almost orthonormal as the peak of one curve is

the opposite trend of the other. Therefore, it can be said that

this feature is highly appropriate for classification.

As shown in Fig. 14 CoreGraphics, CoreLocation, Ore-

services and Webkit libraries were called a lot more in

benign applications while libc and libsqlite3 were called

significantly more by malware. Statistical analysis of the

library calls revealed that applications that call audio and

video related libraries (AudioToolbox and CoreGraphics) are

Fig. 12 KS density function for SectionsTEXT

Fig. 13 KS density function for lib-weighting

Fig. 14 Application call library statistics for malign and benign appli-

cations

mostly benign while most malicious apps more frequently

call system libraries (i.e. libSystem) and Sqlite libraries.

6 Conclusion and future work

In this paper, we developed four OS X malware datasets and

a novel measure based on library calls for classification of OS

X malware and benign application. We have obtained accu-

racy of 91% and the false alarm rate of 3.9% using weighted

RBF–SVM algorithm against our original dataset. Moreover,

123

H. H. Pajouh et al.

using Decision Tree- J48 we obtained 96.62% accuracy using

SMOTE_5X dataset with slightly higher false alarm (4%).

Moreover the synthetic datasets are generated using SMOTE

technique and assessed them by same supervised algorithm.

This experiment is conducted to show effect of number of

sample size on detection accuracy. Our results indicate that

increasing sample size may increase detection accuracy but

adversely affect the false alarm rate. OS X malware detec-

tion and analysis utilising dynamic analysis techniques is

a potential future work of this research. Extending classifi-

cation using other techniques such as Fuzzy classification,

applying deep learning for OS X malware detectionm and

using a combination of our suggested features for OSX mal-

ware detection are interesting future works of this study.

Acknowledgements We thank VirusTotal for providing us a private

API key to access their data for constructing our dataset. This work

is partially supported by the European Council International Incoming

Fellowship (FP7-PEOPLE-2013-IIF) grant.

Open Access This article is distributed under the terms of the Creative

Commons Attribution 4.0 International License (http://creativecomm

ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,

and reproduction in any medium, provided you give appropriate credit

to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made.

References

1. Daryabar, F., Dehghantanha, A., Udzir, N.I.: Investigation of

bypassing malware defences and malware detections. In: 2011 7th

International Conference on Information Assurance and Security

(IAS), p. 1738 (2011)

2. Bisio, F., Gastaldo, P., Meda, C, Nasta, S., Zunino, R.: Machine

learning-based system for detecting unseen malicious software. In:

Gloria A.D. (eds) Applications in Electronics Pervading Industry,

Environment and Society [Internet], p. 915. Springer International

Publishing (2016) [cited 2016 Nov 28]. (Lecture Notes in Electri-

cal Engineering). http://link.springer.com/chapter/10.1007/978-3-

319-20227-3_2

3. Kaspersky Lab: Overall statistics for 2015 [Internet]. Kasper-

sky Lab, Russia (2016). https://securelist.com/files/2015/12/KSB_

2015_Statistics_FINAL_EN.pdf

4. Panda Lab: Pandalabs annual report 2015 [Internet], p. 30. (2016)

[cited 2016 Nov 30]. Report No.: 4. http://www.pandasecurity.

com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-

EN.pdf

5. Beek, C., Frosst, D., Greve, P., Gund, Y., Moreno, F., Peterson,

E., Schmugar, C., Simon, R., Sommer, D., Sun, B., Tiwari, R.,

Weafer, V.: McAfee Labs Threats Report [Internet], p. 49. McAfee

Lab (April 2017). https://www.mcafee.com/us/resources/reports/

rp-quarterly-threats-mar-2017.pdf

6. Stack Overflow Developer Survey 2016 Results [Internet]. Stack

Overflow. [cited 2016 Nov 28]. http://stackoverflow.com/research/

developer-survey-2016

7. Aquilino, B.I.: FLASHBACK OS X MALWARE. In: Pro-

ceedings of Virus Bulletin Conference [Internet], p. 102114.

(2012) [cited 2017 Apr 7]. https://pdfs.semanticscholar.org/6b7b/

d026676c5e30b42b40f50ed8076b81eb2764.pdf

8. Gardiner, J., Nagaraja, S.: On the security of machine learning in

malware C&C detection: a survey. ACM Comput. Surv. 49(3), 1–39

(2016)

9. Sun, M., Li, X., Lui, J.C.S., Ma, R.T.B., Liang, Z.: Monet: a

user-oriented behavior-based malware variants detection system

for android. IEEE Trans. Inf. Forensics Secur. 12(5), 110312 (2017)

10. Nissim, N., Cohen, A., Elovici, Y.: ALDOCX: detection of

unknown malicious microsoft office documents using designated

active learning methods based on new structural feature extrac-

tion methodology. IEEE Trans. Inf. Forensics Secur. 12(3), 63146

(2017)

11. Nauman, M., Azam, N., Yao, J.: A three-way decision making

approach to malware analysis using probabilistic rough sets. Inf.

Sci. 20(374), 193209 (2016)

12. Fattori, A., Lanzi, A., Balzarotti, D., Kirda, E.: Hypervisor-based

malware protection with accessminer. Comput. Secur. 52, 3350

(2015)

13. Mohaisen, A., Alrawi, O., Mohaisen, M.: AMAL: high-fidelity,

behavior-based automated malware analysis and classification.

Comput. Secur. 52, 25166 (2015)

14. Huda, S., Abawajy, J., Alazab, M., Abdollalihian, M., Islam, R.,

Yearwood, J.: Hybrids of support vector machine wrapper and filter

based framework for malware detection. Future Gener. Comput.

Syst. 55, 37690 (2016)

15. Nissim, N., Moskovitch, R., Rokach, L., Elovici, Y.: Novel active

learning methods for enhanced PC malware detection in windows

OS. Expert Syst. Appl. 41(13), 584357 (2014)

16. Damodaran, A., Troia, F.D., Visaggio, C.A., Austin, T.H., Stamp,

M.A.: Comparison of static, dynamic, and hybrid analysis for mal-

ware detection. J. Comput. Virol. Hacking Tech. [Internet]. 29

December 2015 [cited 2016 Oct 4]. http://link.springer.com/10.

1007/s11416-015-0261-z

17. Mangialardo, R.J., Duarte, J.C.: Integrating static and dynamic

malware analysis using machine learning. IEEE Lat. Am. Trans.

13(9), 30807 (2015)

18. Shaerpour, K., Dehghantanha, A., Mahmod, R.: Trends in android

malware detection. J. Digit. Forensics Secur. Law. 8(3), 2140

(2013)

19. Faruki, P., Bharmal, A., Laxmi, V., Ganmoor, V., Gaur, M.S., Conti,

M., et al.: Android security: a survey of issues, malware penetration,

and defenses. IEEE Commun. Surv. Tutor. 17(2), 998–1022 (2015)

20. Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A review

on feature selection in mobile malware detection. Digit. Investig.

13, 2237 (2015)

21. Suarez-Tangil, G., Tapiador, J.E., Lombardi, F., Pietro, R.D.:

ALTERDROID: differential fault analysis of obfuscated smart-

phone malware. IEEE Trans. Mob. Comput. 15(4), 789802 (2016)

22. Yerima, S.Y., Sezer, S., Muttik, I.: High accuracy android mal-

ware detection using ensemble learning. IET Inf. Secur. 9(6), 31320

(2015)

23. Saracino, A., Sgandurra, D., Dini, G., Martinelli, F.: Madam: Effec-

tive and efficient behavior-based android malware detection and

prevention. IEEE Trans. Dependable Secure Comput. (2016)

24. Brien, D.O.: The apple threat landscape [Internet], p. 31. Symantec

2016 Feb. (SECURITY RESPONSE). Report No.: 1.02. https://

www.symantec.com/content/dam/symantec/docs/security-center/

white-papers/apple-threat-landscape-16-en.pdf

25. Europe key target for cybercrime. Comput Fraud Secur. 2011(1),

3, 20 (2011)

26. Richard III, G.G., Case, A.: In lieu of swap: analyzing compressed

RAM in Mac OS X and Linux. Digit. Investig. 11(2), S3–S12

(2014)

27. Case, A., Richard, G.G.: Advancing Mac OS X rootkit detection.

Digit. Investig. 14, S25–S33 (2015)

28. Walkup E.: Mac malware detection via static file struc-

ture analysis. Standford [Internet] (2014) [cited 2017 Mar

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://link.springer.com/chapter/10.1007/978-3-319-20227-3_2
http://link.springer.com/chapter/10.1007/978-3-319-20227-3_2
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
https://securelist.com/files/2015/12/KSB_2015_Statistics_FINAL_EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
http://www.pandasecurity.com/mediacenter/src/uploads/2014/07/Pandalabs-2015-anual-EN.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf
https://www.mcafee.com/us/resources/reports/rp-quarterly-threats-mar-2017.pdf
http://stackoverflow.com/research/developer-survey-2016
http://stackoverflow.com/research/developer-survey-2016
https://pdfs.semanticscholar.org/6b7b/d026676c5e30b42b40f50ed8076b81eb2764.pdf
https://pdfs.semanticscholar.org/6b7b/d026676c5e30b42b40f50ed8076b81eb2764.pdf
http://link.springer.com/10.1007/s11416-015-0261-z
http://link.springer.com/10.1007/s11416-015-0261-z
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/apple-threat-landscape-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/apple-threat-landscape-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/apple-threat-landscape-16-en.pdf

Intelligent OS X malware threat detection with code inspection

28]. http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%

20MacMalware.pdf

29. VirusTotal-Free online virus, malware and URL scanner [Internet].

[cited 2016 Nov 28]. https://www.virustotal.com/

30. Objective-see [Internet]: Objective-See. [cited 2016 Nov 28].

https://objective-see.com

31. Contagio Malware Dump: Mila. http://contagiodump.blogspot.

com/. Accessed 28 Jun 2016

32. Masud, M.M., Khan, L., Thuraisingham, B.: A hybrid model to

detect malicious executables. In: 2007 IEEE International Confer-

ence on Communications, 14438 (2007)

33. [Internet]. [cited 2017 Sep 13]. https://developer.apple.com/

library/content/documentation/CoreFoundation/Conceptual/

CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/

10000123i-CH101-SW1

34. Mac App Store Downloads on iTunes [Internet]. [cited 2016 Nov

28]. https://itunes.apple.com/us/genre/mac/id39?mt=12

35. KDD Cup 1999 Data: 2000 [Online]. http://kdd.ics.uci.edu/

databases/kddcup99/kddcup99.html. Accessed 17 Sept 2017

36. Garcia, S., Grill, M., Stiborek, J., Zunino, A.: An empirical com-

parison of botnet detection methods. Comput. Secur. 45, 100–123

(2014)

37. Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D., Nakao, K.:

Statistical analysis of honeypot data and building of Kyoto 2006+

dataset for NIDS evaluation. In: Proceedings of the First Workshop

on Building Analysis Datasets and Gathering Experience Returns

for Security (2011)

38. Executing Mach-O Files [Internet]. [cited 2017 May 13].

https://developer.apple.com/library/content/documentation/

DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_

files.html#apple_ref/doc/uid/TP40001829-SW1

39. HNSX/OSXMalware [Internet]. GitHub. [cited 2017 Apr 25].

https://github.com/HNSX/OSXMalware

40. Hastie, T., Tibshirani, R., Sherlock, G., Eisen, M., Brown, P., Bot-

stein, D.: Imputing Missing Data for Gene Expression Arrays.

Stanford University Statistics Department Technical Report (1999)

41. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.:

Andromaly: a behavioral malware detection framework for android

devices. J. Intell. Inf. Syst. 38(1), 16190 (2012)

42. Shabtai, A., Fledel, Y., Elovici, Y.: Automated static code analysis

for classifying android applications using machine learning. In:

Computational Intelligence and Security (CIS), 2010 International

Conference on IEEE, pp. 329-333 (2010)

43. Joachims, T.: Text categorization with support vector machines:

learning with many relevant features. In: European Conference on

Machine Learning, pp. 137–142 (1998)

44. Zhu, Z., Ong, Y.-S., Dash, M.: Wrapperfilter feature selection algo-

rithm using a memetic framework. IEEE Trans. Syst. Man. Cybern.

Part B Cybern. 37(1), 706 (2007)

45. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.:

SMOTE: synthetic minority over-sampling technique. J. Artif.

Intell. Res. 16, 321357 (2002)

46. The Nature of Statistical Learning Theory | Vladimir Vapnik |

Springer [Internet]. [cited 2016 Dec 17]. http://www.springer.com/

gp/book/9780387987804

47. Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector

Machines, Regularization, Optimization, and Beyond. MIT Press,

Cambridge (2001)

48. Shashua, A.: Introduction to machine learning: class notes 67577.

ArXiv Preprint arXiv:0904.3664 [Internet]. 2009 [cited 2016 Dec

17]. arXiv:0904.3664

49. Burges, C.J.: A tutorial on support vector machines for pattern

recognition. Data Min. Knowl. Discov. 2(2), 121167 (1998)

50. Kavzoglu, T., Colkesen, I.: The effects of training set size for

performance of support vector machines and decision trees. In: Pro-

ceeding of the 10th International Symposium on Spatial Accuracy

Assessment in Natural Resources and Environmental Sciences, p.

1013 (July 2012)

123

http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%20MacMalware.pdf
http://cs229.stanford.edu/proj2014/Elizabeth%20Walkup,%20MacMalware.pdf
https://www.virustotal.com/
https://objective-see.com
http://contagiodump.blogspot.com/
http://contagiodump.blogspot.com/
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://developer.apple.com/library/content/documentation/CoreFoundation/Conceptual/CFBundles/BundleTypes/BundleTypes.html#apple_ref/doc/uid/10000123i-CH101-SW1
https://itunes.apple.com/us/genre/mac/id39?mt=12
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html#apple_ref/doc/uid/TP40001829-SW1
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html#apple_ref/doc/uid/TP40001829-SW1
https://developer.apple.com/library/content/documentation/DeveloperTools/Conceptual/MachOTopics/1-Articles/executing_files.html#apple_ref/doc/uid/TP40001829-SW1
https://github.com/HNSX/OSXMalware
http://www.springer.com/gp/book/9780387987804
http://www.springer.com/gp/book/9780387987804
http://arxiv.org/abs/0904.3664
http://arxiv.org/abs/0904.3664

	Intelligent OS X malware threat detection with code inspection
	Abstract
	1 Introduction
	2 Literature review
	3 Dataset development
	3.1 Data preprocessing
	3.1.1 Feature selection

	3.2 Library weighting
	3.3 SMOTE dataset development

	4 OS X malware classification
	5 Findings and discussion
	6 Conclusion and future work
	Acknowledgements
	References

