
This is a repository copy of Machine learning aided Android malware classification.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128366/

Version: Accepted Version

Article:

Milosevic, N., Dehghantanha, A. and Choo, K.-K.R. (2017) Machine learning aided Android
malware classification. Computers & Electrical Engineering, 61. pp. 266-274. ISSN 
0045-7906 

https://doi.org/10.1016/j.compeleceng.2017.02.013

Article available under the terms of the CC-BY-NC-ND licence 
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NoDerivs (CC BY-ND) licence. 
This licence allows for redistribution, commercial and non-commercial, as long as it is passed along 
unchanged and in whole, with credit to the original authors. More information and the full terms of the licence 
here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


manuscript No.
(will be inserted by the editor)

Machine learning aided malware classification of

Android applications

Nikola Milosevic · Ali Dehghantanha

Received: date / Accepted: date

Abstract Malware have been used as a means for conducting cyber attacks
for decades. Wide adoption of smartphones, which store lots of private and
confidential information, made them an important target for malware devel-
opers. Android as the dominant mobile operating system has always been
an interesting platform for malware developers and lots of Android malware
species are infecting vulnerable users every day which make manual malware
investigation an impossible mission. Leveraging machine learning techniques
for malware forensics would assist cyber forensic investigators in their fight
against malicious programs. In this paper, we present two machine learning
aided approaches for static analysis of the mobile applications: one based on
permissions , while the other based on source code analysis that utilizes a bag
of words representation model. Our source code based classification achieved
F-score of 95.1%, while the approach that used permission names only per-
formed with F-measure of 89%. Our approach provides a method for auto-
mated static code analysis and malware detection with high accuracy and
reduces smartphone malware analysis time.

Keywords Static malware analysis · Android · Machine learning

1 Introduction

According to Ericsson, in 2014., there were 2.6 billion of smartphone users
and it is expected to reach 6.1 billion by 2020 (Boxall 2015). The smartphones

Nikola Milosevic
School of Computer Science,
University of Manchester
E-mail: nikola.milosevic@manchester.ac.uk

Ali Dehghantanha
School of Computing, Science and Engineering
University of Salford
E-mail: a.dehghantanha@salford.ac.uk



2 Nikola Milosevic, Ali Dehghantanha

enabled people to have a device with a good processing power, internet access
and functions of traditional mobile phones in one device, small enough to fit
in a pocket. However, the wealth of private information which is stored on
those devices made them an interesting target for malicious users and cyber
criminals. Mobile devices are used as a means for accessing social networks,
banking information, and online payment platforms which made them an im-
portant target for hackers. On the other hand, mobile devices have significant
processing power that attackers can use for DDoS attacks or mining cryp-
tocurrency (Pan et al. 2014; Felt et al. 2011). Kaspersky lab (Interpol and
Kasperski lab 2014) reported that one in five mobile users was targeted by at
least one type of cyber-attack over the period of one year. One in ten users
was infected with malware designed to steal their money at least once. Trojans
designed to send SMSs were the most widespread malicious programs in the
reporting period. Over the 10 month period from August 2013 through March
2014, the number of attacks per month was up nearly tenfold, from 69,000 in
August 2013 to 644,000 in March 2014. Intel Security estimated losses from
cyber crime to be between 375-575 billion dollars per year and noted the trend
of cyber criminals targeting mobile platforms (McAfee, Centre for Strategic
& International Studies 2014). Mobile devices (smartphones and tablets) are
perceived as IT security’s ”weakest link”, followed by laptops and social me-
dia applications (Cyberedge 2014). With the rise of mobile smart devices,
the number of malware and attacks on them also increased (Shaerpour et al.
2013). Smartphones have been used as a subject, objects, and tools in many
cyber-crimes (Mohtasebi and Dehghantanha 2013).

Malware have been used as a means of crime in many previous cyber-
attacks (Damshenas et al. 2013). The cyber attacker who was able to install
malware on some system can install or delete programs, modify files, download
sensitive information and use them to impersonate the user of the infected de-
vices, upload files, monitor user’s action and keystrokes, capture user’s screen,
use camera and retrieve photos or videos, use the infected system as a source of
DDoS attack (Skoudis and Zeltser 2004). Many reported malware were target-
ing mobile devices (Dagon et al. 2004). Almost all different mobile operating
systems were targeted by malicious programs (Damshenas et al. 2013). How-
ever, targeting operating systems with higher market share give more incen-
tives to the malware developers. At the time of writing, a majority of mobile
users use Android phones 82% (Kitagawa et al. 2015). The bigger market share
of Android operating system along with Google’s flexible publishing policy on
the Android official application market – Google play – made Android users a
popular target for malware developers. Several Trojan horses and other types
of malware have been released on the Google Play (Reina et al. 2013; Viennot
et al. 2014). Security firm G-Data (GData 2015) revealed that during the first
quarter of 2015., nearly 5000 unique Android malware files were created each
day. Android permission-based security model proved to provide very weak
protection (Bai et al. 2010; Di Cerbo et al. 2010; Ongtang et al. 2012; Shin
et al. 2009, 2010a,b) as most of users just grant apps requested permissions
(Imgraben et al. 2014). Moreover, a lesser number of users tend to install anti-



Machine learning aided malware classification of Android applications 3

virus and anti-malware tools on their mobile phones (Imgraben et al. 2014)
which mandates a strong need for more efficient Android malware analysis
tools (Shaerpour et al. 2013).

Malware analysis and software that performs malware analysis are crucial
in preventing malware infection (Daryabar et al. 2013). There are two gen-
eral approaches for malware analysis namely dynamic malware analysis and
static malware analysis (Dezfouli et al. 2013). Static analysis is based on re-
viewing and inspecting of source code and binaries in order to find suspicious
patterns. On the other hand, dynamic analysis (behavioral-based analysis)
involves executing the analyzed software in an isolated environment, while
monitoring and tracing behavior (Christodorescu and Jha 2006; Christodor-
escu et al. 2008; Lee and Mody 2006; Rieck et al. 2008; Schmidt et al. 2009a;
Shabtai et al. 2010). Some of the early approaches to mobile malware detec-
tion were detecting anomalies in battery consumption, which could be caused
by malware activities (Buennemeyer et al. 2008; Jacoby et al. 2004; Kim et al.
2008, 2011)). Operating system events, such as API calls, I/O requests, re-
source locks and battery consumption could be valuable for dynamic based
malware detection (Schmidt et al. 2009a,b, 2010; Bläsing et al. 2010). Taint-
Droid is a malware detection system that monitors application’s behavior and
detects anomalies (Enck et al. 2014). Canfora et al. (2015) created a system
that monitors six Android Dalvik op-codes and based on the monitored op-
code frequencies distinguishes malicious applications from the benign ones. In
order to avoid degrading of mobile device’s performance, solutions based on
distributed computing and collaborative analysis for both static and dynamic
malware analysis were proposed (Cheng et al. 2007; Schmidt et al. 2009a;
Shamili et al. 2010). M0Droid is analyzing system calls of Android applica-
tions on the server and creating signatures. Signatures are later sent to the
devices so they can warn the users about threats (Damshenas et al. 2015).

It became hard to cope with the current stream of new malware on mobile
platforms. The mobile malware detection techniques are still relatively imma-
ture and subject of ongoing research (Enck et al. 2014). Classical malware
detection techniques are either based on signature detection, which is ineffec-
tive against encrypted, metamorphed or polymorphed malware, or on tracking
the behavior of the malicious applications, which are ineffective against mal-
ware with novel behavior. Static malware analysis techniques can be used to
combat these issues however, they are mostly relying on manual human anal-
ysis which limits speed and scalability of investigation (Daryabar et al. 2011).
To automate static analysis process, the transformation of a source code to
calculus for communicating systems (CSS) statements and using formal meth-
ods for checking software behaviour was proposed for preventing update and
ransomwere attacks (Mercaldo et al. 2016a,b). However, even this approach
requires human analyst to describe the unwanted behaviour by using formal
logic, which could be still time consuming.

Machine learning techniques can be used to automate static malware anal-
ysis process. These techniques enable machines to use intelligent approach,
learn usual attack patterns and update their knowledge as would the human



4 Nikola Milosevic, Ali Dehghantanha

do (Nath and Mehtre 2014). Applications of machine learning in cyber secu-
rity is relatively new for example in intrusion detection, malware detection,
data leak detection, which in previous studies gave promising results (Gavriluţ
et al. 2009; Rieck et al. 2011; Nath and Mehtre 2014). Machine learning tech-
niques have been used in malware analysis as well. For example, Nataraj et al.
(2011) represented malware in grayscale images and utilized pattern recog-
nition approaches used in image processing in order to detect malware. Also
other approaches using standard machine learning algorithms such as percep-
tron, SVM, locality sensitive hashing and decision trees were utilized (Gavriluţ
et al. 2009; Rieck et al. 2011; Nath and Mehtre 2014). Afonso et al. (2015)
extracted data from android applications about network access, process execu-
tion, string manipulation, file manipulation and information reading and then
applied several machine learning algorithms such as SVM, Bayesian networks,
decision trees, random forest and Naive Bayes in order to classify malware.
Yerima et al. (2015) extracted 100 features based on API calls, permissions,
intents and command related keywords for each of the application and applied
machine learning based on Eigen space analysis in order to detect malware on
android devices. Sahs and Khan used permissions and control flow graphs of
android application obtained using Androguard and created SVM based ma-
chine learning model that is able to classify android malware (Sahs and Khan
2012).

While dynamic android malware analysis is properly addressed, there have
not been many works on static malware analysis based on machine learning. In
this paper we focus on various types of static analysis (manifest analysis, code
analysis) approaches based on machine learning in order to detect malicious
android applications.

The contributions of this paper are twofold. The first contribution is a
machine learning model for Android malware detection based on applications
permissions. This approach is lightweight, so it can be applied to a wide range
of mobile devices. It is also not too computationally expensive, so it the ma-
chine learning classifier can be a part of the mobile application installed on
the device. The second contribution of this work is a new approach to per-
form code analysis using machine learning. This complex approach provides
higher accuracy and is capable of revealing detailed application behavior. So
far, static code analysis of malware was a task mainly performed by people.
However, this approach shows that some aspects of static code analysis, such
as detecting malicious behavior of the code, are possible to automate using
machine learning.

The structure of this paper is as follow. In the next section, the method-
ology of this research is explained. Afterwards, research results are presented
followed by discussion of the results. Finally, the paper is concluded and several
future works are suggested.



Machine learning aided malware classification of Android applications 5

2 Methodology

In this paper, we utilized two static malware analysis approaches: in the first
one we analyzed permissions the application is requesting while in the sec-
ond we analyzed the whole source code of the application. In order to auto-
mate analysis process, we experimented with two machine learning approaches,
namely classification and clustering.

Classification is used for identifying to which of a set of category or sub-
population a new observation belongs. It uses supervised machine learning
approach in which the model is created out of existing, labeled observation
examples (Michie et al. 1994). Since software can be classified into malware
and goodware, the task of malware detection can be modeled as a classification
problem. Clustering is a technique for unsupervised machine learning that is
able to make clusters of similar entities. Clustering algorithms are useful when
there is only a small portion of dataset labeled. Based on the labeled examples,
it is possible to infer the class of the clustered data in the same clusters as the
labeled data. The practical implication is that labels obtained in unsupervised
learning, during the clustering can be later used to retrain classification model
with more data. This approach is a semi-supervised learning (Basu et al. 2002;
Bilenko et al. 2004).

We created four experiments, using both machine learning approaches on
two analysis methods: permission-based clustering, permission-based classi-
fication, source code based clustering, and source code based classification.
For training and testing of our machine learning models, we utilized M0Droid
dataset, which contains 200 malicious and 200 benign android apps (Damshenas
et al. 2013).

2.1 Permission-based analysis

In this approach, we analyze permissions that the android applications are
using and we build a machine learning model that uses permission names as
features. Android security model is based on apps permissions. Every appli-
cation has to acquire different privileges to access a variety of phone features.
During the installation, a user is notified about the permissions requested by
applications and has the option to either allow access or to cancel installation
of the application. However, malicious applications usually require certain per-
missions i.e. in order to access and exfiltrate sensitive information from the
SD card, a malicious app would require access to both SD card and the in-
ternet. Our approach is modeling the combinations of Android permissions
that malicious applications are using. We propose an approach to use the ap-
pearance of specific permissions as features for machine learning algorithm. In
this approach, we first extracted permissions from our dataset and create a
model. For training we used Weka toolkit (Hall et al. 2009) and tried several
machine learning algorithms, including SVM, Naive Bayes, C4.5 Decision trees
and JRIP. The advantage of permission-based analysis is that it is computa-



6 Nikola Milosevic, Ali Dehghantanha

tionally inexpensive and it can be integrated on the mobile device. We used
modified Weka 3.6.6 library for Android (Institute for Pervasive Computing
2015) to make Android application that utilizes this model. Our model, built
using support vector machines with sequential minimal optimization, became
a part of permission scanner in OWASP Seraphimdroid application (Milosevic
2015a,b).

We also applied several clustering techniques in order to examine and com-
pare the performance of unsupervised learning algorithms with the supervised
ones. Training, testing and evaluation were as well done using Weka toolkit.
We applied Farthest First, Simple K-means and Expectation maximization
(EM) algorithms provided by Weka.

2.2 Source code based analysis

The second approach is based on static analysis of the application’s source
code. Our assumption was that malicious codes are using a combination of
services, methods and API calls in a way that is not usual for benign applica-
tions. Machine learning algorithms are able to learn combinations of methods,
API and system calls that are common for malware and distinguish them from
the patterns that are usual for benign applications. In this approach, android
apps are first decompiled and then using decompiled code and text mining
classification approach based on a bag of words to train a model. Decompiling
Android applications to conduct static analysis involves several steps. It is first
necessary to extract Dalvik Executable file (dex file) from the Android applica-
tion package (APK file) by unzipping Android application package. The second
step is to transform Dalvik Executable file to Java archive using dex2jar tool
(Pan 2014). Afterwards, we extract .class files from the Java archive and utilize
Procyon Java decompiler (version 0.5.29) to decompile .class files and create
.java files. Then we merge all Java source code files of the same application
into one large source file for further processing.

Since Java and natural language text do have a certain amount of similar-
ity, we applied the technique that is used in classification of natural language
processing called a bag of words. In this technique, the text, or code in our
case, is represented as a bag or set of words, disregarding grammar or word
order. The model is taking into account all the appearing words (Joachims
1998; McCallum et al. 1998). Our approach considered whole code (including
import statements, method calls, arguments, instructions, etc.). The source
code obtained in previous step was tokenized into unigrams that are used as
bag of words. We used several machine learning algorithms for classifications
namely C4.5 decision trees (in Weka toolkit called J48), Naive Bayes, support
vector machines with sequential minimal optimization, random forests, JRIP,
logistic regression and AdaBoostM1 with SVM base. We performed our train-
ing, testing and evaluation using Weka toolkit. For source code analysis we
also applied ensemble learning with combinations of three and five algorithms
and majority voting decision system. Again, the number of algorithms were



Machine learning aided malware classification of Android applications 7

chosen, so system is able to unambiguously choose the output class based on
majority of votes.

We also experimented with clustering on the source code. Clustering al-
gorithms we used include Farthest First, Simple K-means and Expectation
maximization (EM). Flow diagram of the process is presented in Figure 2.

Fig. 1 Workflow of android file decompiling and machine learning based malware detection
methodology

2.3 Ensemble learning

In order to improve the performance of classical machine learning algorithms,
we performed tests using ensemble learning with voting on both approaches:
permission-based and source code based analysis approach. Ensemble methods
are using multiple classification algorithms to obtain better performance than
it could be obtained from any single of the constituent algorithms. The final
prediction is chosen as the label that was predicted by the majority of classifiers
(Kuncheva 2004; Kittler et al. 1998). We have experimented ensembles that
contained combinations of three and five algorithms. We have chosen number
of algorithms as an odd number, where majority voting can unambiguously
choose the class. For classification algorithms, we used SVM, C4.5, decision
trees, random tree, random forests, JRIP and linear regression.



8 Nikola Milosevic, Ali Dehghantanha

3 Evaluation and Discussion

We evaluated the performance of our approaches using 10-fold cross valida-
tion (Kohavi et al. 1995). In 10-fold cross validation, the original sample is
randomply partitioned into 10 equal sized sub-samples. A single sub-sample is
retained for the testing, while 9 is used for training. The process is repeated 10
times, each time using different sub-sample for testing. The results can be then
averaged to produce single estimation. The advantage of this method is that
all samples are used for validation exactly once (Bengio and Grandvalet 2004;
Rodriguez et al. 2010). For all algorithms, the 10-fold cross validation was
executed in the same manner. As metrics for the evaluation of the algorithms,
we used precision, recall and F-measure. These metrics are well adopted for
classification task and widely used in text mining and machine learning com-
munities (Makhoul et al. 1999; Flach 2003; Boiy and Moens 2009; Milne and
Witten 2008; Kubat et al. 1998; Lewis and Gale 1994). Classified items can
be true positive (TP - items correctly labeled as belonging to the class), false
positive (FP items incorrectly labeled as belonging to the certain class), false
negative (FN items incorrectly labeled as not belonging to the certain class)
and true negative (TN items correctly labelled as not belonging to certain
class).

Given the number of true positives and false negatives, recall is calculated
using following formula:

Recall =
TP

(TP + FN)

The recall is sometimes referred as sensitivity or the true positive rate. Given
the number of true positive and false positive classified items, precision is
calculated as:

Precision =
TP

(TP + FP )

Precision is sometimes referred as positive predictive rate. The measure that
combines precision and recall is called F-measure.

F =
(1 + β2) ∗Recall ∗ Precision

β2
∗ Precision+Recall)

The variable β indicates the relative value of precision. A value of β = 1, which
is usually used, indicates the equal value of recall and precision, whereas lower
values indicate more emphasis on precision and higher values indicate more
emphasis on recall (Hersh 2005).

3.1 Evaluation of permission-based classification

The evaluation of machine learning classification algorithm on permission-
based classification is presented in Table 1.



Machine learning aided malware classification of Android applications 9

Algorithm Precision Recall F-Score

C4.5 decision trees 0.827 0.827 0.827
Random forest 0.871 0.866 0.865
Bayes Networks 0.747 0.747 0.747
SVM with SMO 0.879 0.879 0.879
JRip 0.821 0.819 0.819
Logistic regression 0.823 0.822 0.821

Table 1 Evaluation results of permission-based classification using single machine learning
algorithms

As it can be observed from the table, support vector machines with se-
quential minimal optimization performed the best with F-measure of 0.879.
This algorithm also correctly classified 87.9% of test instances in 10-fold cross
validation. The algorithm is efficient in terms of speed. Only 0.04 seconds were
needed to train model and instances are classified very fast, so this approach
is suitable for live classification of the applications. We have integrated this
model for classification based on permissions with SVM in OWASP Seraphim-
droid Android application (Milosevic 2015a) that can be obtained from Google
Play store. This proves that modern smartphones have enough computational
power to perform machine learning classification based on the permissions.

On the other hand, Bayesian algorithms such as Naive Bayes and Bayesian
networks performed the worst. This may be due to the small dataset, con-
taining only 387 instances. Bayesian algorithms usually require much more
data than SVM in order to train the model with high accuracy (Amari and
Wu 1999). With more data, even SVM model may slightly improve (Wu and
Dietterich 2004).

SVM algorithm performs better on statistical t-test with confidence inter-
val of 0.05 than Naive Bayes, Bayesian Network, JRip and Logistic regression,
however, it is statistically not significantly better than decision trees and ran-
dom forests.

In Table 2., we present the results of ensemble learning using majority
voting. We experimented with the ensembles of three algorithms in order to see
which algorithms contribute to the best results in ensembles. Three algorithms
that performed the best were SVM with SMO, Logistic regression and Random
forest performing with an F-measure of 0.891 and classifying 89.1% correctly.
This is only a slight improvement compared to SVM algorithm alone and t-test
showed it is not significantly better with the confidence interval of 0.05.

On the other hand, ensemble algorithms performed much slower. Obviously,
they need more time to apply multiple, in our case three or five machine
learning algorithms and then to post-process results. Since the significance
test showed that the performance of the ensemble learning algorithm is not
significantly better than single machine learning algorithm, there is no real
sense of using these algorithms in production.

Both results from the single classifier and from ensemble method present
a promising performance that can be used in anti-malware systems and that
will perform sufficiently well. It will also be able to recognize unseen malware



10 Nikola Milosevic, Ali Dehghantanha

that were not yet released since it does not rely on signatures, but rather on
learned dangerous permission combinations. Previously has been shown that
machine learning algorithms perform well achieve high detection rates, even
on completely new, previously unseen malware (Kolter and Maloof 2006).

Algorithm Precision Recall F-Score

Random tree+Random forest+C4.5 0.878 0.876 0.876
Random tree+Random forest+SVM with SMO 0.885 0.884 0.884
SVM with SMO+Logistic regression+Random forest 0.892 0.891 0.891
Bayes Nets+SVM with SMO+Logistic Regression 0.879 0.876 0.876
C4.5+ Random forests+ Random tree+
SVM with SMO+Logistic regressing 0.895 0.894 0.894

Table 2 Evaluation results of permission-based classification using ensemble learning

However, this approach also do have some limitations. For permission-
based approach we reported F-measure of 87.9% for single machine learning
algorithms. This means there are chances that some malware are not classified
as such and some benign applications are classified as malicious. In our case,
340 applications were correctly classified, while 47 were incorrectly classified.
Using ensemble learning the number of misclassified instances dropped to 42.
However, it is believed that anti-malware solutions are only capable of de-
tecting 19% of zero-day malware while in a month their detection rate is just
increased to 61% (Cyveillance 2010). We believe that permission-based classi-
fication approach could aid malware detection, especially on Android devices.
Our reported performance is higher than the one reported by Cyveillence.
Also, permission-based analysis using machine learning is computationally in-
expensive and can be a part of a mobile application installed on the device.
OWASP Seraphimdroid application is able to scan and classify all the installed
applications (83 apps on the test device) on Nexus 5 device under 8 seconds.

3.2 Evaluation of permission-based clustering

Table 3 presents the results of our permission-based clustering approach. As
it can be seen from the table, the results are not as good as classification
results. The best algorithm is incorrectly clustering more than 35% of in-
stances. permission-based classification incorrectly classifier around 10.5% of
instances.Clustering is grouping similar items together, without any knowledge
of how the grouping should be performed. In this sense, clustering is different
from supervised learning, where training set is defined in a way to show how
to perform classification. In clustering, there are no labels and no training
set. The set of elements is clustered into the certain number of groups usually
based on the elements’ similarity. In our case, applications will be grouped into
the groups of applications that are using a similar set of permissions. However,
applications that do use the similar set of permission as some malware do not
need to be malicious and vice versa.



Machine learning aided malware classification of Android applications 11

In our case of permission-based analysis, clustering showed higher error
rate than classification and it can be hardly used in malware detection.

Algorithm Correctly clustered instances Incorrectly clustered instances

SimpleKMeans 229 (59.17%) 158.0 (40.83%)
FarthestFirst 199 (51.42%) 188.0 (48.58%)
EM 250 (64.6%) 137.0 (35.4%)

Table 3 Evaluation results of permission-based clustering

3.3 Evaluation of source code based classification

Out of 400 applications in our data set, we were unable to decompile 32 apps
(10 benign and 22 malicious). This might be due to code encryption and
obfuscation or instability of our Java decompiler. However, the remaining 368
source files are sufficient to train a good model for the purpose of this research.

The evaluation of classification that is analyzing source code of the mobile
application is presented in Table 4.

Algorithm Precision Recall F-Score

C4.5 decision trees 0.886 0.886 0.886
Random forest 0.937 0.935 0.935
Naive Bayes 0.825 0.821 0.820
Bayesian networks 0.825 0.821 0.819
SVM with SMO 0.952 0.951 0.951
JRip 0.916 0.916 0.916
Logistic regression 0.935 0.935 0.935

Table 4 Evaluation results of source code based classification using single machine learning
algorithm

As it can be seen from the table, over 95% of instances are correctly classi-
fied by using Support Vector Machines algorithm. The high accuracy of source
code based classification approach reveals that the machine can learn from the
source code about application’s behavior. Even though bag of word model dis-
regards grammar and word order in text, in our case source code, it is possible
to train successful machine learning model that is able to determine which ap-
plications are malicious and which are not. Other machine learning algorithms
such as Random forests, logistic regression and JRip also performed with F-
score over 90%. This indicates that, as hypothesized, source code can provide
sufficient amount of information for successful machine learning classification
algorithm. Also, with the machine learning based source code analysis, it is
possible to analyze whether some android package (apk) file is malicious or
not in less than 10 seconds, which is far behind human analyst capabilities.



12 Nikola Milosevic, Ali Dehghantanha

Algorithm Precision Recall F-Score

C4.5 decision tree+random tree+random forests 0.950 0.948 0.948
Logistic regression+C4.5+SVM with SMO 0.947 0.946 0.946
Random tree+Random Forest+SVM with SMO 0.825 0.821 0.820
SVM with SMO+Logistic regression+Random forest 0.942 0.940 0.940
SVM with SMO+Logistic regression+
AdaBoostM1 with SVM base 0.952 0.951 0.951
Logistic regression+JRip+Random Forests+
C4.5+SVM with SMO 0.950 0.948 0.948
SVM with SMO+Logistic regression+
Simple Logistic regression+AdaBoostM1 with SVM base 0.958 0.957 0.956

Table 5 Evaluation results of source code based classification using ensemble learning

In Table 5, we present the results of ensemble learning methods. Ensemble
learning with voting gave a slight improvement compared to the best results
by using single machine learning algorithm (Ensemble learning best F-measure
- 0.956; SVM alone F-measure 0.951) by combining SVM with SMO, logistic
regression, LogitBoost with simple regression functions as base learners (sim-
ple logistic regression) and AdaBoostM1 with SVM as a base. Some of the
ensembles (i.e. C4.5 decision tree+random tree+random forests or SVM with
SMO+Logistic regression+Random forest) performed worse than SVM with
SMO. Since the F-measure of C4.5 decision trees alone was 0.886, it was neg-
atively affecting ensembles with algorithms that performed better than C4.5.
Even in ensembles that contained SVM may have misclassified some instances
if the majority of algorithms voted for the wrong class. The combination of
algorithms in one case (SVM with SMO+Logistic regression+Simple Logistic
regression+AdaBoostM1 with SVM base) had a positive impact on the clas-
sification performance. However, the improvement of 0.5% in F-measure was
not statistically significant.

Our source code analysis approach requires source codes to be decompiled
which could be an issue since decompiling can hardly be done on the device
because of the operating system restriction and needed computational power.
Also, many malware developers are packing or obfuscating their codes to make
it even more difficult to be reversed or decompiled. However, from decompiled
codes, it is possible to classify successfully unseen malware in 95.1% of cases
with single machine learning algorithm.

3.4 Evaluation of source based clustering

Table 6 present results of source code clustering. These results are more promis-
ing than the results obtained from permission-based clustering since the best
performance for correctly clustered instances rose from 64.6% to 82.3%. The
increase in performance is due to the fact that source code provides a greater
amount of details based on which clustering can be done. However, there are
still 17.6% incorrectly clustered instances. Since clustering is unsupervised ma-
chine learning algorithm, it creates clusters based on code similarity, which is



Machine learning aided malware classification of Android applications 13

not necessary a good indication of code’s behavior in terms of maliciousness.
The way clustering is mapping instances without supervision is the main rea-
son for worse performance than classification. The results for non-supervised
learning are acceptable for creating larger labeled data sets (Raskutti et al.
2002). Classification performed 14% better (SVM), which indicates that clus-
tering should not be used for detecting malware, but rather only for expanding
small data sets if necessary.

Algorithm Correctly clustered instances Incorrectly clustered instances

SimpleKMeans 303 (82.3%) 65 (17.66%))
FarthestFirst 296 (80.44%) 72 (19.56%)
EM 300 (81.53%) 68 (18.47%)

Table 6 Evaluation results of permission-based clustering

4 Conclusion and Future Works

In this paper, we presented two machine learning (classification and clustering)
aided approaches based on app permissions and source code analysis to detect
malware on Android devices. The major advantage of these methods is that
the use of machine learning enables them to detect unseen malware families
with very high precision and recall.

Current commercial signature-based anti-malware solutions are incapable
of detecting malicious software until the release of appropriate signatures that
may take some time. Also, malware that are targeting certain organizations or
individuals are not well spread and anti-malware companies might miss them
(Pan et al. 2011). However, static analysis with the help of machine learning
could help in identifying new, zero-day malware with relatively high precision
and recall.

In this paper, we showed that certain aspects of static analysis software,
especially for the fact whether or not software is malicious, can be achieved by
machine learning algorithm quite successfully. The permission-based method
was able to classify malware from goodware in 89% of cases while source code
analysis classification performance was over 95%. The performance of 95.1%,
produced by SVM, and 95.6%, produced by ensemble learning method, is com-
parable with the current state-of-the art in the field, performing slightly better
than approach by Canfora et al. (2015) and similar to approach by Afonso et al.
(2015). Both of these high performing approaches from 2015. used dynamic
analysis of the android applications in combination with machine learning. Our
approach is, to the best of our knowledge, the only automated static malware
analysis method for android applications that uses machine learning. Cluster-
ing and unsupervised learning methods are worse for predicting whether the
application is malicious or not, since they base their learning on similarities
between different instances.



14 Nikola Milosevic, Ali Dehghantanha

In the future, we will examine the combination of the proposed permission
and source code analysis and how it will affect results. Also, bigger labeled bal-
anced data set and online learning can be helpful to improve results. Another
improvement may come from combining static and dynamic software analysis
in which multiple machine learning classifier would be applied to analyze both
source code and dynamic features of application in run-time.

References

V.M. Afonso, M.F. de Amorim, A.R.A. Grégio, G.B. Junquera, P.L. de Geus, Identifying
android malware using dynamically obtained features. Journal of Computer Virology
and Hacking Techniques 11(1), 9–17 (2015)

S.-i. Amari, S. Wu, Improving support vector machine classifiers by modifying kernel func-
tions. Neural Networks 12(6), 783–789 (1999)

G. Bai, L. Gu, T. Feng, Y. Guo, X. Chen, Context-Aware Usage Control for Android., in
SecureComm, vol. 10, Springer, 2010, pp. 326–343. Springer

S. Basu, A. Banerjee, R. Mooney, Semi-supervised clustering by seeding, in In Proceedings
of 19th International Conference on Machine Learning (ICML-2002, Citeseer, 2002,
pp. 19–26. Citeseer

Y. Bengio, Y. Grandvalet, No unbiased estimator of the variance of k-fold cross-validation.
Journal of Machine Learning Research 5(Sep), 1089–1105 (2004)

M. Bilenko, S. Basu, R.J. Mooney, Integrating constraints and metric learning in semi-
supervised clustering, in Proceedings of the twenty-first international conference on
Machine learning, ACM, 2004, pp. 81–88. ACM

T. Bläsing, L. Batyuk, A.-D. Schmidt, S.A. Camtepe, S. Albayrak, An android application
sandbox system for suspicious software detection, in Malicious and unwanted software
(MALWARE), 2010 5th international conference on, IEEE, 2010, pp. 55–62. IEEE

E. Boiy, M.-F. Moens, A machine learning approach to sentiment analysis in multilingual
web texts. Information retrieval 12(5), 526–558 (2009)

A. Boxall, 2015, The number of smartphone users in the world is expected to reach a giant
6.1 billion by 2020. http://www.digitaltrends.com/mobile/smartphone-users-number-6-
1-billion-by-2020/

T.K. Buennemeyer, T.M. Nelson, L.M. Clagett, J.P. Dunning, R.C. Marchany, J.G. Tront,
Mobile device profiling and intrusion detection using smart batteries, in Hawaii Inter-
national Conference on System Sciences, Proceedings of the 41st Annual, IEEE, 2008,
pp. 296–296. IEEE

G. Canfora, F. Mercaldo, C.A. Visaggio, Mobile malware detection using op-code frequency
histograms, in Proceedings of International Conference on Security and Cryptography
(SECRYPT), 2015

J. Cheng, S.H. Wong, H. Yang, S. Lu, Smartsiren: virus detection and alert for smartphones,
in Proceedings of the 5th international conference on Mobile systems, applications and
services, ACM, 2007, pp. 258–271. ACM

M. Christodorescu, S. Jha, Static analysis of executables to detect malicious patterns, Tech-
nical report, DTIC Document, 2006

M. Christodorescu, S. Jha, C. Kruegel, Mining specifications of malicious behavior, in Pro-
ceedings of the 1st India software engineering conference, ACM, 2008, pp. 5–14. ACM

Cyberedge, CYBERTHREAT DEFENSE REPORT, Technical report, 2014
Cyveillance, 2010, Cyveillance Testing Finds AV Vendors De-

tect on Average Less Than 19% of Malware Attacks.
http:www.businesswire.comnewshome20100804005348enCyveillance-Testing-Finds-
AV-Vendors-Detect-Average

D. Dagon, T. Martin, T. Starner, Mobile phones as computing devices: The viruses are
coming! Pervasive Computing, IEEE 3(4), 11–15 (2004)

M. Damshenas, A. Dehghantanha, 2013, M0Droid. http:m0droid.netai.netmodroid



Machine learning aided malware classification of Android applications 15

M. Damshenas, A. Dehghantanha, R. Mahmoud, A survey on malware propagation, analysis,
and detection. International Journal of Cyber-Security and Digital Forensics (IJCSDF)
2(4), 10–29 (2013)

M. Damshenas, A. Dehghantanha, K.-K.R. Choo, R. Mahmud, M0droid: An android
behavioral-based malware detection model. Journal of Information Privacy and Security
11(3), 141–157 (2015)

F. Daryabar, A. Dehghantanha, N.I. Udzir, Investigation of bypassing malware defences and
malware detections, in Information Assurance and Security (IAS), 2011 7th Interna-
tional Conference on, IEEE, 2011, pp. 173–178. IEEE

F. Daryabar, A. Dehghantanha, N.I. Udzir, M. Sani, S.b. Shamsuddin, F. Norouzizadeh,
et al., Analysis of known and unknown malware bypassing techniques. International
Journal of Information Processing & Management 4(6) (2013)

F.N. Dezfouli, A. Dehghantanha, R. Mahmod, N.F.B.M. Sani, S.B. Shamsuddin, F.
Daryabar, A survey on malware analysis and detection techniques. International Journal
of Advancements in Computing Technology 5(14), 42–51 (2013)

F. Di Cerbo, A. Girardello, F. Michahelles, S. Voronkova, Detection of malicious applications
on android os. Computational Forensics, 138–149 (2010)

W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L.P. Cox, J. Jung, P. McDaniel, A.N.
Sheth, Taintdroid: an information-flow tracking system for realtime privacy monitoring
on smartphones. ACM Transactions on Computer Systems (TOCS) 32(2), 5 (2014)

A.P. Felt, M. Finifter, E. Chin, S. Hanna, D. Wagner, A survey of mobile malware in the
wild, in Proceedings of the 1st ACM workshop on Security and privacy in smartphones
and mobile devices, ACM, 2011, pp. 3–14. ACM

P.A. Flach, The geometry of ROC space: understanding machine learning metrics through
ROC isometrics, in ICML, 2003, pp. 194–201

D. Gavriluţ, M. Cimpoeşu, D. Anton, L. Ciortuz, Malware detection using machine learning,
in Computer Science and Information Technology, 2009. IMCSIT’09. International
Multiconference on, IEEE, 2009, pp. 735–741. IEEE

GData, 2015, G DATA Mobile Malware Report
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The weka data

mining software: an update. ACM SIGKDD explorations newsletter 11(1), 10–18 (2009)
W. Hersh, Evaluation of biomedical text-mining systems: lessons learned from information

retrieval. Briefings in bioinformatics 6(4), 344–356 (2005)
J. Imgraben, A. Engelbrecht, K.-K.R. Choo, Always connected, but are smart mobile users

getting more security savvy? a survey of smart mobile device users. Behaviour & Infor-
mation Technology 33(12), 1347–1360 (2014)

Institute for Pervasive Computing, 2015, Pervasive Computing Infrastructure.
https://www.pervasive.jku.at/Teaching/lvaInfo.php?key=346&do=uebungen

Interpol and Kasperski lab, Mobile Cyber Threats, Technical report, 2014
G.A. Jacoby, R. Marchany, N.J. Davis IV, Battery-based intrusion detection a first line of

defense, in Information Assurance Workshop, 2004. Proceedings from the Fifth Annual
IEEE SMC, IEEE, 2004, pp. 272–279. IEEE

T. Joachims, Text categorization with support vector machines: Learning with many relevant
features, in European conference on machine learning, Springer, 1998, pp. 137–142.
Springer

H. Kim, K.G. Shin, P. Pillai, Modelz: monitoring, detection, and analysis of energy-greedy
anomalies in mobile handsets. Mobile Computing, IEEE Transactions on 10(7), 968–981
(2011)

H. Kim, J. Smith, K.G. Shin, Detecting energy-greedy anomalies and mobile malware vari-
ants, in Proceedings of the 6th international conference on Mobile systems, applications,
and services, ACM, 2008, pp. 239–252. ACM

M. Kitagawa, A. Gupta, R. Cozza, I. Durand, D. Glenn, K. Maita, L. Tay, T. Tsai, R. Atwal,
M. Escherich, E. He, A. Jump, B. Lakehal, C. Lu, T.H. Nguyen, A. Sato, V. Tripathi, A.
Zimmermann, W. Lutman, Market Share: Final PCs, Ultramobiles and Mobile Phones,
All Countries, 2Q15 Update, Technical report, 2015

J. Kittler, M. Hatef, R.P. Duin, J. Matas, On combining classifiers. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 20(3), 226–239 (1998)

R. Kohavi, et al., A study of cross-validation and bootstrap for accuracy estimation and



16 Nikola Milosevic, Ali Dehghantanha

model selection, in Ijcai, vol. 14, 1995, pp. 1137–1145
J.Z. Kolter, M.A. Maloof, Learning to detect and classify malicious executables in the wild.

The Journal of Machine Learning Research 7, 2721–2744 (2006)
M. Kubat, R.C. Holte, S. Matwin, Machine learning for the detection of oil spills in satellite

radar images. Machine learning 30(2-3), 195–215 (1998)
L.I. Kuncheva, Combining pattern classifiers: methods and algorithms (John Wiley & Sons,

New Jersey, United States, 2004)
T. Lee, J.J. Mody, Behavioral classification, in EICAR Conference, 2006, pp. 1–17
D.D. Lewis, W.A. Gale, A sequential algorithm for training text classifiers, in Proceedings of

the 17th annual international ACM SIGIR conference on Research and development in
information retrieval, Springer-Verlag New York, Inc., 1994, pp. 3–12. Springer-Verlag
New York, Inc.

J. Makhoul, F. Kubala, R. Schwartz, R. Weischedel, et al., Performance measures for in-
formation extraction, in Proceedings of DARPA broadcast news workshop, 1999, pp.
249–252

McAfee, Centre for Strategic & International Studies, Net Loses: Estimating the Global
Cost of Cybercrime, Technical report, 2014

A. McCallum, K. Nigam, et al., A comparison of event models for naive bayes text clas-
sification, in AAAI-98 workshop on learning for text categorization, vol. 752, Citeseer,
1998, pp. 41–48. Citeseer

F. Mercaldo, V. Nardone, A. Santone, C.A. Visaggio, Download malware? no, thanks: how
formal methods can block update attacks, in Proceedings of the 4th FME Workshop on
Formal Methods in Software Engineering, ACM, 2016a, pp. 22–28. ACM

F. Mercaldo, V. Nardone, A. Santone, C.A. Visaggio, Ransomware Steals Your Phone. For-
mal Methods Rescue It, in International Conference on Formal Techniques for Dis-
tributed Objects, Components, and Systems, Springer, 2016b, pp. 212–221. Springer

D. Michie, D.J. Spiegelhalter, C.C. Taylor, Machine learning, neural and statistical classifi-
cation (1994)

D. Milne, I.H. Witten, Learning to link with wikipedia, in Proceedings of the 17th ACM
conference on Information and knowledge management, ACM, 2008, pp. 509–518. ACM

N. Milosevic, 2015a, OWASP Seraphimdroid GitHub page.
https://github.com/nikolamilosevic86/owasp-seraphimdroid

N. Milosevic, 2015b, OWASP Seraphimdroid project page.
https://www.owasp.org/index.php/OWASP SeraphimDroid Project

S. Mohtasebi, A. Dehghantanha, Towards a unified forensic investigation framework of
smartphones. International Journal of Computer Theory and Engineering 5(2), 351–
355 (2013)

L. Nataraj, S. Karthikeyan, G. Jacob, B. Manjunath, Malware images: visualization and
automatic classification, in Proceedings of the 8th international symposium on visual-
ization for cyber security, ACM, 2011, p. 4. ACM

H.V. Nath, B.M. Mehtre, Static malware analysis using machine learning methods. Recent
Trends in Computer Networks and Distributed Systems Security, 440–450 (2014)

M. Ongtang, S. McLaughlin, W. Enck, P. McDaniel, Semantically rich application-centric
security in android. Security and Communication Networks 5(6), 658–673 (2012)

B. Pan, 2014, dex2jar. https://github.com/pxb1988/dex2jar
J.J.Y. Pan, C.C. Fung, et al., Boutique malware–custom made attacks on e-business. In

preceedings of The 9th International Conference on e-Business (iNCEB2010), 108–112
(2011)

X. Pan, Y. Zhongyang, Z. Xin, B. Mao, H. Huang, Defensor: Lightweight and Efficient
Security-Enhanced Framework for Android, in Trust, Security and Privacy in Comput-
ing and Communications (TrustCom), 2014 IEEE 13th International Conference on,
IEEE, 2014, pp. 260–267. IEEE

B. Raskutti, H. Ferrá, A. Kowalczyk, Combining clustering and co-training to enhance
text classification using unlabelled data, in Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM, 2002, pp.
620–625. ACM

A. Reina, A. Fattori, L. Cavallaro, A system call-centric analysis and stimulation technique
to automatically reconstruct android malware behaviors. EuroSec, April (2013)



Machine learning aided malware classification of Android applications 17

K. Rieck, T. Holz, C. Willems, P. Düssel, P. Laskov, Learning and classification of malware
behavior, 108–125 (2008)

K. Rieck, P. Trinius, C. Willems, T. Holz, Automatic analysis of malware behavior using
machine learning. Journal of Computer Security 19(4), 639–668 (2011)

J.D. Rodriguez, A. Perez, J.A. Lozano, Sensitivity analysis of k-fold cross validation in
prediction error estimation. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 32(3), 569–575 (2010)

J. Sahs, L. Khan, A machine learning approach to android malware detection, in Intelligence
and Security Informatics Conference (EISIC), 2012 European, IEEE, 2012, pp. 141–
147. IEEE

A.-D. Schmidt, S.A. Camtepe, S. Albayrak, Static smartphone malware detection (2010)
A.-D. Schmidt, J.H. Clausen, A. Camtepe, S. Albayrak, Detecting symbian os malware

through static function call analysis, in Malicious and Unwanted Software (MAL-
WARE), 2009 4th International Conference on, IEEE, 2009a, pp. 15–22. IEEE

A.-D. Schmidt, R. Bye, H.-G. Schmidt, J. Clausen, O. Kiraz, K.A. Yüksel, S.A. Camtepe, S.
Albayrak, Static analysis of executables for collaborative malware detection on android,
in Communications, 2009. ICC’09. IEEE International Conference on, IEEE, 2009b,
pp. 1–5. IEEE

A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S. Dolev, C. Glezer, Google android: A
comprehensive security assessment. IEEE Security & Privacy, 35–44 (2010)

K. Shaerpour, A. Dehghantanha, R. Mahmod, Trends in android malware detection. The
Journal of Digital Forensics, Security and Law: JDFSL 8(3), 21 (2013)

A.S. Shamili, C. Bauckhage, T. Alpcan, Malware detection on mobile devices using dis-
tributed machine learning, in Pattern Recognition (ICPR), 2010 20th International
Conference on, IEEE, 2010, pp. 4348–4351. IEEE

W. Shin, S. Kiyomoto, K. Fukushima, T. Tanaka, Towards formal analysis of the permission-
based security model for android, in Wireless and Mobile Communications, 2009.
ICWMC’09. Fifth International Conference on, IEEE, 2009, pp. 87–92. IEEE

W. Shin, S. Kiyomoto, K. Fukushima, T. Tanaka, A formal model to analyze the permission
authorization and enforcement in the android framework, in Social Computing (So-
cialCom), 2010 IEEE Second International Conference on, IEEE, 2010a, pp. 944–951.
IEEE

W. Shin, S. Kwak, S. Kiyomoto, K. Fukushima, T. Tanaka, A small but non-negligible flaw
in the Android permission scheme, in Policies for Distributed Systems and Networks
(POLICY), 2010 IEEE International Symposium on, IEEE, 2010b, pp. 107–110. IEEE

E. Skoudis, L. Zeltser, Malware: Fighting malicious code (Prentice Hall Professional, New
Jersey, USA, 2004)

N. Viennot, E. Garcia, J. Nieh, A measurement study of Google Play, in ACM SIGMETRICS
Performance Evaluation Review, vol. 42, ACM, 2014, pp. 221–233. ACM

P. Wu, T.G. Dietterich, Improving SVM accuracy by training on auxiliary data sources,
in Proceedings of the twenty-first international conference on Machine learning, ACM,
2004, p. 110. ACM

S.Y. Yerima, S. Sezer, I. Muttik, Android malware detection: An eigenspace analysis ap-
proach, in Science and Information Conference (SAI), 2015, IEEE, 2015, pp. 1236–1242.
IEEE


