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Abstract

In an expert knowledge elicitation exercise, experts face a carefully constructed list of questions that
they answer according to their knowledge. The elicitation process concludes when a probability
distribution is found that adequately captures the experts’ beliefs in the light of those answers.
In many situations, it is very difficult to create a set of questions that will efficiently capture the
experts’ knowledge, since experts might not be able to make precise probabilistic statements about
the parameter of interest. We present an approach for capturing expert knowledge based on item
response theory, in which a set of binary response questions is proposed to the expert, trying to
capture responses directly related to the quantity of interest. As a result, the posterior distribution
of the parameter of interest will represent the elicited prior distribution that does not assume any
particular parametric form. The method is illustrated by a simulated example and by an application
involving the elicitation of rain prophets’ predictions for the rainy season in the north-east of Brazil.

Keywords: Subjective probability, item response theory, latent trait, prior information,
nonparametric elicitation, rain prophets.

1. Introduction

In Bayesian analyses, we combine data and prior information in order to obtain the posterior
distribution about the quantities of interest. Prior knowledge is typically represented by some
probability distribution that will encapsulate all we know about the quantity before observing the
data. When the prior information is obtained from experts, we need some robust and defensible
method to translate their knowledge into a probability distribution. Therefore, expert knowledge
has a substantial role to play in statistical inference and decision making (Cooke, 1991; Morgan
and Henrion, 1992; O’Hagan et al., 2006) and has formed the basis of policy making for many
years (Jungermann and Zeeuw, 1977; Morgan et al., 1984; Weible, 2008; Gosling et al., 2012). In
order to have confidence in using expert judgements, structured expert knowledge elicitation (EKE)
methods have been developed that are designed to improve reliability and improve transparency
in the process. Given certain quantities of interest to a decision maker, EKE attempts to extract,
as reliably as possible, relevant knowledge from experts. This process is usually conducted by a
facilitator, a person responsible for the EKE process: their role is to design the questions, get

Email: ailton@ufc.br



judgements from the experts and convert those judgements into a probability distribution. These
tasks have many challenges: overconfidence on the experts’ part, experts’ lack of knowledge about
probability and language barriers to name a few. An EKE protocol should aim to deal with the
biases inherent in the process. O’Hagan et al. (2006) gives a detailed discussion about the problems
faced in the application of EKE and some strategies that have been proposed for dealing with them.

There are EKE processes designed to deal with different situations that depend on the quantity
of interest and the experts. We may have quantities that are easily measured: for example, the
average level of cholesterol of a certain risk group. However, EKE becomes particularly difficult
when the quantities of interest are not easily observed, in the sense that they cannot be directly
measurable by any instrument. For instance, aspects related to the human mind are difficult to
measure: depression in children (see De Roos and Allen-Meares, 1998), degree of xenophobia in a
society, students abilities, and so on. These are called latent traits (or variables) that cannot be
observed directly. Instead, we measure a quantity that provides a surrogate for the variable. In
spite of the difficulties, in many real world problems, we do need to quantify latent variables.

From the Bayesian point of view, a latent variable is seen as a parameter in a statistical model;
thus, EKE may need to be applied to obtain a prior probability distribution for a latent quantity
of interest. However, it can be difficult to build an EKE protocol that is able to capture accurate
quantitative judgements regarding an unobservable quantity (Kadane and Wolfson, 1998). Prob-
abilistic inversion techniques have been used in the past to relate latent variables to observables,
but these methods depend on the availability of a model of the real world process to reconstruct
beliefs about the latent quantity (see Du et al., 2006; Kurowicka et al., 2010, for example).

A statistical tool that tries to make indirect measurements of latent traits is based upon item
response theory (IRT) or latent trait theory. The method uses a dichotomous (or polytomous)
response logistic (or probit) model that is associated with the latent quantities of interest. The
way in which the latent trait and the items are related is that each positive answer to the items
will indicate a high value of a latent trait. Although item response theory has been mostly applied
in educational tests, it shares elements with logistic models and has a wide range of applications.
There is a fundamental difference between logistic regression and IRT: in the first, the regressor
variables are observed; whereas, in IRT, the regressor variables are non-observable parameters.
Most of the applications of the theory are devoted to educational and psychological testing. For
instance, in educational tests, IRT can help to calibrate questions so that a correct answer will
signify certain abilities of some candidate. In this case, the probability of a correct answer for
candidate j (j = 1,...,n) to the item i (i = 1,...,I) may be given by

1

P(U;; = 1|6;) = 1+ e—¥(05,a:.b)°

(1)

where in the traditional IRT applications (6, a;,b;) = a;(6; — b;), U;; = 1 if the answer is cor-
rect and U;; = 0 otherwise, §; is the ability (latent trait which we want to measure), a; is the
discrimination parameter, which indicates the capability of the item ¢ to discriminate between the
examinees with low and high ability; and b; is the difficulty parameter, which represents the diffi-
culty to answer correctly the item i. The model in (1) establishes that, for a given discrimination
and difficulty, a student with high ability 6; will have a higher probability of a correct answer. In
general, the scale of the ability and the item parameters are arbitrary.

More generally, the IRT can be used to measure any latent trait. The idea is to propose a ques-
tionnaire with many dichotomous (or polytomous) response questions that are associated with the
latent trait. In this way, a positive answer would indicate higher values of the latent trait. For
instance, suppose a person’s height is a latent trait, we can propose a dichotomous response ques-



tionnaire (with a large number of questions) that will give some idea of the person’s height. For
instance, the questions:

(1) “Do you need a chair to clean the top of your fridge?”
(2) “Do you need help to stow your hand luggage in an aeroplane?”

may help to capture the trait which represents the height of the person. See Hambleton et al. (1991)
and Baker (2001) for a complete description of IRT.

In the present article, we propose an approach to EKE using item response theory in which we
consider the quantity of interest in the EKE as the latent trait. In other words, the expert is asked
to answer a questionnaire with dichotomous questions that are directly related with the parameter
that we are to measure. Alternatives to this approach include the ranking of possibilities that can
be translated into information about the quantity of interest and the use of imprecise probability
models. Rank-based methods have been in use for many years to help derive subjective probability
distributions (Smith, 1967; Kirkwood and Sarin, 1985). Recently, these methods have been applied
in the context of horizon scanning for nanotechnologies (Flari et al., 2011) and the assessment of
threats to animal health (Jaspersen and Montibeller, 2015). We propose the IRT-based approach as
an alternative method when it is more straightforward to devise yes/no questions rather than pos-
sibilities to rank. Of course, the relative utility of the two approaches will depend on the application
area and the ability of the experts. A ranking method may be more suitable when the experts have
a clear understanding of the proposed possibilities; in our application, the range of knowledge was
such that the experts would not have a good appreciation of such scenarios. Imprecise probabilities
have also been used to capture the ineffectiveness of traditional EKE techniques (Walley, 1996;
O’Hagan and Oakley, 2004; Kriegler et al., 2009), but, in our approach, we can directly model the
uncertainty using simple questions and straightforward probability modelling rather than adding
an extra layer of mathematical complexity.

In Section 2, we define the problem and the IRT model to be used in the EKE. In particular, we
propose two models for parameters defined within the (0, 1) interval. In Section 3, we illustrate the
method through a simulated example and we revisit the model proposed by Andrade and Gosling
(2011) (using updated data) in which we compare the prior information obtained from Brazilian
rain prophets by EKE and by IRT methods.

2. Expert elicitation through IRT

Let 0 be a latent trait that we wish to capture expert knowledge about. In order to assess the
magnitude of 0, suppose a dichotomous response questionnaire with I questions is created, in such
a way that, for several scenarios (events) directly associated with 0, an expert answer of “yes” will
indicate large values of # and “no” will be associated with small values. Let

)1 if the jth expert responds “yes” to the ith question,
" 0 if the jth expert responds “no” to the ith question,

for the I questions and n experts. A linear IRT logistic model is of the form:

e¥(0;5,a:,b;)
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where ¢ = 1,...,1 and j = 1,...,n; the parameter 6; represent the latent trait that led expert j
to respond “yes/no” to questions relating to 6; a;, b; are the item parameters, which are used to
assess the items in the same sense as in (1). In this set-up, we are allowing different experts to have
different beliefs about 6 using the individual 6;; combination of these separate beliefs to an overall
distribution for 6 is discussed in Section 3.2.1.

In the following sections, we propose two models for 6 that is constrained to be in (0,1). The
first model considers the item discrimination and difficulty parameters (a;, b;) which may be useful
to assess the IRT questionnaire itself, that is, in the case when it is possible, perhaps through a
long ran repeated process, to judge the effectiveness of each item in capturing the latent trait. In
contrast, the second model assumes that there is no information available about the discrimination
and the difficulty involving the answer of the items.

2.1. Model with item parameters

The function ¢ (6;, a;, b;) defines the type of IRT model. There are many plausible alternatives for
(.), the most common are: ¥(0;, a;, b;) = a;(8; —b;) (two-parameter model), ¢ (6;, a;, b;) = (6; —b;)
(one-parameter model or Rasch model) and the three parameters model, which takes in to account
the possibility that an expert, who believes in low values of #, may answer “yes” to the item by
chance. All these models can be used in an EKE process. In the present work, we propose a new
functional form specially designed for a latent trait 0 < 6; < 1:

1 1
w(ﬁj,ai,bi) = Qy <1_0j - @ - bi) s (3)

where the item parameters have similar interpretation as in the traditional models. We adapt the
interpretation to the EKE perspective where a; is the capability of the item ¢ to discriminate
between those experts who believe in large values of 6; from those who believe in small values of §;.
Also, the parameter, b;, will indicate the difficulty in responding positively to the item ¢ under the
latent trait ¢;; that is, how unlikely is the scenario proposed by the item . For the purpose of this
work, the specific choice of the function in (3) provides a correspondence between the latent trait
¢; and the probability of responding positively to some item 4. For instance, for item parameters
a; = 1 and b; = 0, a latent trait of §; = 0.5 will lead to a probability of 0.5 of responding positively
to a certain item. In other words, an expert, who feels that the quantity of interest might be in the
central point of the scale, will have a probability of 0.5 of answering “yes” to the proposed item. Of
course, depending on the item parameters, this correspondence can be different, which is natural
when we consider the nature (discrimination and difficulty) of each item.

The relation between the latent trait and item responses are shown in Figure 1. Large values of a;
mean that the item can efficiently discriminate between those experts who believe in large values
of 0; and those who believe in low values of 6;. In this model, the scale of a; must be positive,
otherwise the model would indicate that the probability of responding positively to some item
would be small when the expert holds a high latent trait 6;. The parameter b; gives an indication
of how large the latent trait should be to respond positively to the item ¢, large values of b; will
require a high latent trait; that is, in order to respond “yes” to a given item, the expert should be
very confident of 6; being large.

In the Bayesian IRT approach, we can assign prior distributions to represent our prior knowledge
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Figure 1.: Item curve: solid line represents (a; = 1,b; = 0), compared to other
values of the parameters: (a; = 1,b; = 2) gives the curve of an item which is
more difficult to answer “yes”, (a = 3,b = 2) reflects a highly discriminative
and with high difficulty, whereas (a = 3,b = 0) expresses a highly discriminative
item but with low difficulty.

about the latent trait as well as the item parameters. Formally,

Yij\ﬁj,ai, bz‘ ~ Ber(Pij) (i.i.d.), (4)
0 ~ m;, a; ~ pi, b ~ pj,
where P;; is given by (2) and 7;, p; and p} are prior distributions, which should encode some
relevant information about the quantity of interest and the items characteristics (discrimination
and difficulty). This information may be obtained from past studies or by eliciting qualitative
information from experts involved in the formulation of the items. We assume independence among
experts and local independence among the items; that is, given a certain ability of the experts, the
responses are independent. Independence amongst items is not easy to assure because it depends
on the IRT questionnaire itself. Some psychological strategies can be used to reduce dependence,
such as possibly inserting other questions to avoid biased answers from one item to the next one.
For further details of independence in IRT models, see Lee (2004) and Wang and Wilson (2005).

The likelihood function is given by
1(0,a,b;y) o H I[Py a—pytv, (5)
j=li€l;

where 6 = (61,...,6,), a = (a1,...,ar), y = {yij}, b = (b1,...,br) and I; is the set of indexes i
corresponding to the answered questions in the questionnaire.



Due to the assumed inter-independence among experts and items, the posterior distributions will
be given by

n I I n
p(8,a,bly) o< [ [ 7(6;) [ [ pitas) [T i) TT T P54 (1 — Pig)* ¥,
Jj=1 i=1 i=1 j=14€l;

fori=1,..,7and j=1,...,n.

In the traditional IRT tests, the model considers the discrimination and the difficulty aspects of each
item. The process of estimating (a;,b;) is called calibration, in which the items are calibrated by
submitting them to real word tests (pre-test), that is a large bank of items is sent to several schools
and applied to the students, then based on their performance, the discrimination and the difficulty
of each item are estimated; then, the estimation of the latent trait will take the point estimates of
a; and b; in consideration. Note that in order to achieve a good precision in the estimation process
we need both a large sample and a large number of items, that is we need as many respondents
as possible for a good calibration and a large number of items in order to measure the abilities
as accurately as possible. Note that this process can be very expensive and time demanding, also
it carries a lot of uncertainty itself, due to the natural variance among students. Alternatively, as
discussed by Fox et al. (2015), in a Bayesian framework, instead of treating the parameters as fixed
quantities, we assign prior distributions to the item parameters. This eliminates the expensive stage
of pre-testing the items and the prior distributions will express the item parameters (discrimination
or difficulty) and the uncertainty about them. In addition, the introduction of informative prior
information makes the IRT analysis less dependent on the sample size, which is a powerful tool since
in many applications we have only a small number of respondents. The relation between sample
size and the IRT estimation process in the Bayesian framework is explored in more detail by Torre
and Hong (2010) and Matteucci et al. (2012).

2.2. Model without item parameters

Usually, the IRT theory may involve either three, two or one item parameters model, depending on
the information available. In some situations, no prior information about any of the item parameters
is available, this lack of information can be expressed by: (1) assigning diffuse prior distributions
for the item parameters or (2) assuming the difficulty and discrimination are the same for all items.
Note that in the first situation, although not knowing much about the difficulty and discrimination
parameters, it is assumed that they may be different from one item to another, while the second
scenario is more restrictive, the difficulty and discrimination parameters are the same for each
item. Observe that the theory is flexible in allowing to build up different scenarios depending on
the information available. In our case, we consider the second scenario, since in our application we
preferred to assume that the item parameters are the same for all items. Thus we consider the a
simplified version of the IRT logistic model (3), that is

11
e\ 7% 9

_— (6)
1+ e<1j9f 7%>

Py = P(Y; =1[6;) =

With this model, the experts’ responses will not depend on the item parameters.

In contrast to the educational applications of dichotomous IRT, which admits only two results



(correct or incorrect/NA), here the expert can respond “yes”, “no” or “NA” (no response), the
latter is feasible since, in practice, the expert may not be able to respond to some of the questions.
Nevertheless, the experts’ knowledge expressed in answers to the other questions should still be
regarded as a valid source of information about the latent parameter. The missingness mechanism
may vary with the application, we may have completely at random missingness (MCAR), where
the missing answers does not follow any pattern; some missing data might depend only on some
observed data (MAR) and; in a more complex setting the missingness follows some pattern involving
both the observed and unobserved data (MNAR). A model of missingness could be incorporated
to data model (Rubin, 1987), however this approach will require a rather deep knowledge of the
data generating mechanism. In the proposed theory, missingness is assumed either MCAR or MAR,
although the MAR assumption would require large datasets in order to be justified. It follows that
the likelihood function is given by

(6;y) o [[ PP (1-Py)' o, (7)
J€l;

where 8 = (61, ...,6,,) and I; is the set of indexes j corresponding to the answered questions in the
questionnaire.

The posterior distributions will be given by

p(Bly) o ij(ej) H P]y-f(l — Py,
j=1

JEI;

for j = 1,...,n. Note that depending on the choices of the prior distributions the computation can
become challenging. Albert (1992) proposed a general procedure for the two-parameters normal
IRT model, using a data augmentation strategy to obtain the full conditionals to be used in the
Gibbs sampling algorithm. Other works explored his ideas, for instance Albert and Chib (1993)
considered polytomous responses, Albert (1998) showed how MCMC behaves for different sample
sizes and the number of items. Several other studies consider Bayesian multidimensional IRT, giving
special attention to the posterior computation: Fox and Glas (2001), Fu et al. (2009) and Sheng
and Wikle (2009), to cite a few. Roughly speaking, these works provide methods to efficiently
implement the MCMC algorithms in rather complex multivariate settings. For instance, Fox et al.
(2015) simulate quite efficiently from the posterior distribution using WinBUGS in several complex
models such as unidimensional and multilevel models. In the present paper, we consider EKE for a
single parameter, which will be approached with the unidimensional IRT theory, which is relatively
straightforward to implement in common MCMC packages. In particular, WinBUGS/0OpenBUGS have
a great variety of distributions available that are suitable for using as prior distributions of the
latent trait (quantity of interest) and the item parameters.

3. Examples

In this section, we assess the practicality of applying the IRT method for EKE. We first present an
illustrative example in which we assess the different possibility of answers in an IRT questionnaire.
The second example is an application involving the elicitation of the probability of a good rainy
season based on rain prophets’ beliefs.



3.1. Simulated example

We consider a problem of eliciting prior information concerning some parameter 0 < 6 < 1. We
suppose an IRT questionnaire of I = 20 questions is proposed to J = 10 experts. The questionnaire
is built in a such way that, for each answer 1 indicates higher values of 8. The aim of this example is
to assess the relation between the set of answers of the experts and posterior distribution resulting
from the IRT method, that is we want to obtain p(f|y) which will play the role of the elicited prior
distribution p(6). We consider Model (4), with P;; (j =1,...,10 and ¢ = 1,...,20) given by (2) and
P(0;,ai,b;) (j=1,...,10 and i = 1, ..., 20) given by (3). We assign § ~ Uniform(0,1), a; ~ Ga(3,5)
(iid) and b; ~ Ga(2,4) (iid) (i =1, ...,20). The posterior distribution will be given by

(9 a; b’ )O(ay ;_i_b Y 1—a; L_i_b n_ya2675aib‘673bi (8)
pj7 Z7ly 7 1_0J 0] 3 2 1_9] 9] 3 7 ) 9

where y vector of valid answers (0 or 1), y = >, > ;y;; and n is the number of valid answers.
We assume that the discrimination and the difficulty parameters are independent and identically
distributed according to some gamma distribution, respectively a; ~ G(3,5) and b; ~ G(2,4) Vi,
thus all the items have the same law of discrimination and difficulty. Then we simulate different
sample scenarios by changing the number of “Yes”, “No” and “NA” responses, thus we can assess
the impact (location and dispersion) in the posterior distributions of 8 accordingly to the proportion
of “Yes”, “No” and “NA” responses.

Given that (8) is not tractable analytically, we used the OpenBugs code of Appendix A to obtain
the posterior distributions for each set of answers of the expert, denoted by the percentages of
(1,0,N4).

The derived prior distribution and the mean and standard deviation in each hypothetical set-up
(Figure 2) indicate that in the case of 100% of “yes” answers (Expert 1) the prior obtained will
be concentrated very close to 1 and the standard deviation is relatively small, that is the expert
feels that 0 will likely be high and he/she is quite certain about it. In contrast, all “no” responses
will yield a prior distribution close to zero with some higher variance. The presence of many “NA”
answers greatly increases uncertainty about theta, either because the expert was in doubt about
the items or could not respond to them (Experts 9 and 10, Fig. 2). Note that this presents well
the idea of elicitation, since if the questionnaire fails to collect a valid answer we loose some piece
of information about 6. For example, Expert 6 answered 50% of “yes” and left unanswered 50% of
the questions, in this case there is still evidence for high values of § however with a larger variance.
Expert 3 answered equally “yes” and “no”, which yielded a prior distribution around 0.71, note
that although we have the same proportion of “yes” and “no”, the discrimination and the difficulty
parameters are playing some role in P;;, that is a response “yes” contributes more for higher values
of # than a response “no” contributes for lower values of 6.

In summary, the model is converting different experts’ set of answers into prior distributions. The
function in (3) is proposed to deal with parameters defined in (0, 1), other expressions for 1) can be
proposed, depending on the quantity of interest. The item parameters, which should express the
discrimination capability and the difficulty of each item, will have a direct impact on the final prior
distributions since items with large power of discrimination will increase the probability P;; if the
answer is “yes”. Thus, if item parameters are to be used, a careful analysis of their impact on the
resulting prior distributions should be conducted.
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Figure 2.: Experts’ prior densities for each set of answers: percentages of (1,0,NA). A
large number of “Yes” answers will draws the prior distribution closer to one, whereas a
large number of “No” answers will bring it closer to zero. A large number of “NA” will
be characterised by a greater dispersion.

3.2. Application: quantifying the beliefs of rain prophets

Andrade and Gosling (2011) quantified the opinions of the Brazilian rain prophets, whom observe
the local nature and make predictions about the rainy season every year. Rain prophets are present
in several cultures, particularly in regions where water is scarce and the local communities depend
heavily on the yearly rainy season. The Brazilian north-east is a semi-arid region, which receives
an average of 500mm of rain per year. The region is located in an inter-tropical convergence zone
where many natural phenomena occur (winds, sea stream and pressure, etc.), which make accurate



forecasting very difficult for meteorologists. In this context, the figures popularly known as rain
prophets, although they reject this designation, have a reputation for accurate seasonal weather
prediction. The prophets make claims about being able to make predictions based on the behaviour
of nature: that is plants, animals, stars, winds, and so on. For instance, the way ants clear their
nests is associated with water flow, also frogs hibernation period seems to predict the soil humidity.
Taddei (2005) reviews a wide range of natural phenomena observed by the rain prophets for use in
their predictions.

In the model proposed by Andrade and Gosling (2011), the experts were the rain prophets and the
quantity elicited was the probability of a good rainy season. The elicitation task was particularly
challenging due to the prophets’ lack of familiarity with probability, ambiguity in qualitative state-
ments, dialectal language, etc.. In a more general context, Burgman (2015) provides some further
discussion about the problems found using expert’s knowledge and how to approach them in the
decision process. Formally, Andrade and Gosling (2011) proposed an elicitation setting specific for
the rain prophets in which the quantity of interest was 0: the probability of a good rainy season.
This was defined by the prophets themselves as “wet ground throughout the season”. In this EKE
method, several important biases were considered such as illiteracy, the dialectal language, lack of
knowledge about probability and great uncertainty. The procedure tried to embrace these issues,
yielding a probability (prior) density for each prophet, which represented his knowledge about the
forthcoming rainy season. Thus, their opinions were elicited with the aim that the local population
could have a clearer idea about the predictions. For instance, we could have, in the local press,
statements such as “according to the rain prophets, the probability of having a good rainy season
is 64%” (Andrade and Gosling, 2008), indicating their beliefs in a way that could be understood
by the general public.

In the present paper, 6 is treated as a latent trait from the IRT perspective. In 2012, during the
annual prophets’ meeting, which takes place in the first week of January, we applied the same
elicitation procedure of Andrade and Gosling (2011), in order to obtain for each prophet the prior
distributions for 6, the probability of a good rainy season. At the same meeting, we applied a
dichotomous response questionnaire to the same prophets as suggested in Section 2. In the EKE
method the parameter of interest is the probability of a good rainy season, while in the IRT method
0 is a latent trait which cannot be interpreted as such, but a quantity which indicates how confident
in a (0,1) range the rain prophet is about the forthcoming rainy season. This will allow us to make
a rough comparison between the probability of a good rainy season with the latent trait which
indicates how much the prophet the prophets’ beliefs.

The IRT procedure is useful since we can use a questionnaire with several simple questions which
will be answered with “yes”, “no” or non-response, where an answer “yes” is set as one and will
indicate a larger value for the latent trait of a good rainy season, and zero otherwise. Note that
from the prophet’s point of view, answering “yes” or “no” is much easier than trying to figure
out the possible values of the parameter and the uncertainty associated with it. The questionnaire
was based on anthropological studies by Taddei (2005), who gives details regarding which natural
phenomena the prophets observe. Questions relate to the actual elements of the local ecosystem
that the respondents observed during the four months before the meeting. The questions are listed
in Appendix B.

All the aspects covered in the questions are closely related to a good rainy season according to
studies of the rain prophets, and every positive answer will indicate a higher latent trait 6. There
were 16 prophets and 33 questions, many of which were not answered because some of the elements
covered in the questionnaire were not observed by some of the prophets. For instance, there are
prophets who observe only plants or stars, others only winds, and so on. Note that this is not
missing information, but non-existent information, therefore the likelihood function given in (7)
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embraces only the valid responses.

As mentioned before, constructing prior distributions for the item parameters involves some effort,
since a specialist needs to express their opinions concerning the discrimination and the difficulty
about each item through a probability density. In our example, there are no specialists to assess
the proposed items, because this would require a long term experience about the efficiency and the
difficulty of each item in predicting a good rainy season. Therefore, we consider a simplified version
of the IRT logistic model (3), where P;; = P;. Thus, the prophets’ responses will depend only on
their latent trait of the a good rainy season. We rewrite model (4) as

Y;|0; ~  Ber(P;) ind, ()

6; ~ Uniform(0, 1),
where j = 1,...,16, P; is given by (6). In this way, the posterior distribution p;(0;|y) = p;(6;)
(j =1,...,16) will represent the uncertainty about the rainy season of each prophet.

In order to compare the elicited prior distributions obtained from the EKE and IRT methods, we
consider the same EKE procedure adopted by Andrade and Gosling (2011): that is, we assume that
the prior information about each 6; have Kumaraswamy distributions with parameters obtained by
the elicitation procedure, that is we elicit from the rain prophets the mode and the variance of the
Kumaraswamy distribution, then we obtain its parameters. The information carried by 7;(6;) about
9; (j = 1,...,16) provided by that EKE method will be compared with the latent trait evidences
obtained by the IRT questionnaire (applied to the same prophet).

3.2.1. Results

We used the package OpenBugs to extract a sample from the posterior distribution for the §; (the
OpenBugs code is in Appendix A). We compare (Figure 3) the prior distributions obtained by the
EKE (resulted from the same procedure of Andrade and Gosling, 2011) with the IRT method
(Model (9)). By comparing the modes, the EKE and IRT methods seem to capture approximately
the same prior knowledge of some prophets (4, 12, 13 and 14), we can note also some coherence
of the two methods with prophets 2, 3, 6 and 7, since the modes, although not so close, are in the
same half of the scale. Comparing the variance, we see that in most of the cases, the prophets have
different uncertainties elicited by the two methods (prophets 5, 7, 8, 9, 10, 11, 12 and 16). However,
prophets 1, 2, 3, 13, 14 and 15 present similar variances.

In general, it seems the two methods behave rather differently among the prophets. Typically such
discrepancies would be dealt with via a feedback stage within the elicitation process, where the
experts would be given an opportunity to assess which model represents more accurately his/her
knowledge. Unfortunately, we could not ask the prophets for feedback because of time and com-
munication constraints. Feedback is important, and we would attempt to provide useful feedback
and allow the experts to modify their distributions whenever possible. In our application, time con-
straints impacted this, but we also could see that only a few of the experts would have been able
to engage in a discussion of probabilities. If we would have had more time, we could have built in
feedback in the form of quantities and concepts that the experts could relate to. Of course, it would
have been challenging given their general lack of numeracy skills, but most experts would at least
be able to judge whether something is equally likely or not to happen so comparative questions
could be asked to check the consistency of the fitted distributions.

We obtained the estimates of 6, for each prophet by the two methods, and highlight how the
estimates vary among the two methods (Figure 4). In general, the overall set of predictions (the

11



w g v _g '| v _g w
> Prophet 1 > Prophet 2 ': > Prophet 3 > Prophet 4
=g =g [ Bo | Bo
2+ 2= \ 2= n 2=
[0} [0} | [0} n [0}
° ° e e
Qo Qo Al QS - S
o a V| a L s
1 { ! - \
R C T C 77T ° v T
0.0 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
0 [ 0
n _g [To I v _g v _g 7
= - - - |
> Prophet 5 N > Prophet 6 > Prophet 7 > Prophet 8 h
Bo N Go | Bo | Bo | "
c— " cr— . cr cr '
3 3 nl g g |
50 | Bo - " s 50 g
S | & S s S ;!
/oy ’ - = - - - 1
- = - A - et -\ A\ —+ —_— - - — v
S T S T C T e e e I B
0.0 0.4 0.8 0.0 04 0.8 0.0 0.4 0.8 0.0 0.4 0.8
0 0 0 0
[To R 0 0 _ [T
> Prophet 9 > Prophet 10 > Prophet 11 > Prophet 12 A
B | @0 | wo a0 '
c— c— cr— c— ]
S S S S y
ELO - ELO - ém - élﬂ — :
o a a - o
o d=====-2/)- -\~ ~ o 4 _—-= < _\\. O—’, SAaL o o o j‘\
— 1 T T T 1 — 1 T T T 1 — 1 T T T 1 — 1 T T T 1
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
0 0 0 0
[T 0 _ 0 _ o0
> Prophet 13 > Prophet 14 > Prophet 15 > Prophet 16
B0 | 2o | wo wo
c— c— c— c—
3 S S S
.ém — I" _ém — _ém — ‘N _él.n -
o e o o= o /' \ o A
- \ - - - H4r S~ -4~ — SN~ o
R e e B e R e B e R e BN B R e I B B
0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8 0.0 0.4 0.8
0 0 0 0

Figure 3.: Prophets’ prior densities: continuous line: IRT method; dashed line:

EKE method.

latent trait of a good rainy season) change considerably (see Figure 4(a)). This suggests that the
methods are mostly capturing different beliefs of the experts. In addition, the overall uncertainty is
lower (Figure 4(b)), suggesting that the IRT method tends to increase the prophets’ self confidence
in answering the objective questions, reducing the uncertainty about their prior belief.

As discussed in O’Hagan et al. (2006), the decision maker, typically the researcher interested in the
prophets’ opinions, can treat multiple prophets as data; that is, he/she should make his/her own
reasoning about the parameter and then update it with the prophets’ prior distributions. Roughly
speaking, given the prophets prior distributions m;(6;) (j = 1,...,k), we should decide a sensible
way to combine these sources of information. We may have prophets with more reliable information
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Figure 4.: Comparison of how the prior means and standard deviations change
from of the EKE and the IRT methods.

than other, thus it seems natural to consider the global prior distribution as

k
w(0) = wym;(6;), (10)
j=1

where w; are weights attributed to each prophet’s opinion. There are many ways to combine prior
densities, reviews can be found in Genest and Zidek (1986) and Clemen and Winkler (1999).

On the other hand, using exclusively the IRT model, we can combine the opinions from the IRT
questionnaire by simply considering the model

Yijl6 ~ Ber(P) (ii.d.) Vi, j, (11)

0~ Uniform(0, 1),
where P = exp (1/(1 —6) —1/6) [1 +exp (1/(1 — ) — 1/6)]"". In this way the proportion of posi-
tive responses will indicate higher values of the latent trait. The global prior variance will be based
on the proportion of items which the prophets responded “yes” and those who answered “no”,
since all the items were conceived to indicate high values of § when the answer is positive and,
otherwise when the answer is “no”, all the answers together represent some uncertainty which will
be captured by the variance.

We compare the three resulting prior distributions for § (Figure 5): the combination (11) obtained
from the EKE method, from the IRT method, that is using (10) to combine the p;(#;) and using
(11). We used equal weights to combine the Kumaraswamy prior distributions and MCMC to obtain
a sample from the posterior distribution yielded by model (9). Note that there is a concordance
concerning the mode, but the dispersion gives some difference across the previous EKE method
and the IRT methods. This indicates that the two different tools are (globally) capturing the same
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Figure 5.: Combined prior distributions of §: EKE
method (continuous line), IRT methods (dotted
line) and IRT method using (11) (dashed line).

4. Concluding remarks

The fundamental idea of using IRT as an EKE tool is to create a questionnaire with simple dichoto-
mous questions that are directly associated with the quantity of interest. Thus, instead of trying
to make the expert to think about the possible values of the parameter, which is challenging in
many settings, the expert is asked to consider which scenarios will or will not happen. The process
of creating the questionnaire, as in general EKE protocols, should be rigorous and address issues
related to heuristics and biases. Most importantly, both the expert and the facilitator should come
together to assess which scenarios are most closely associated with the latent trait. Since the pro-
posed method results in a prior distribution that is not from a common conjugate family, we also
have the flexibility to more closely match the experts’ beliefs.

As we have shown in the present paper, the procedure is suitable for any number of experts. When
many experts are available, we can add the discrimination and the difficulty parameters to the
IRT model. In fact, some items might have been inadequately chosen in the sense that a long run
experience in a specific setting could show that the item is not suitable to capture the latent trait.
This can allow greater insights regarding the items themselves and the efficacy of the items in
measuring the latent trait. As we gain more experience of applying this method, prior distributions
for the item parameters may be proposed since we may be able to prejudge the effectiveness of the
individual questions.

Assessing the adequacy of the IRT model as an elicitation tool is important. As the model is
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applied, steps will need to be taken to check how the proposed model fits to related data and the
assumptions underpinning the model. In the context of IRT in general, there are several strategies
used to assess the model. Fox (2010) provides several methods to check the model fit: in the
context of expert’s elicitation, the main procedures listed by Fox (for example, residual analyses
and posterior predictive assessment) require a large number of experts. Having a large number of
experts involved in elicitation is rare, and smaller sample methods will need to be devised to assess
the adequacy of the method. Alongside this, to further understand the implications of the various
model assumptions, research is required to determine the impact of not having assumptions of the
local and inter-expert independence satisfied, which will become possible as the method is more
widely applied.

Acknowledgement: We thank the Associate Editor and the Referees for the comments and sug-
gestions which improved considerably the presentation of our work.
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Appendix A OpenBugs Codes

A.1. Example 3.1

model ;{
for (j in 1:J) {
for( i in 1:I ) {
Y[i,jl = dbern(pli,jl)
pli,jl <- 1/(1+exp(-alil/(1-thetal[jl)+1/thetal[jI+b[il))
}

}
for (j in 1:J) {
thetal[j]l] ~ dunif (0,1)
}

for( i in 1:I ) {
ali]l - dgamma(3,5)
b[i] ~ dgamma(2,4) # It should be flat

o

1ist(I=20, J=10, Y=structure(.Data =c(1,0,0,0,0,NA,0,0,NA,NA,1,0,0,0,0,NA,0,0,NA,NA,1,
0,0,0,0,NA,0,0,NA,NA,1,0,0,0,0,NA,0,0,NA,NA,1,0,0,0,0,NA,0,0,NA,NA,1,1,0,0,0,NA,NA,0,
NA,NA,1,1,0,0,0,NA,NA,0,NA,NA,1,1,0,0,0,NA,NA,0,NA,NA,1,1,0,0,0,NA,NA,0,NA,NA,1,1,0,0
,0,NA,NA,0,NA,NA,1,1,1,0,0,1,1,NA,0,NA,1,1,1,0,0,1,1,NA,0,NA,1,1,1,0,0,1,1,NA,0,NA, 1
,1,1,0,0,1,1,NA,0,NA,1,1,1,0,0,1,1,NA,0,NA,1,1,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,0,0,1,
1,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,0,0,1,1,1,1,0,1,1,1,0,0), .Dim=c(20,10)))

A.2. Example 3.2

model ; {
for (j in 1:16) {
for( i in 1:33 ) {
Y[i,jl = dbern(pli,jl)
pli,jl <- 1/(1+exp(-1/(1-thetal[jl)+1/thetaljl))
}

}
for (j in 1:16) {
thetal[j]l] ~ dunif (0,1) \# Uniform prior
}

~

.Data = c(1., 1., 0., 1., 1.

;
5
-
;
,
;
;
;
’
o

list(Y=structure

1., NA, 1., 1., 1., NA, 1., NA, 1., 0., 0., 1., 1., 1.,

1.,1., 1., NA, 1., 1., 1., 1., 1., 1., 1., NA, 1., 1., 0., 1., NA, NA, 1., NA, NA, 1.,

NA, 1., 1., 1.0 1., 1., 1.0 1.0 NA, 1., 1., 1., 1.1, 1.,

1.,1.,1.,0., 1., 1., 1., 1., NA, 1., 1., 1., 1., 0., 1., NA, NA, NA, 1., 0., 1., 1.,

NA, 1., 1., 1., NA, NA, NA, NA, NA, 1., 1., NA, NA, NA, NA,

0., NA, NA, NA, NA, NA, NA, NA, NA, NA, 1., NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
> 0., NA, 1., NA, 1., NA, NA, 0., 1., NA, 1., 0., 1., 1.,

1., NA, 1., 1., 1., NA, 1., 1., 1., 0., 1., 1., 1., 1., 0., 0., 1., 1., 0., NA, NA, O.,

NA, NA, O., NA, 1., 1., 1., 1., 1., 1., NA, 1., 1., 1., o..

1., 1., NA, 1., 0., 0., 1., 1., 0., 1., NA, 0., 0., 0., 1., 0., 1., NA, NA, O., NA, NA,

NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, 1., 1., 1., 1., NA,

1., NA, 1., 1., 1., 1., 1., 1., NA, 1., 1., 1., 1., 1., 1., NA, 1., NA, 1., 1., NA, O.,

1.0 1., 1., 1., NA, 1., NA, 1., 1., 1., 0., 1., NA, 1., 0.,

NA, 1., 1., NA, NA, NA, 1., NA, NA, 1., O., O., 1., NA, NA, O., NA, NA, 1., 1., 1., 0.,

0., 1., NA, 1., 0., NA, NA, NA, 1., NA, 1., NA, NA, 1., 1.,

1., 0., 1., NA, NA, 1., NA, 1., O., NA, NA, 1., NA, NA, O., 1., NA, NA, NA, NA, NA, NA,

1.0 1. NA, 0., 1., 1., NA, NA, 1., NA, NA, 0., NA, 1.,

NA, O., NA, NA, NA, 1., 0., O., NA, 1., NA, 1., O., NA, 1., 1., 1., NA, NA, NA, NA, 1.,

NA, NA, 0., 1., NA, 1., 1., 0., NA, NA, 1., 1., NA, NA,

1., NA, NA, NA, NA, NA, 1., NA, O., NA, O., NA, NA, 1., 0., 0., 1., NA, NA, 0., 0., NA,

NA, 0., NA, NA, NA, NA, NA, NA, NA, NA, NA, 1., 0., NA,

NA, 1., NA, 1., 1., O., 1., 1., NA, NA, O., 1., NA, 1., 1., NA, NA, NA, NA, NA, NA, NA,

NA, NA, 1., 1., NA, 1., NA, NA, NA, 1., 1., 1., 1., NA,
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NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,

NA,



1., NA, NA, NA, 1., 1., NA, NA, 1., NA, 1., NA, NA, NA, NA, NA, NA, O., NA, NA,
1., NA, 0., 1., NA, NA, 0., NA))

Appendix B IRT Questionnaire

(¢D)

(2)

3)

(4)

(5

(6)

0]

(8)

9
(10)
(11)
(12)
(13)
(14)
(15)
(16)
an
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
27
(28)
(29)
(30)
(31)
(32)
(33)

Will the small water reservoir in the region will get full?
Did the bees suggest a good rainy season?

Will the low lands will be wet throughout the season?

Did the ‘‘caranguejeira’’ spider suggest a good rainy season?
Will the leafs of the plants will turn green?

Did the moon suggest a good rainy season?

Did the October sun rising suggest a good rainy season?
Did the ‘‘serra-pau’’ beattle a good rainy season?

Did the ‘‘Caatingueira’’ tree suggest a good rainy season?
Did the ants suggest a good rainy season?

Will we have a good grain crop?

Did the new year sun rising suggest a good rainy season?
We we have a good milk production?

Did the Christmas sun rising suggest a good rainy season?
Did the ‘‘Jodo-de-Barro’’ bird suggest a good rainy season?
Will we have pasture for the cattle?

Will the ground be wet during the season?

Did the ‘‘Juazeiro’’ suggest a good rainy season?

In general, do the birds suggest a good rainy season?

Did the frogs suggest a good rainy season?

Did the termites suggest a good rainy season?

Did the sun shadow suggest a good rainy season?

Did the winds suggest a good rainy season?

Did the ‘‘mandacaru’’ suggest a good rainy season?

Did the fish are ready for reproduction?

Did the clouds move suggest a good rainy season?

Did the ‘‘cumaru’’ suggest a good rainy season?

Did the ground warms suggest a good rainy season?

Did the ‘‘pau-darco’’ suggest a good rainy season?

Did the ground temperature suggest a good rainy season?
Did the Flamboyant tree suggest a good rainy season?

Have you seen flying ants?

Did the sun rising in the day of St. Luzia suggest a good rainy season?
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1., NA, NA, NA,

NA,



