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Abstract

Effective recognition of complex long-term activities is

becoming an increasingly important task in artificial intelli-

gence. In this paper, we propose a novel approach for build-

ing models of complex long-term activities. First, we au-

tomatically learn the hierarchical structure of activities by

learning about the ‘parent-child’ relation of activity compo-

nents from a video using the variability in annotations ac-

quired using multiple annotators. This variability allows for

extracting the inherent hierarchical structure of the activity

in a video. We consolidate hierarchical structures of the

same activity from different videos into a unified stochastic

grammar describing the overall activity. We then describe

an inference mechanism to interpret new instances of activ-

ities. We use three datasets, which have been annotated by

multiple annotators, of daily activity videos to demonstrate

the effectiveness of our system.

1. Introduction

A challenging area of research in computer vision and

artificial intelligence is the representation and recognition

of human activities from observed visual data. One chal-

lenge is that different subjects perform similar tasks with

high variation, and with activities extending for longer peri-

ods, their spatio-temporal structure tends to become more

complex. Also, low-level visual trackers (such as skele-

ton/object trackers) are often noisy, causing errors due to

occlusion, changing lighting, etc which creates a high de-

gree of uncertainty. Most traditional methods for activity

recognition were conceived to deal with short clips of sim-

ple human activities, e.g. [1, 2, 16], and despite the long

history of this research, existing methods tend to become

ineffective when dealing with activities over longer peri-

ods of time. We propose a novel method for building a

hierarchical activity model from mark-up of activities ac-

quired from multiple annotators in a video corpus. Multi-

ple human annotators identify activities at different levels

of conceptual granularity. Our method automatically infers

a ‘part-of’ hierarchical activity model from this data using

semantic similarity of textual annotations and temporal con-

sistency. We use the resulting model to interpret previously

unseen videos in terms of the conceptual categories of the

acquired model, thereby providing a layered/compositional

description that is naturally understandable by people. Our

method is robust to noise and can deal with insertion, dele-

tion and substitution errors resulting from misdetections of

low-level action recognition.

A hierarchical model of complex activities is learned

from training videos. We assume that these videos have

been annotated by multiple subjects who naturally tend to

describe activities at different levels of granularity. Then

the hierarchical activity structure is extracted as follows.

Using the annotations consisting of temporal intervals with

activity labels, we reduce redundancy and noise by inter-

val clustering using a distance measure that takes into ac-

count the temporal overlap of the intervals and the semantic

similarity of the labels. Note that there is no information

provided by the annotators as to which activity interval is

a child of which other activity interval (‘part of ’ relation).

These parent-child relations among the clustered intervals

is then automatically learned by optimising a cost function

which examines the configuration of the clusters and their

labels’ common theme. This results in a hierarchical model

that represents the complex activity occurring within the an-

notated video. Hierarchies generated from multiple training

videos are then combined together to produce a unified hi-

erarchical and probabilistic model of all observed activities.

The model is then represented as a grammar which naturally

captures the variation in activiites along with their proba-



Figure 1. Flowchart of the overall framework

bilistic likelihood through ‘OR’ rules. The grammar fur-

ther allows for tractable inference and interpretation of new

observations using a multi-threaded parsing algorithm in-

spired by the well-known Earley Parser [5], similar in some

aspects to [24]. Figure 1 shows the flowchart of our frame-

work.

2. Related Work

Activity recognition approaches can be categorised into

simple action and complex activity recognition [22]. Com-

plex activity recognition builds on modelling sub-parts of

the activity within the overall model, and a hierarchical

structure is naturally emergent. In the context of activ-

ity recognition, hierarchical models have been developed

as extensions of traditional graphical models, such as hid-

den Markov models (HMM) and other dynamic Bayesian

networks (DBN). For example, [20] present a hierarchical

DBN that jointly models the activities along with their sur-

rounding environment. DBN’s ability to deal with noise and

uncertainty whilst capturing the temporal structure of com-

plex activities make them an attractive approach. [11] were

amongst the first to propose a hierarchical extension to the

traditional HMM to recognise behavioural patterns. In [14],

activity recognition is performed using an ‘Abstract HMM’

with only 2-levels of hierarchy in the model.

Notwithstanding their strength, graphical models be-

come less effective as the length and complexity (hierar-

chy) of the activity increases, since introducing new latent

variables and capturing the newly-introduced dependencies

quickly becomes intractable. HMM models typically suf-

fer from the Markovian assumption which prevents the rep-

resentation of temporally-complex activities that exhibit a

richer sub-activity model. Some work has been done to alle-

viate these problems [17, 6], however the models still suffer

heavily from the aforementioned problems.

In order to capture longer temporal dependence whilst

keeping the model tractable, inspiration has been drawn

from the linguistic literature of using grammars that model

highly-structured processes, like language. For example,

sentences comprise of smaller parts (e.g. verb phrases,

noun phrases, etc.) and each of those further comprise of

verbs, determiners, etc., creating a rich hierarchical struc-

ture. Considering complex activities as sentences, [8] used

a stochastic context-free grammar (SCFG) to represent the

activities, coupled with HMMs at the lowest level to recog-

nise primitive actions and provide them as terminals to the

grammar. Then, [18] extended this work into multi-agent

activities. In both systems, the rules of the grammar were

manually designed and complex temporal relations between

activities were not fully utilised. In contrast, the rules of

grammar were learnt in [24, 15] and Allen’s temporal logic

[4] was used to capture temporal relations. However, the

approach was only evaluated and shown to be successful

on simplistic activities e.g. jumping jacks, lifting arms,

etc. Moreover, atomic actions were modeled from trajec-

tory motion data of various elements in the video and each

primitive describes a simple basic motion in terms of point

coordinates and motion parameters. This representation is

conceptually opaque and do not allow for interpretation of

the learnt language at test time. [3] have applied hierar-

chical compositional structures to models complex activi-

ties however the hierarchies are bounded to fixed number of

levels and are partially describable in the training language.

In this paper, our contributions are to learn activity mod-

els in the way humans perceive them by eliciting annota-

tions of activity videos at different levels of granularity from

multiple annotators. Our system uses semantic matching of

activity components to a) unify variable description of the

same activity and b) learn the parent-child pairing between

intervals to generate an activity hierarchy. We also devise

a method to learn an extended stochastic grammar repre-

sentation capable of representing temporally complex par-

allel activities and parsing of automatically detected low-

level actions into their most likely hierarchical interpreta-

tions. Multiple annotations are efficiently acquired using

platforms such as Amazon Mechanical Turk, CrowdFlower

etc. [13]. Crowdsourcing offers a large pool of partici-



pants which ensures variability in the annotations collected

from participants, and sufficient coverage of possible inter-

pretations. Furthermore, responses are unbiased since re-

spondents have little or no knowledge of the research. This

ensures that a wide human perspective of activities can be

captured and utilised for model learning. The learned model

is therefore capable of being semantically interpreted in the

training language.

3. Modelling an Activity Hierarchy

In this section we describe the method used to build and

learn the hierarchical model representing the activities from

the datasets used. The model captures for a long-term activ-

ity: 1) the hierarchical structure of the activity (Figure 7),

2) the temporal arrangement of composite actions (Figure

4), and 3) the variability in activities (Figure 5). The hier-

archical model is a graph structure with the nodes being ac-

tivities and the directed edges connecting them representing

the parent-child relationships. Activities can be expanded to

their constituent sub-activity nodes, connected in-between

with temporal relation nodes that define the temporal order

in which those activities occur. This structure is referred to

as an activity cluster. Each parent node might have mul-

tiple activity cluster children that present the variations of

that activity and their probabilities.

3.1. Hierarchy from a single video

Clustering Interval Data per Video Multiple annotators

were asked to specify the start and end time of activity in-

tervals that they can identify in each video and label them

with a simple English sentence. That is, an activity interval

ι(s, e, l) is a representation of a candidate activity starting at

time s, ending at time e, and carrying the label l. The length

of ι is its time span, denoted by len(ι) = e− s. The use of

multiple annotators produces annotations at different levels

of granularity which aids in describing the hierarchy of the

entire activity. However, the challenge of unifying differ-

ent and ‘noisy’ descriptions of similar meanings arises; for

example, ‘picking up cup’ compared to ‘lifting cup’,‘taking

mug’,‘retrieving the glass’, etc. To handle this redundancy,

we define a distance function of activity intervals in a par-

ticular video that employs a measure of semantic similar-

ity between labels proposed by [7]. If ι1(s1, e1, l1) and

ι2(s2, e2, l2) are two activity intervals and γ(l1, l2) ∈ [0, 1]
is linguistic semantic similarity [7] between labels l1 and

l2 , we define the distance δ(ι1, ι2) to capture not only the

temporal overlap of the two intervals, but also the semantic

similarity of their labels, as shown in equation 1.

δ(ι1, ι2) =

{

η
(

|s2 − s1|+ |e2 − e1|
)

if γ(l1, l2) > γ̂

1 otherwise

(1)

η is a normalisation term that forces δ to stay in the range

[0, 1], where δ is set to 1 for the most different pair of inter-

vals that are considered. γ̂ ∈ [0, 1] is the cut-off threshold

of semantic similarity at which activity intervals do not re-

late semantically enough, setting δ to the maximum value

1.

If n activity intervals are identified in a particular video

by annotators, we compute the distance matrix Dn×n where

Dij = δ(ιi, ιj). We use agglomerative clustering with com-

plete linkage on D to cluster together similar activity inter-

vals that virtually represent the same activity. We stop the

clustering once δ of any cluster exceeds a threshold δ̂. Then

the prototype of each resulting cluster C = {ι1, . . . , ιm}
produces an activity node: a multi-label activity interval

I(s, e, L) with start time s =
∑

ι∈C s/m, end time e =
∑

ι∈C e/m, and a collective set of labels L = {l}ι∈C , see

Figure 2.

Figure 2. Sample activity interval labels for one training video

from combined multiple annotations and their corresponding re-

sult from clustering using semantic similarity to produce activity

nodes by clustering redundant labels. Note that parallel activities,

though sharing the same interval start and end times, are not clus-

tered together due to semantic dissimilarity.

Learning a Hierarchy from a Video We learn a hier-

archy which is defined as a set of parent-child relation

between activity nodes. Activity node Ii is a candidate

child of Ij , denoted by Ii ⊳ Ij , if the two nodes 1) have

semantically-similar labels up to some threshold, and 2) Ij
temporally subsumes or significantly overlaps Ii. We allow

partial overlap along with full subsuming of intervals when

deciding the relation since always observing fully subsumed

intervals requires noise free annotations of temporal bound-

aries. This is rare when different annotators are annotating

the same video. Note that, while a parent could have many

children, only one node will be the actual parent of some Ii.
Hence, an optimisation is required over candidate relations.

First, the semantic similarity filter is applied for every

node and its candidate parents. This enables excluding

‘noise’ nodes that bear no semantically valid connection to

the main activity (e.g., ‘scratching head’, ‘fidgeting with



pen’, etc.) At the same time, it allows separating parallel

activities to individual hierarchies.

2018-1-26 Cost Function.xml

1/1

Interval i

overlap

| |I

j

| |I

i

a)

Overlap
Ratio

|I

j

|

2

(| | − | |)o

ij

I

j

I

i

Frames

i) ii)

Interval j
I

j

o

ij

I

j

I

j

I

j

I

i

I

i

b)

c)

d)
I

i

I

i

Figure 3. i) Two conflicting intervals i and j, ii) a, b show that

the ratio prefers longer overlap preferring b over a, whilst c and d

show preference of a shorter parent preferring d over c

To find the optimal parent node for a child, temporal

overlap is considered for the semantically-relevant candi-

dates. Temporal overlap oij between two overlapping nodes

Ii and Ij is defined as oij = min(ei, ej) − max(si, sj),
when min(ei, ej) > max(si, sj) and 0 otherwise. We then

define a cost function C that gauges the suitability of a

‘child-parent’ relation between Ii and Ij shown in equation

2 where Ii and Ij are two intervals, |I∗| denotes the length

of any interval and oij is the overlap between the two inter-

vals.

C(Ii ⊳ Ij) =











|Ij |
2

oij(|Ij | − |Ii|)
if |Ij | > |Ii| and oij > 0

∞ otherwise

(2)

This function favours the shortest parent possible with

the best possible overlap. The intuition behind this function

is further illustrated in Figure 3. Notice from cases a and b

that the cost cij will be larger for case b than case a since

a larger section of Ij is overlapping Ii. At the same time,

observing cases c and d, it is clear that case d will obtain

a lower cost as it has the shortest potential parent, which is

the correct behavior.

By computing cij = C(Ii ⊳ Ij) for all possible pairs

of nodes with positive overlap, we set Ii ⊳ Ij ⇐⇒ j =
arg min

1≤j≤N
cij , for all i, breaking ties randomly. Notice that

the highest-level activity nodes would compute a cost of in-

finity with all other candidates. In this case, the node is

paired with ‘root’ parent node which is always included in

any hierarchy as the highest level activity.

Temporal Sequence Encoding The temporal sequence

of sub-events is a highly descriptive feature. In our model,

we capture the temporal sequence using the well established

Allen’s Temporal Logic [4]. Inspired by [19], where this

logic is used to encode temporal sequences of qualitative re-

lations between objects over time, we abstract that concept

to encode the temporal sequence occurring between activ-

ities at every level of the hierarchy. For example, in the

interval graph of ‘making tea’ seen in Figure 4, note that

the ‘Put Sugar’ and ‘Put Milk’ intervals are related through

a temporal 〈overlaps〉 relation, and that ‘Put Milk’ interval

occurs before ‘Mix Ingredients’ and thus uses the 〈before〉
relation, and so on. This logic can be used to define tempo-

ral relations between interval pairs.

The immediate children of an activity can be thought

of as a (partially) ordered set of siblings, and the order

is captured by the above described encoding. The sib-

lings along with their temporal relations make up an ac-

tivity cluster which is denoted as K = (S,R), where

S is a vector of the cluster’s activities, and R : S ×
S →{meets, overlaps, before,...} captures the pairwise tem-

poral relation between the members of S. The example in

Figure 4 illustrates this further.

3.2. General hierarchy from training videos

Previously learned hierarchies per video are taken as in-

put and a single most generalised hierarchical model of the

overall activities is abstracted. The model is augmented

with probabilities to allow for uncertainty and robustness

against noisy observations.

The model is generated by merging training hierarchies

incrementally which allows for real-time learning. To il-

lustrate this, we introduce the following notation. Let

H = {H1, H2, ..., HN} be the set of all N training hi-

erarchies where each H ∈ H is represented as a 3-tuple,

H = 〈Π,Φ, P 〉. Π denotes the list of all the parent (non-

leaf) nodes. Φ maps each π ∈ Π to the set of children

activity clusters of π. Finally, P maps a parent node π ∈ Π
to a probability distribution over its children activity clus-

ters Φ(π). This distribution defines the likelihood of a child

activity cluster, capturing the variation in the way a parent

activity can be performed.

We can formally describe the abstraction process of the

hierarchies in algorithm 1. Note that two hierarchies are

taken as input, say a and b, and an abstracted hierarchy is

Figure 4. An example of encoding temporal information of an activity

cluster C represented by an activities vector S and the corresponding tem-

poral matrix R.



returned. The resultant hierarchy is then input back with a

new training hierarchy to produce a further abstracted hier-

archy. This process repeats until all training hierarchies are

incrementally used to build the final model.

Algorithm 1 Abstraction of Hierarchies

1: Initialise Π,Φ, P
2: Π := Πa ∪Πb

3: for each parent π ∈ Π do

4: Φ∗ := Φa(π) ∪ Φb(π)
5: n := |Φ∗|
6: Initialise Pπ : Φ∗ → [0, 1]
7: for each child cluster c ∈ Φ∗ do

8: Append c to Φ(π)
9: Initialise p := 1

10: for each cluster c′ ∈ Φ∗ − c do

11: if clusterMatching(c, c′) < T then

12: p = p+ 1
13: remove c′ from Φ∗

14: Pπ(c) = p/n

15: Add Pπ to P

An example of abstracting hierarchies is illustrated in

Figure 5. Starting at the root node and for any non-leaf

node, children activity clusters are compared using a cluster

matching measure (Line 11) described in the next section.

Unique clusters are extracted as the children of new parent

nodes in the merged model (Line 8). The probabilities of

children activities are computed from the frequency of ob-

serving each compared to the total number of possible ways

(Line 14). The resulting model includes all unique children

from both training hierarchies along with the probabilities

of their occurrence based on their observed frequency dur-

ing training.

Note that multiple child clusters with the same parent de-

note the alternative ways in which that parent activity could

be observed with the associated probability, denoting an OR

relationship. The siblings within a cluster, denote an AND

relation. The resulting graph is analogous to an AND-OR

graph.

Activity Cluster Matching Comparing two activity clus-

ters involves comparison of the components within each

cluster. The components of a cluster include the activity

nodes of the cluster and the temporal relations in between

them. We propose a mechanism to match two activity clus-

ters and return a score of their similarity.

To measure the similarity d(I1, I2) of two activity nodes

I1 and I2, we look into the semantic similarity of the set of

labels of each of the nodes. Assume L1 and L2 are the sets

of labels of I1 and I2 of size N1 and N2 respectively and

N1 > N2. We compute the semantic similarity for every

pair (l1, l2) ∈ L1 × L2 and compute 1 − δSS(l1, l2), pro-

ducing a cost matrix ∈ R
N1N2 . We consider this to be an

assignment problem and use the Hungarian algorithm [12]

on that matrix to match labels based on semantic similar-

ity, giving the matched label set M1,2 ⊂ L1 × L2. The

unmatched label set is denoted by U and it contains all

the labels from the longer list L1 that are not matched in

M1,2. The pairs in M1,2 contribute the sum of their sim-

ilarities to d(I1, I2). On the other hand, each of the un-

matched labels in L1 is also matched individually to one of

the labels in L2, so that labels which are somehow simi-

lar will improve the total similarity, while dissimilar labels

contribute poorly. The similarity is defined as d(I1, I2) =
(
∑

M1,2
δSS(l1, l2) +

∑

l1∈U maxL2
(δSS(l1, l2)))/N1.

For temporal relations, we use the relations of Allen’s

temporal logic, rel = {before, meets, overlap, starts, dur-

ing, finishes, equal} and their inverses, and define the dis-

tance between any two, t(., .), to be the separation in the

list, normalised by the number of relations. If the temporal

relations are edges that link two activity nodes in an activity

cluster, we can define a measure of similarity between two

such edges. Assume I1rI2 means that node I1 is related to

node I2 with relation r. Then, the distance between I1rI2
and I ′

1
r′I ′

2
can be defined as α(d(I1, I

′
1
)+d(I2, I

′
2
))+(1−

α)(1 − t(r, r′)) where α is a parameter that controls the

contribution of the node distances and temporal similarity

terms. For two activity clusters, similar to node matching,

we pair-match the children nodes using the Hungarian algo-

rithm to find the best matching. An additional penalty term

p is added for all unmatched nodes between two clusters,

penalising greater disparity in the number of components.

4. Inference

The recognition task in our framework is defined as fol-

lowing: given an input test video, we first automatically de-

tect the low-level actions in that video. We then infer the

most likely activity hierarchy that generates a similar set

of low-level actions. To detect low-level actions, we sim-

ply train a discriminative model using the state-of-the-art

action recognition approach proposed by [21]. Low-level

action classes of our datasets are automatically emergent

from previously learned optimum hierarchies whereby leaf

nodes of the hierarchies represent the lowest level actions.

We use this knowledge to extract training instances of each

action class from training videos and train low-level activ-

ity models. For inferring the high-level activity hierarchy,

we first transform the hierarchical activity model into an ex-

tended grammar. This allows for utilising well-established

algorithms to parse a ‘string’ of temporally-complex atomic

actions, recognised from the test video. An example of the

grammar is shown in Figure 5 on the right. Leaf nodes in

the final model are the terminals in the grammar. Each ac-

tivity cluster translates into a production rule with the parent

node being the left-hand side (lhs) of the grammar rule. The

rules are extended with a relation matrix R which describes

the temporal dependence between the nodes of the activ-

ity cluster, and a probability p of observing that alternative



Figure 5. Incremental abstraction of hierarchies. Two training hierarchies are abstracted starting at ‘Root’. Then, a third hierarchy produces a further

abstracted model. Finally, the model produces an extended grammar representation.

which can generate the same lhs.

Many parsing algorithms in language literature exist that

parse a given input stream of words into a tree using a gram-

mar model [9, 23, 5]. However, sentences are normally pre-

sented as linear sequences of words. In our system, observa-

tions (atomic actions) are not linear sequences, but contain

a more complex temporal structure modeled using Allen’s

temporal logic. We use an extended version of the Ear-

ley parser proposed by [24] to parse a set of observations

by maintaining multi-threaded parses over the input. This

parser relaxes the constraint that grammar rules and input

stream of intervals follow a sequential flow. This allows

for parsing different symbols in the input stream at differ-

ent positions as the grammar expects. Deletion and inser-

tion errors are handed within the parsing algorithm. Differ-

ently from previous work, we extract the parse tree that best

describes the input, by maximising probability along with

coverage. Maximising probability returns the parse tree that

has the highest likelihood according to the grammar rules.

However, the maximally probable tree may include a high

percentage of deletion errors, we therefor also introduce the

use of coverage. Coverage defines a ratio of the number of

input symbols described by the selected parse tree. This ra-

tio does not accounts for deletion errors and is therefore a

good indication of the descriptive strength of the parse tree.

The most suitable parse tree which describes majority of the

input symbols and is highly probable is retrieved.

5. Evaluation

To our knowledge, no previous approaches exist that

tackle a similar research problem. For evaluation we use

well-defined baselines and an evaluation methodology from

recent literature [24] to demonstrate the effectiveness of our

system.

Dataset To demonstrate the strength of our system, we

found three publicly available datasets which have been an-

notated using multiple annotators: Leeds Activity Dataset

(LAD)1, Cornell Activity Dataset (CAD-120)2 [10] and

Complex Long Activities Dataset (CLAD)3. Examples from

these datasets are shown in Figure 6, and their properties

are summarized in Table 5. The CLAD dataset presents

most complexity in terms of lengthy activities, for example

‘lunch in a restaurant’ or ‘working in an office’, deep activ-

ity hierarchies and crowdsourced annotations. These anno-

tations consists of highly variable and inconsistent activity

labels. Creators of this dataset ensure the quality of anno-

tations by using spell checks, start/end frame consistency

etc. We further process labels using typical NLP techniques

including lemmatisation followed by another spell checker.

Finally, through learning a probabilistic grammar, spurious

rules exhibit a low probability and can be deleted from the

final grammar. The CAD dataset natively has only two lev-

els of annotations: top-level and atomic-level activities. To

demonstrate our system using this dataset, we augmented

the dataset with annotations of intermediate levels made

by an independent annotator. Unlike the CLAD dataset,

which has highly variable crowdsourced annotations, both

the CAD and LAD datasets are more homogeneous since

all the annotators used a fixed set of labels. However, they

still present a challenge due to noisy temporal boundaries

of activity intervals. The common factors in all datasets are

that they were annotated by multiple annotators and they all

comprise of tasks made up of many levels of sub-activities

which gives rise to a hierarchy of events.

1http://dartportal.leeds.ac.uk/dataset/lad
2http://pr.cs.cornell.edu/humanactivities/data.php
3https://doi.org/10.5518/249



LAD CAD CLAD

Number of Videos 13 120 62

Length of Videos (Minutes) 0.5-1 0.3-0.5 3-5

Multiple Subjects × × �

Crowdsourced Annotations × × �

Depth Of Hierarchy (Levels) 3 2-3 up to 5

Labels Noisy Temporal Boundries � � �

Linguistic Variation in Labels � × �

Table 1. Properties of the datasets used.

Figure 6. Examples from the LAD, CLAD and CAD datasets.

Clustering In this experiment, we evaluate our seman-

tic clustering against known methods, such as k-means and

affinity propagation, using normalised mutual information

(NMI) to validate the results against ground truth clustering.

Furthermore, we evaluate the effect of semantic similarity

included within clustering. K-means is applied on the la-

bel’s temporal boundary (start and end time) alone whereas

affinity propagation uses the same D matrix, which includes

semantic similairty, as our clustering method. Clustering

is tested on the CLAD dataset since this dataset exhibits

crowdsourced annotations. These annotations present mul-

tiple labels of the same activities from different annotators.

Clustering is based on the label’s temporal boundaries and

their semantic similarities. The LAD and CAD datasets

used preset lists of labels to choose from thus avoiding lan-

guage ambiguity and redundancy in annotations, therefore

clustering their labels were not needed. The results of clus-

tering are in Table 2.

Method NMI

Our Clustering Method with sem sim 94.5%

Our Clustering Method without sem sim 88.4%

K-Means using temporal boundary 65.4%

Affinity Propagation with sem sim 67.5%

Table 2. Clustering method comparison. Our method outperforms

other methods, and semantic similarity gives a higher quality re-

sult.

Hierarchy building Individually-learned hierarchies per

video are evaluated for correctness using ground truth trees

as presented in Table 3. The hierarchies are created by pair-

ing intervals in ‘parent-child’ relations. A baseline in which

any interval fully-subsumed by another will be linked as a

child-parent pair is presented as a point of comparison. This

is a stricter pairing paradigm that does not handle i) the vari-

ability in start and end times, ii) proper pairing of parallel

activities and iii) semantic analysis of parent’s and the cor-

responding children’s labels. The results are presented for

all three datasets in Table 3.

LAD CAD
CLAD

Semantic

Similarity

Multi

Label

Single

Label

Baseline 68% 24%
� 61% 55%

× 53% 53%

Learned

Hierarchy
91% 89%

� 79% 70%

× 63% 63%

Table 3. Accuracy for optimum pairing and learning of activity

hierarchy on the three different datasets.

It can be seen from Table 3 that handling the temporal re-

lations more carefully is beneficial, and that semantic simi-

larity contributes significantly to the accuracy, especially to

separate parallel activity hierarchies and noise. An exam-

ple of this can be seen in Figure 7(c). The semantic sim-

ilarity threshold at which a candidate interval is disquali-

fied as a parent is learned by optimising the function shown

in Figure 8. Lastly, describing each node with a set of la-

bels rather than a single label also yields a higher perfor-

mance. This is expected behaviour since more information

is captured with multiple description produced by different

annotators of the same activity label. The effect of noisy

and ambiguous annotations is apparent from the significant

difference in a crowdsourced labelled CLAD dataset ver-

sus clean preset in-house labelled LAD and CAD datasets.

Despite the added challenge of incorporating linguistic se-

mantics to find the optimum pairing in the CLAD dataset, a

decent performance is still achieved as seen when compared

to the baseline. Figure 7 shows some interesting snippets of

sample hierarchies learned given intervals input data from

each of the datasets.

Parsing Having learned individual activities from differ-

ent training videos, we then merge the different hierarchies

to build a probabilistic extended grammar defining the over-

all activity. We build the grammars describing the top-level

tasks such as ‘breakfast at home’ and ‘working in an office’.

To evaluate the correctness of the grammar model, we run

leave-one-out cross validation on the models. We present

in table 4 and 5 the ratio of correctly-interpreted terminals.

We use the multi-threaded parsing mechanism as described

in section 4 that allows for inclusion of complex temporal

streams as input. It can be seen that parsing with inclusion

of temporal relations describing the sequence out-perform a

parsing outcome that treats input as sequential. The evalu-

ation metric used is similar to the one employed by [24] to

demonstrate their multi-threaded parsing mechanism. It is

the correctly parsed terminal percentage CPT :

CPT =
NC +NI

NT



(a) CAD example hierarchy (b) LAD example hierarchy (c) CLAD example hierarchy

Figure 7. Examples of a well learned hierarchy from optimum pairing of intervals for each dataset. Full trees are shown for the CAD and

LAD datasets, while a snippet of a larger tree is shown for CLAD dataset. Notice that parallel activities have been assigned to the correct

parents in the trees.

Figure 8. Effect of altering the semantic similarity threshold on

accuracy of the CLAD dataset.

where NC is the number of correctly parsed terminals,

NI is the number of identified insertion errors in the input

stream and NT is the total number of terminal. As having a

single parse tree to describe all terminals is rare because it is

unlikely that a natural activity occurs exactly as trained be-

fore, we devise an integer programming solution to extract

the optimum set of parse trees that cover the input terminal

with 1) maximum coverage, 2) high probability and 3) min-

imum amount of deletion errors. The resulting parse trees

are then inspected and the CPT is reported. It should be

noted that the input stream of terminals is noisy, this causes

a high number of insertion, deletion and substitution errors,

however, our parser is able to handle these errors and pro-

duce the most likely parse of the activity given low-level

actions input stream. We present results with automatically

detected and ground truth labeled low-level actions input

stream in table Table 4 and 5.

Cluster Matching LAD CAD CLAD

Sequential

Input

Exact 76% 90% 66%

Ours 78% 93% 66%

Multi-

threaded

Exact 80% 90% 71%

Ours 80% 93% 76%

Table 4. Using ground-truth labeled low-level actions, correctly-

interpreted terminals (CPT) in a 5-fold validation process of hier-

archical model building/parsing.

Cluster Matching LAD CAD CLAD

Sequential

Input

Exact 68% 70% 33%

Ours 71% 77% 34%

Multi-

threaded

Exact 65% 73% 59%

Ours 72% 73% 58%

Table 5. Using automatically detected low-level actions,

correctly-interpreted terminals (CPT) in a 5-fold validation pro-

cess of hierarchical model building/parsing.

Table 4 and 5 shows the results from parsing the in-

puts from each datasets. Similar to the hierarchy genera-

tion results, note that CAD and LAD datasets outperform

the CLAD dataset due to consistent and clean labels. Fur-

ther, it is apparent that using multi-threaded parsing, non-

sequential and temporally complex input streams are han-

dled and outperform classic sequential parsing. This is par-

ticularly significant in the CLAD dataset, which exhibits

more instances of parallel activities than the other datasets.

Furthermore, notice that using our loosely constrained ac-

tivity cluster matching builds more accurate models and

achieves higher parsing accuracy than those with exact clus-

ter matching. This demonstrates the ability to abstract vari-

ations in different instances of activities. Finally, note that

the results using an automatically detected input stream, see

table 5, are of slightly lower accuracy compared to using a

ground truth input stream, see table 4.

6. Conclusion

In this paper, we introduce a novel approach for learning

activity hierarchies using multiple annotations of videos.

We first show a learning method to acquire hierarchical

structures of activities from multiple annotations of a video.

We present an algorithm for consolidation and abstraction

of a general model of activity from multiple individually

learned hierarchies. Finally, we demonstrate the effec-

tiveness of our system using a hierarchical, multi-threaded

parser. One limitation of this work is in handling repetitive

activities and this is a direction of future work.
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