
This is a repository copy of A New Criterion for Boundedness of Solutions for a Class of 
Periodic Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/128269/

Version: Accepted Version

Proceedings Paper:
Efimov, D and Schiffer, JF orcid.org/0000-0001-5639-4326 (2018) A New Criterion for 
Boundedness of Solutions for a Class of Periodic Systems. In: 2018 European Control 
Conference (ECC). 2018 European Control Conference, 12-15 Jun 2018, Limassol, 
Cyprus. IEEE . ISBN 978-3-9524-2698-2 

10.23919/ECC.2018.8550191

© EUCA 2018. This is an author produced version of a paper accepted at the 2018 
European Control Conference.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A new criterion for boundedness of solutions for a

class of periodic systems
Denis Efimov, Johannes Schiffer

Abstract—A wide range of practical systems exhibits dynamics,
which are periodic with respect to several state variables and
which possess multiple invariant solutions. Yet, when analyzing
stability of such systems, many classical techniques often fall
short in that they only permit to establish local stability pro-
perties. Motivated by this, we present a new sufficient criterion
for global stability of such a class of nonlinear systems. The
proposed approach is characterized by two main properties.
First, it develops the conventional cell structure framework to the
case of multiple periodic states. Second, it extends the standard
Lyapunov theory by relaxing the usual definiteness requirements
of the employed Lyapunov functions to sign-indefinite functions.

I. INTRODUCTION

Stability of dynamical systems is one of the most fun-

damental problems studied in control systems theory [7],

[9], [19], [21], [22], [23], [27], [32] and related domains,

such as mechanics, electric circuits, power systems, systems

biology, etc. In a general (nonlinear) setting, the main approach

employed for stability analysis is based on Lyapunov theory

[27]. A key advantage of a Lyapunov-based stability analysis

is that boundedness and convergence properties of the system’s

solutions can be assessed without explicit computation of the

latter. Instead, it suffices to verify a set of inequalities for the

Lyapunov function and its time derivative, which is derived

with respect to the system’s equations. More precisely, the

existence of a continuously differentiable (or at least Lipschitz

continuous) Lyapunov function, which is positive definite with

respect to an equilibrium (or an invariant set) and the time

derivative of which is non-positive along the solutions of the

system under investigation, is equivalent to stability of that

equilibrium (or set). Similarly, instability of an equilibrium

can be studied using the Chetaev function approach [9], [14].

A Chetaev function may be sign-indefinite1 with a negative or

positive definite derivative.

Classical stability theory is mainly concerned with the

analysis of a single equilibrium. However, in numerous appli-

cations, such as biological and power systems or distributed
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1A function V : Rn → R is called sign-definite if V (0) = 0 and V (x) >
0 for all x ∈ R \ {0} or V (x) < 0 for all x ∈ R \ {0}; and it is called
sign-indefinite if V (x) takes both, positive and negative, values.

optimization, there exist several equilibria or invariant sets

(including hidden attractors [12]). Hence, a rigorous analysis

of such systems with several disjoint invariant sets represents

an important special case of stability theory, which requires

suitable methods [4], [28], [19], [31], [6], [35], [17], [13].

For this case the stability notions have to be significantly

modified and relaxed as, in particular, it has been done in

[13] and further in [2], [3] for the input-to-state stability (ISS)

property. See also [1], [5], [8] for other results on robust

stability analysis of systems with multiple equilibria.

Unfortunately, the application of these existing results to

periodic systems is, in many cases, not straightforward. The

main reason for this is the technical difficulty of constructing

Lyapunov functions. For example, when some of the states of

the system are periodic (e.g., they evolve on the circle), the

corresponding Lyapunov function of [3] also has to be periodic

with respect to these states, which is a severe requirement.

Paramount examples of such systems are the forced nonlinear

pendulum [16], [18], power systems [30], [33], [38], [39] and

microgrids [34], distributed or centralized optimization [10],

[37], phase-locked loops [24], [25], and complex networks of

oscillators [35], [11], [36].

Motivated by this wide range of potential applications, we

consider a special class of systems, which possess periodic

right-hand sides with respect to several state components. The

presented analysis builds upon our previous work [15], where

an extension of the ISS theory from [3] to periodic systems has

been proposed. However, that extension has been derived for

systems on manifolds and, thus, does not allow to establish

boundedness of trajectories in R
n. The latter is possible by

using the cell structure approach proposed in [26] (and later in

[29]) and further developed in [19], [40]. Yet, it is only applica-

ble to systems with a scalar periodic variable, which is a severe

restriction when considering complex networks. By seeking

to overcome the aforementioned limitations of the existing

approaches, in the present paper the cell structure framework is

extended to autonomous systems, the state of which evolves

in R
n and which possess multiple periodic variables. As in

[15], our developments are inspired by the conventional cell

structure approach [26]. The presented results are illustrated

via application to a complex nonlinear system.

The outline of this paper is as follows. Preliminaries and the

theory from [19], [40] are given in Section II. The problem

statement is given in Section III with the main results in

Section IV.

II. PRELIMINARIES

Denote the real and integer numbers by R and Z, respecti-

vely, and R+ = {s ∈ R : s ≥ 0}.
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Let the map f(x) : Rn → R
n be of class C1, f(0) = 0,

and consider a nonlinear system of the following form:

ẋ(t) = f(x(t)) ∀t ≥ 0 (1)

with the state x(t) ∈ R
n. We denote by X(t, x) the uniquely

defined solution of (1) at time t fulfilling X(0, x) = x. A set

S ⊂ M is invariant for the system (1) if X(t, x) ∈ S for all

t ∈ R and for all x ∈ S; for x ∈ R
n the point y ∈ R

n

belongs to its ω-limit (α-limit) set if there is a sequence

ti, limi→+∞ ti = +∞, such that limi→+∞ X(ti, x) = y
(limi→+∞ X(−ti, x; 0) = y); for any x ∈ R

n its α- and ω-

limit sets are invariant [20]. Define the distance from a point

x ∈ R
n to the set S ⊂ R

n as |x|S = infa∈S |x − a|, where

|x| = |x|{0} for x ∈ R
n is a usual Euclidean norm of a vector

x ∈ R
n, and denote

|x|∞ = max
1≤i≤n

|xi|, |x|1 =

n
∑

i=1

|xi|,

then

|x|∞ ≤ |x| ≤ |x|1 ≤ √
n|x| ≤ n|x|∞.

A continuous function α : R+ → R+ belongs to class K if

α(0) = 0 and the function is strictly increasing. The function

α : R+ → R+ belongs to the class K∞ if α ∈ K and it is

increasing to infinity. A continuous function β : R+ × R+ →
R+ belongs to the class KL if β(·, t) ∈ K∞ for each fixed

t ∈ R+ and limt→+∞ β(s, t) = 0 for each fixed s ∈ R+.

The notation DV (x)f(x) stands for the directional (or Dini)

derivative of a continuously differentiable (or locally Lipschitz

continuous) function V : Rn → R+ with respect to the vector

field f evaluated at the point x.

A. Boundedness of solutions of periodic systems

As outlined in Section I, the present paper is dedicated

to the stability analysis of periodic systems [19], [40]. More

precisely, we assume in the following that for the system (1)

there exists ξ ∈ R
n, ξ 6= 0, such that for all x ∈ R

n

f(x) = f(x+ ξ).

Next, we recall a sufficient criterion derived in [26], [19],

[40], which allows to establish boundedness of solutions of

periodic systems. To this end consider a special case of the

system (1) given by

f(x) = Px+ bϕ(c⊤x),

where P ∈ R
n×n is a singular matrix, c ∈ R

n, b ∈ R
n,

ϕ : R ⇉ R is a ∆-periodical set-valued function, which is

upper semicontinuous, with a nonempty, convex and closed

set of values for any value of its argument. We note that a

time-varying version of ϕ has been considered in [19], [40],

but we restrict ourselves to the autonomous version of ϕ. Then

under these restrictions and for any initial condition x0 ∈ R
n

the system (1) has a solution X(t, x0). Assume also that for

all σ ∈ R \ {0} and all φ ∈ ϕ(σ)

µ1 ≤ φ

σ
≤ µ2; µ

−1

1 µ−1

2 ϕ(0) = 0

for some µ1 ∈ R∪{−∞} and µ2 ∈ R∪{+∞}. The periodicity

of ϕ implies that either µ1 < 0, µ2 > 0 or µ1 = µ2 = 0,

and the latter case is excluded from consideration due to its

triviality.

Theorem 1. [26], [19], [40] Assume that there exists λ > 0
such that:

1) the matrix P + λIn, where In ∈ R
n×n is the identity

matrix, has n− 1 eigenvalues with negative real parts;

2) for all ω ∈ R

µ−1

1 µ−1

2 + (µ−1

1 + µ−1

2 )Reχ(iω − λ) + |χ(iω − λ)|2 ≤ 0,

where χ(s) = cT (P − sIn)
−1b.

Then, for any initial condition x0 ∈ R
n the solution

X(t, x0) of the periodic system (1) is bounded for t ∈
[0,+∞).

Remark 1. Under the conditions of this theorem the system (1)

admits only one periodic coordinate, i.e. the vector ξ has only

one non-zero element and the remaining n− 1 state variables

are not periodic.

The proof of Theorem 1 (see Theorem 4.3.1 in [19], or

Theorem 4.7 in [40]) is based on the fact that under the

introduced conditions there is H = H⊤ ∈ R
n×n (which has

one negative and n − 1 positive eigenvalues) such that for

V0(x) = x⊤Hx we have that dV0(x(t))/dt ≤ −2λV0(x(t))
for all t ∈ [0,+∞), which implies that the set Ω0 =
{x ∈ R

n : V0(x) ≤ 0} is forward invariant for (1), i.e.

X(t, x0) ∈ Ω0 for all t ∈ [0,+∞) provided that x0 ∈ Ω0.

Next, introducing the functions Vj(x) = V0(x − jδ) and sets

Ωj = {x ∈ R
n : Vj(x) ≤ 0}, where j is any integer and

the vector δ ∈ R
n satisfies the conditions δ 6= 0, Pδ = 0

and c⊤δ = ∆, by periodicity of f in (1) we obtain that

dVj(x(t))/dt ≤ −2λVj(x(t)) for all t ∈ [0,+∞), then the

sets Ωj are forward invariant for (1). Finally, it is shown in

[19], [40] that for any x0 ∈ R
n there is an index j0 such that

x0 ∈ Γj0 , where Γj = Ωj∩Ω−j∩{x ∈ R
n : |h⊤x| ≤ j|h⊤δ|}

with h ∈ R
n being the eigenvector of the matrix H corre-

sponding to the negative eigenvalue. As it has been shown

above X(t, x0) ∈ Γj0 for all t ∈ [0,+∞) (since it is true for

Ωj0 ∩ Ω−j0 ). In addition the set Γj0 is bounded, which was

necessary to prove. In other words, an important observation

of [26], [19], [40] is that any intersection of the sets Ωj for all

integers j forms a kind of cell cover of R
n, where each cell

is bounded and forward invariant. Therefore, this framework

is commonly known as cell structure approach.

III. PROBLEM STATEMENT

The functions proposed in [26] for the analysis of boun-

dedness of trajectories of the system (1) with a scalar perio-

dic state are sign-indefinite with a sign-indefinite derivative.

Clearly, such a relaxation of the definiteness of a Lyapunov

function might simplify significantly its construction. Usually

sign-indefinite functions with a sign-definite derivative are

used to establish instability of an equilibrium of (1), e.g.

Chetaev functions [9], [14]. An important observation of [26]

is that the combination of “instability” and periodicity leads to

boundedness of trajectories: under periodicity the existence of
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invariant solutions separating the domain of periodic variables,

with probably repulsing trajectories around those invariants,

implies the existence of a certain cell structure created by

periodically repeated invariant solutions, which bounds the

admissible behavior of the trajectories. A major restriction of

the cell structure approach in [26], [19], [40] is that it can

only be applied in the case of a scalar periodic component in

x(t). As a consequence, the main objective of this work is to

extend that approach to a generic multidimensional case.

Inspired by [26], [3], an equivalent characterization of the

ISS property for a periodic system on manifolds has been

proposed in [15] in terms of ISS-Leonov functions, which are

sign-indefinite. In the present work the concept of Leonov

functions is further developed for (1) with x ∈ R
n. More

precisely, we assume the following:

Assumption 1. Let x = (z, θ) ∈ R
n, where z ∈ R

k and

θ ∈ R
q are two subsets of the state vector, n = k + q, k > 0

and q > 0. The vector field f in (1) is 2π-periodic with respect

to θ.

In other words, we suppose that the system (1) can be

embedded into a manifold M = R
k×S

q by a simple projection

of the variables θ(t) on the sphere S
q . For our subsequent

derivations, it is convenient to introduce an auxiliary set

W = {x = (z, θ) ∈ R
n : z = 0, |θ|∞ = π}. (2)

Definition 1. We say that a C1 function V : Rn → R is a

Leonov function for (1) if there exist functions α1, α2 ∈ K∞,

σ1, σ2 ∈ K, and a continuous function λ : R → R, λ(0) = 0
and λ(s)s > 0 for all s 6= 0, and scalars 0 < g1 ≤ g2 ≤ σ2(π),
such that for all x = (z, θ) ∈ R

n

α1(|z|)− σ1(||θ|∞ − π|) + g1 ≤ V (x) (3)

≤ α2(|z|)− σ2(||θ|∞ − π|) + g2,

and the following dissipation holds:

DV (x)f(x) ≤ −λ (V (x)) . (4)

Roughly speaking, the function V is positive definite with

respect to the non-periodic variable z and negative definite

with respect to the distance to the set {x = (z, θ) ∈ R
n :

|θ|∞ = π}. The restriction g1 > 0 ensures that on the set

W (and in some of its vicinity) the function V takes positive

values, while g2 ≤ σ2(π) implies that V (0) ≤ 0, and that

there exists c ∈ (π, 2π) such that V (x) ≤ 0 for all z = 0 and

|θ|∞ ≥ c.

Remark 2. Chetaev’s theorem about instability of a set can be

formulated as follows [14]: for a C1 function U : Rn → R,

with U(x) = 0 for all x ∈ A, where A ⊂ R
n is a compact

invariant set of (1), if there exists ǫ0 > 0 such that U+ ∩
BA(ǫ) 6= ∅ for any ǫ ∈ (0, ǫ0], where U+ = {x ∈ BA(ǫ0) :
U(x) > 0} and BA(ε) = {x ∈ R

n : |x|A < ε}, and if

DU(x)f(x) > 0 ∀x ∈ U+, (5)

then (1) is unstable with respect to A with the region of

repulsion BA(ǫ0). Therefore, take U(x) = −V (x), where

V : Rn → R is a Leonov function for (1), then due to (4)

the property (5) may be verified, and if the set A = {x ∈

R
n : V (x) = 0} (since V is continuous and sign indefinite

according to (3) then this set is not empty) is compact and

invariant, or it contains an equilibrium of (1), then existence

of a Leonov function V implies instability of (1), with the

region of repulsion belonging to {x ∈ R
n : V (x) ≤ 0}.

Appearance of the norm | · |∞ is originated by the topology

induced by periodicity in θ of f : replicating the equilibrium at

the origin using periodicity in θ ∈ R
q creates a set of equilibria

located on intersections of the levels |θ|∞ = jπ for j ∈ Z.

IV. MAIN RESULT

In this section, at first, it is shown that the existence of

a Leonov function implies boundedness of trajectories for a

periodic system (1). Second, a particular scenario is analyzed

with conditions to check applying the proposed concept.

Theorem 2. If for the system (1) under Assumption 1 there

exists a Leonov function, then all its trajectories are globally

bounded.

Proof. Denote the set of negative values of V as

Ω = {x ∈ R
n : V (x) ≤ 0}.

Then from the definition of a Leonov function

Ω ⊆ Ω ⊆ Ω,

where

Ω = {x ∈ R
n : α1(|z|) + g1 ≤ σ1(||θ|∞ − π|)},

Ω = {x ∈ R
n : α2(|z|) + g2 ≤ σ2(||θ|∞ − π|)}.

Recall that by assumption g1 ≤ g2 ≤ σ2(π) and note that at

the origin the relations (3) take the form:

0 ≥ g2 − σ2(π) ≥ V (0) ≥ g1 − σ1(π).

Thus, g1 ≤ σ1(π) and both these sets are non-empty and can

be decomposed into two subsets:

Ω = Ω′ ∪ Ω′′, Ω = Ω
′ ∪ Ω

′′

with Ω′ ⊆ Ω
′ ⊂ {x ∈ R

n : |z| ≤ α−1

1 (σ1(π)−g1), |θ|∞ < π}
being compact sets, and Ω′′ ⊆ Ω

′′ ⊂ {x ∈ R
n : |θ|∞ ≥ c} for

c ∈ (π, 2π) being not necessarily bounded sets. The compact

set W defined in (2) is not in Ω or Ω, and it separates Ω′

and Ω
′

with Ω′′ and Ω
′′

for z = 0, respectively. By inclusion

property, the set Ω can also be decomposed into two parts:

Ω = Ω′ ∪ Ω′′,

where Ω′ ⊂ {x ∈ R
n : |z| ≤ α−1

1 (σ1(π)− g1), |θ|∞ < π} is

a compact set and Ω′′ ⊂ {x ∈ R
n : |θ|∞ ≥ c} is unbounded.

Denote V (t) = V (X(t, x0)) for any x0 ∈ R
n, then under

the conditions of the theorem we have:

V̇ (t) + λ (V (t)) ≤ 0 ∀t ≥ 0,

and, clearly, V (t) is strictly decreasing while X(t, x0) ∈ R
n \

Ω. Therefore, if x0 ∈ Ω then X(t, x0) ∈ Ω for all t ≥ 0 and

the set Ω is forward invariant for (1). Conversely, if x0 ∈ R
n \

Ω then there exists 0 ≤ Tx0
< +∞ such that X(Tx0

, x0) ∈ Ω
and, by invariance, the trajectory remains in this set for all



4

t ≥ Tx0
. Thus, the set Ω is globally attractive and forward

invariant. Note, that this property does not imply any kind of

stability since Ω may be unbounded (it can also be interpreted

as instability of a set close to W with the domain of repulsion

R
n \ Ω).

To establish stability, we exploit the periodicity of (1). De-

note by j = [j1, . . . , jq] a multi-index vector, where ji ∈ Z for

all i = 1, . . . , q. Introduce the new variable xj = x−
[

0k
2πj

]

and the function Vj(x) = V

(

x−
[

0k
2πj

])

for any such

multi-index vector j (i.e. V0(x) = V (x)), where 0k is the

zero vector of dimension k. Then, by 2π-periodicity of f in

θ,

Vj(x) = Vj

(

xj +

[

0k
2πj

])

= V (xj)

and

ẋj(t) = f(x(t)) = f(xj(t)) ∀t ≥ 0.

Therefore, taking into account the properties substantiated for
(1) and V , we obtain that the set {xj ∈ R

n : V (xj) ≤ 0} is
globally attractive and forward invariant, which in the original
coordinates x implies these properties for the set

Ωj = {x ∈ R
n : Vj(x) ≤ 0} =

{

x ∈ R
n : V

(

x−

[

0k
2πj

])

≤ 0)

}

.

Using similar arguments as for Ω it is possible to show that

Ωj = Ω′
j ∪ Ω′′

j , where

Ω′
j ⊂ {x ∈ R

n : |z| ≤ α−1

1 (σ1(π)− g1), |θ − 2πj|∞ < π},
Ω′′

j ⊂ {x ∈ R
n : |θ − 2πj|∞ ≥ c}.

By definition
⋂

j Ω
′
j = ∅ and

⋂

j Ω
′′
j = ∅ (the former property

is true since the sets Ω′
j are isolated, and the latter one due

to the fact that Ω′′
j ⊂ R

n \ Υj with Υj = {x ∈ R
n : |θ −

2πj|∞ < c}, and thus
⋂

j Ω
′′
j ⊂ ⋂

j R
n \Υj = R

n \⋃j Υj =
R

n \ Rn = ∅). Since c ∈ (π, 2π), then (0k, 2πj1) ∈ Ω′
j1

and

(0k, 2πj1) ∈ Ω′′
j2

for any j1 6= j2. Consequently, Ω′
j1
∩Ω′′

j2
6=

∅ for any multi-index vectors j1 6= j2. Therefore,
⋂

j Ωj =
⋃

j Ω
′
j and the compact sets Ω′

j form a kind of cell cover

of {x ∈ R
n : |z| ≤ α−1

1 (σ1(π) − g1)}. Recall that for all

multi-index vectors j the corresponding sets Ωj are globally

attracting and forward invariant. Clearly then
⋃

j Ω
′
j possesses

the same properties (and each Ω′
j is isolated). Take any x0 ∈

R
n, then X(t, x0) asymptotically enters and stays in a cell

Ω′
j for some j. Hence, for any x0 ∈ R

n the corresponding

solution X(t, x0) is bounded.

Theorem 2 provides a very general result on the application

of the theory of Leonov functions. In the sequel, we develop

equivalent conditions for a special case.

Corollary 1. Suppose that there exist C1 functions W : Rn →
R and ϕ : Rn → R, functions α1, α2 ∈ K∞, constants λ > 0
and ai ≥ ai > 0, ci ≥ ci ≥ 0, bi ≥ bi > 0, i = 1, . . . , q, such

that for all x ∈ R
n

α1(|z|) ≤ W (x) ≤ α2(|z|),
q

∑

i=1

aiθ
2
i − bi|θi|+ ci ≤ ϕ(x) ≤

q
∑

i=1

aiθ
2
i − bi|θi|+ ci,

DV (x)f(x) + λV (x) ≤ 0,

where V (x) = W (x) − ϕ(x) and x = (z, θ). Then X(t, x0)
of (1) is bounded for any x0 ∈ R

n and t ≥ 0 provided that

aminπ +

q
∑

i=1

ciπ
−1 < qbmax < 2aminπ + 0.5

q
∑

i=1

ciπ
−1,

q2amaxπ +

q
∑

i=1

ciπ
−1 < bmin < 2q2amaxπ + 0.5

q
∑

i=1

ciπ
−1,

where amin = min1≤i≤q ai, bmax = max1≤i≤q bi, amax =
max1≤i≤q ai and bmin = min1≤i≤q bi.

Proof. The claim is established by applying Theorem 2. To

this end, it is only necessary to show that V is a Leonov

function for (1), i.e.

σ2(||θ|∞ − π|)− g2 ≤ ϕ(x) ≤ σ1(||θ|∞ − π|)− g1

for some σ1, σ2 ∈ K and some 0 < g1 ≤ g2 ≤ σ2(π), since

all the remaining conditions are already satisfied under the

standing assumptions.

Note that
q

∑

i=1

aiθ
2
i − bi|θi|+ ci ≤

q
∑

i=1

amaxθ
2
i − bmin|θi|+ ci

= amax|θ|2 − bmin|θ|1 +
q

∑

i=1

ci

≤ q2amax|θ|2∞ − bmin|θ|∞ +

q
∑

i=1

ci = f(|θ|∞)

and
q

∑

i=1

aiθ
2
i − bi|θi|+ ci ≥

q
∑

i=1

aminθ
2
i − bmax|θi|+ ci

= amin|θ|2 − bmax|θ|1 +
q

∑

i=1

ci

≥ amin|θ|2∞ − qbmax|θ|∞ +

q
∑

i=1

ci = f(|θ|∞).

Under the introduced restrictions the following properties are

satisfied for f :

q
∑

i=1

ci = f(0) ≥ 0,

aminπ +

q
∑

i=1

ciπ
−1 < qbmax ⇒ 0 > f(π),

2aminπ + 0.5

q
∑

i=1

ciπ
−1 > qbmax ⇒ f(2π) > 0

and 2π2amin >
∑q

i=1
ci is a sufficient condition for existence

of bmax. Similarly for f :

q
∑

i=1

ci = f(0) ≥ 0,

q2amaxπ +

q
∑

i=1

ciπ
−1 < bmin ⇒ 0 > f(π),

2q2amaxπ + 0.5

q
∑

i=1

ciπ
−1 > bmin ⇒ f(2π) > 0
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and the inequality 2π2q2amax >
∑q

i=1
ci has to be satisfied.

From these properties of f and f we can conclude that the

required functions σ1, σ2 ∈ K and constants 0 < g1 ≤
g2 ≤ σ2(π) exist, completing the proof (for example, these

functions can be selected in the form σ1(s) = ℓ1 max{ℓ2s, s2}
and σ2(s) = ℓ3 min{ℓ4s, s2} for some ℓi > 0 for i =
1, 2, 3, 4).

V. CONCLUSIONS

By extending ideas of [26], we have introduced the concept

of a Leonov function, and have shown that for a class of peri-

odical dynamical systems the existence of a Leonov function

implies boundedness of all trajectories. Such a function is in

general sign-indefinite and not continuously differentiable on

the manifold, on which the system dynamics can be projected.

These achievements represent significant relaxations compared

to the usual requirements on a standard Lyapunov function

[3]. Application of the proposed theory to power systems and

microgrids (in particular, to the swing equation) is currently

under investigation.
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