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Abstract 
In this paper, a simple and effective PI controller tuning method is presented. To take both performance requirements and 
robustness issues into consideration, the design technique is based on optimization of load disturbance rejection with a 
constraint either on the gain margin or phase margin. In addition, a simplified form of the resulting tuning formulae is 
obtained for first order plus dead time models. To demonstrate the ability of the proposed tuning technique in dealing with 
a wide range of plants, simulation results for several examples, including integrating, non-minimum phase and long dead 
time models, are provided.  
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1. Introduction 

In spite of the recent advances in control theory, PID controller is the most widespread form of feedback compensation. 
This is mainly due to its noticeable effectiveness and simple structure that is conceptually easy to understand. PID is a 
simple and useful controller, which gives a powerful solution to the control of a huge number of industrial plants. 
According to the literature, more than 95% of industrial controllers are PID controllers [1-5]. The key reason for this 
popularity is that a well-designed PID controller can meet most control requirements [6]. In fact, most of the industrial 
controllers are PI because the derivative action is very often not used. As a result, good PI tuning methods are extremely 
desirable due to their widespread use. 

Since the 1940s, a large number of analytical and numerical methods, which are usually different in complexity and 
flexibility, have been proposed for tuning of PID controllers [7-13]. In addition, several well-known control books have 
chapters on tuning PID controllers [14-17]. 

Generally, an efficient design method should satisfy the design specifications and be able to deal with a wide range of 
plants. A satisfactory load disturbance response is often the first goal in control applications. This paper presents a PI 
tuning method resulting in a set of tuning formulae. To consider performance and robustness requirements, the design 
objective is the optimization of load disturbance rejection with a constraint either on the gain margin (GM) or the phase 
margin (PM). As the first order plus dead time (FOPDT) models can approximately model a huge number of industrial 
plants, the resulting tuning formulae are then applied to these plants to obtain a simple set of tuning formulae. 

Nomenclature 

mA  desired gain margin ( )L s  loop transfer function 
d  load disturbance signal PID proportional-integral-derivative 

( )pG s  plant transfer function PM phase margin 

c( )G s  controller transfer function m  desired phase margin 
FOPDT first order plus dead time r  reference signal 
GM gain margin SGM specified gain margin 
IAE integral of absolute error SPM specified phase margin 
IE integral of error T  time constant of FOPDT model 

cK  proportional gain d  time delay of FOPDT model 

iK  integral gain   frequency 

pK  gain of FOPDT model y  output signal 



 2 

The paper is organised as follows. In section 2, an analytical method to determine the optimal parameters of PI 
controllers in terms of minimizing an objective function and satisfying a GM or PM constraint is developed. The method is 
applied to FOPDT plants in section 3. In section 4, the simplified tuning formulae for FOPDT plants are presented, using 
dimensional analysis and curve-fitting techniques. In Section 5, the resulting tuning formulae are applied to a variety of 
control examples. Moreover, a comparison between the performance of the proposed tuning formulae and that of one of 
the most prevalent design methods is given for each example. Finally, the conclusions of the whole study are drawn. 

2. Theory 

The plant, )(sGp , is controlled by the PI controller in Equation (1). 

.)(
s

K
KsG i

cc   (1) 

where cK  and iK  are proportional and integral gains, respectively. The aim of control is to reject load disturbance 

signals, which are the most common and most important disturbances in control that drive systems away from their desired 
operating points [3]. The output signal of a closed-loop system in the presence of an input load disturbance signal is given 
by Equation (2). 
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where r , d  and y  refer to the reference, load disturbance and output signals, respectively. Step disturbances are applied 

at the input to the plant. A commonly chosen performance metric is the integral of absolute error (IAE). A significant 
drawback of this criterion is that it is not suitable for analytical approaches, as the evaluation requires computation of time 
functions [3]. However, the IAE is equivalent to the integral of error (IE) if the error signal is positive. Moreover, the IE 
may be a good approximation for the IAE for well-damped closed-loop systems. The reason for using IE is that it is 
appropriate for analytical approaches as its value is directly related to the integral gain, as shown in Equation (3) [3].  

.
1

iK
IE   (3) 

In addition, robustness is a key issue in control systems. It is well known that GM and PM are used as measures of 
robustness. In order to ensure the robustness of the closed-loop system, the optimization problem is constrained so that a 
desired GM or a required PM is guaranteed. Moreover, the PM acts as a measure of performance as it is related to the 
damping of the system [18]. Therefore, the design objective is to maximize iK  subject to satisfying the robustness 

constraint. 

2.1. Tuning formulae for a constraint on GM 

Assume that the model of the plant is given by Equation (4). 
).()()(  jjGp   (4) 

where )(  and )(  are real and imaginary parts of the plant. The loop transfer function is then written as shown in 

Equation (5). 
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In order to determine the controller parameters that obtain a desired GM, Equations (6) and (7) should be solved. 
.0)](Im[ jL  (6) 
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where mA  is the value of the desired GM. Inserting Equation (5) in Equations (6) and (7) results in the controller 

parameters given by Equations (8) and (9). 
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The necessary and sufficient conditions for maximizing iK  and satisfying the GM constraint are given by Equations (10) 

and (11), respectively. 

.0
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Equation (9) can be written as shown in Equation (12). 
).( fKi   (12) 

where )(f  is given by Equation (13). 
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Inserting Equation (12) into Equation (10) gives the necessary condition shown in Equation (14). 

.0)()(  

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dKi  (14) 

where )(f   is the derivative of )(f  with respect to  .   can be determined by inserting )(f  from Equation (13) 

and )(f   into Equation (14), resulting in Equation (15). 
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where )(   and )(   are the derivatives of )(  and )(  with respect to  , respectively. Inserting Equation (14) 

into Equation (11), the sufficient condition is obtained as shown in Equation (16). 
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The maximizing   is given by Equation (15) subject to satisfying Equation (16). The optimal controller parameters 

are given by inserting the maximizing   into Equations (8) and (9). This analytical tuning method is referred to as 

specified gain margin (SGM) because the closed-loop system satisfies a desired GM. An iterative technique, such as the 
Newton-Raphson method is required to solve Equation (15). 

2.2. Tuning formulae for a constraint on PM 

Assuming the loop transfer function in Equation (5), Equations (17) and (18) should be solved to determine the controller 
parameters that obtain a desired PM. 

.1)( jL  (17) 

 
.)( mjL    (18) 

where m  is the value of the desired PM. Inserting Equation (5) into Equations (17) and (18) results in Equations (19) and 

(20). 
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Equation (20) can be written as shown in Equation (21). 
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where iT  is given by Equation (22). 
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Considering Equations (19), (21) and (22), PI parameters can be written as shown in Equations (23) and (24). 
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Writing Equation (24) in the form of Equation (12) with )(f shown in Equation (25) 
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and applying the necessary condition for maximizing iK , represented in Equation (14), to Equation (25) results in 

Equation (26). 
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whereas the sufficient condition is again given by Equation (16). If the maximizing   given by Equation (26) satisfies 

Equation (16), the optimal PI parameters are given by Equations (23) and (24). This tuning method is referred to as 
specified phase margin (SPM). 

3. Tuning formulae for FOPDT plants 

In this section, the SGM and SPM methods are applied to an important category of industrial plants and simplified 
versions of Equations (8), (9), (15), (23), (24) and (26) are presented. 

3.1. SGM tuning formulae for FOPDT plants  

A huge number of industrial plants can be modelled by a FOPDT model, shown in Equation (27). 
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To design PI controllers for this class of plants, the SGM design method is applied to the FOPDT models. The real and 
imaginary parts of the plant are given by Equations (28) and (29). 
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Inserting Equations (28) and (29) into Equations (8), (9) and (13) results in Equations (30)-(32). 
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Maximizing   shown in Equation (33) is given by inserting )(f  from Equation (32) and )(f   into Equation (14). 
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The sufficient condition for maximizing iK , shown in Equation (34), is determined by inserting )(f  and )(f  into 

Equation (16). 
.0)cos()sin(  dd BA   (34) 

where A  and B  are given by Equations (35) and (36). 
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).2(2 2
dd TA    (35) 

 

).2( 22
dTB    (36) 

Finding )cos( d  from Equation (33) and substituting it into Equation (34), the sufficient condition is given by Equation 

(37). 
.0)sin( dC   (37) 

where C  is given by Equation (38). 
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0C  and it can easily be investigated that  d  holds for the SGM method. As a result, the sufficient condition is 

always satisfied. 

3.2. SPM tuning formulae for FOPDT plants  

Substituting Equations (28) and (29) into Equations (23), (24) and (25) results in Equation (39)-(41). 
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Maximizing   shown in Equation (42) is given by inserting )(f  from Equation (41) and )(f   into Equation (14). 
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Inserting )(f  and )(f   into Equation (16), results in the sufficient condition shown in Equation (43). 

.0)sin(  mdC   (43) 

  md  holds for the SPM method, therefore, the sufficient condition is always satisfied. 

4. Simplified tuning formulae for FOPDT models 

Although simpler versions of Equations (15) and (26) for FOPDT plants are presented in Equations (33) and (42), an 
iterative method is still required to solve these nonlinear equations. Using dimensional analysis and curve-fitting methods, 
simple PI tuning formulae are presented in this section. 
The PI controller in Equation (1) can be written as shown in Equation (44). 

).
1

1()(
sT

KsG
i

cc   (44) 

To obtain the optimal PI tuning formulae for a FOPDT model given in Equation (27), the PI parameters can be 
defined based on the model parameters, as shown in Equations (45) and (46). 

).,,(1 TKfK dpc   (45) 

 
).,,(2 TKfT dpi   (46) 

Functions 1f  and 2f  should be determined to optimize the objective function and satisfy the GM or PM constraint. 

Obviously, it is a challenging task to obtain these functions as each controller parameter is a function of three model 
parameters. To cope with this issue, we use dimensional analysis to simplify the procedure for determining 1f  and 2f  

[19].  
To simplify a problem through reducing the number of its variables to the smallest number of essential variables, 
dimensional analysis can be employed [20]. Without any change in a given physical system behaviour, relations between 
variables in the system are defined as relations between dimensionless numbers, using dimensional analysis. A 
dimensionless number has no physical unit and is formed as a product or ratio of quantities that have units.  
Consider a system expressed by Equation (47) 
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).,...,,( 321 nxxxfx   (47) 

with non-zero nxxx ,...,, 21  . According to Buckingham’s pi-theorem [20], this equation can be substituted with Equation 

(48) 
).,...,,( 321 mng    (48) 

where mn ,...,2  are independent dimensionless numbers and m  is the minimum number of nxxx ,...,, 32 , which 

includes all the units in nxxx ,...,, 21   

For the model given by Equation (27), the unit of the dead time (d ) and the time constant (T) is the second. The unit of 

the plant gain ( pK ) depends on the nature of the system. As the plant gain along with either the dead time or the time 

constant cover all the units in Equations (45) and (46), m is equal to 2. Hence, 
T
d  , named dimensionless dead time, is 

the only dimensionless number in the model. In the PI controller shown in Equation (44), the unit of integral time ( iT ) is 

the second. The unit of controller gain is the inverse of the unit of plant gain. Therefore, the remaining dimensionless 

numbers are dimensionless gain ( cpKK ) and dimensionless integral time (
d

iT


 or 

T

Ti ). According to Buckingham’s pi-

theorem, these dimensionless numbers are functions of the dimensionless dead time, as shown in Equations (49) and (50) 
[19]. 

).(1 T
gKK d
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  (49) 
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i 


  (50) 

4.1. Simplified SGM tuning formulae for FOPDT models 

Having a constraint on GM, the following procedure is proposed for generating formulae for PI controller tuning. 

Step 1. A range of values of 
T
d  is selected. 

Step 2. Using Equation (33),   is determined for each selected value of 
T
d . 

Step 3. For each value of 
T
d , the optimal values of cK  and iT  are obtained by inserting the resulting   from step 2 into 

Equations (30), (31) and (22).  

Step 4. The optimal values of mcp AKK  and 
d

iT


 versus 

T
d  are drawn.  

Step 5. Functions 1g  and 2g  in Equations (49) and (50) are determined by using curve-fitting methods. 

Assuming the values of 
T
d range from 0.1 to 2, Figures 1 and 2 show the optimal values of mcp AKK  and 

d

iT


 across the 

selected values of 
T
d , respectively. It can be seen from Figure 1 that mcp AKK  is a function of 

T
d , as shown in 

Equation (51). 
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Similarly, the values of 
d

iT


 are determined from the values of 

T
d , using Equation (52). 
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
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(52) 

Using the least-squares minimization approach, 1A , 1B , 2A  and 2B  are determined for the best match with Figures 1 and 

2. As a result, the optimal values of 1A , 1B , 2A  and 2B  are 0.4331, 1.1191, 1.8095 and 0.8344, respectively. 
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After simplification, the PI parameters can explicitly be determined using Equations (53) and (54). 
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4.2. Simplified SPM tuning formulae for FOPDT models 

Having a constraint on PM, the procedure mentioned in section 4.1 is used when Equation (33) in step 2 and Equations 
(30) and (31) in step (3) are substituted by Equations (42), (39) and (40), respectively. Also, mcp AKK  in step 4 should be 

replaced by cpKK . Having obtained the optimal values of cpKK  and 
d

iT


 for each value of 

T
d , the dimensionless gain 

and dimensionless integral time are given by Equations (55) and (56), using cure-fitting techniques. 
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Figures 3 and 4 show values of cpKK  and 
d

iT


 across 

T
d .  

5. Simulation results 

Tuning is a trade-off between conflicting design objectives. Both robustness and setpoint regulation are design objectives 
in conflict with load disturbance rejection [8]. In this section, the SGM and SPM controllers are compared with the 
Astrom-Panagopoulos-Hagglund (APH) controller [7]. Like the proposed method, the APH technique aims at optimal load 
disturbance rejection. Similarly, this is done by minimizing the IE criterion. Robustness is guaranteed by requiring that the 
maximum sensitivity is less than a specified value.  
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Example 1: 
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For a constraint on GM, optimal PI parameters are determined by solving Equation (15) and inserting the resulting   into 

Equations (8), (9) and (22). Solving Equation (15) by a trial and error method results in 
s

r
225.1 . Applying Equation 

(62)  

.
)()(2)2(

lim)(
20 






 fff
f  (62) 

to )(f  in Equation (13), Equation (16) gives 71.14
2

2


d

Kd i . Hence, the sufficient condition is satisfied. PI parameters 

are given by 
m

c A
K

5.3
  and 

9

14
iT . Closed-loop step responses for different values of GM are shown in Figure 5. The 

comparison results are shown in Table 1. 
An interesting property of the SGM tuning formulae is that the value of GM can be indicated as a parameter to 

compromise between performance and robustness. Figure 5 clearly shows that a higher value of GM results in an inferior 

load disturbance rejection but a better setpoint regulation. It should be noted that higher values of 
IAE

IE
 are associated with 

less oscillatory systems. 

For a constraint on PM, optimal PI parameters are determined by solving Equation (26) and inserting the resulting   

into Equations (23), (24) and (22). Considering )(f  in Equation (25) and for  40PM , the SPM method results in 

697.0 , 476.1cK  and 02.2iT . The sufficient condition in Equation (16) is also satisfied as 527.5
2

2


d

Kd i . 

Table 2 summarises the comparison results for different values of PM. 

It can be seen from Table 2 that the sufficient condition is satisfied for the selected values of PM. Closed-loop step 
responses for different values of PM are shown in Figure 6. Clearly, a better setpoint regulation but an inferior load 
disturbance rejection is provided by a higher value of PM. 

To compare the performance of the SGM, SPM and APH methods, closed-loop step responses are drawn in Figure 7. 
A slightly better setpoint regulation is given by the SPM due to a higher value of PM. The setpoint response given by the 
APH controller is improved using a two-degree of freedom structure. Table 3 shows the comparison results. 
An advantage of the SGM and SPM methods is that as soon as   is determined and subject to satisfying the sufficient 
condition, the controller parameters are directly given. However, the APH controller parameters cannot be resulted from 
an explicit set of tuning formulae. They should be computed using a procedure, which may lead to complicated situations 
[7]. 

Example 2: 

In this example, the SGM method is applied to a non-minimum phase plant, a pure time delay unit, a long dead time 
plant and a plant with complex poles. 

.
)1(

21
)(

32




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s
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sesG   
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9
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25



asss

sG  

)(2 sG  and )(5 sG  are not common in control, however, they are included to demonstrate the wide applicability of the 

design procedure. Closed-loop step responses for different values of GM are shown in Figure 8. The comparison results 
are shown in Table 4. Figure 9 show the fairly similar closed-loop step responses provided by the SGM and APH methods.  

Results of comparison of the SGM and APH methods are summarised in Table 5. Results of applying the SPM 
methods to )(2 sG , )(3 sG  and )(4 sG are shown in Table 6. Comparing to each SGM controller, the corresponding 

SPM controller has a too high gain, resulting in a low gain margin and a high maximum sensitivity.  

Example 3: 

In this example, the SPM method is applied to the following integrating plants. 

.
)1(

1
)(

26



ss

sG  .)(7 s

e
sG

s

  

Closed-loop step responses for different values of PM are shown in Figure 10. The comparison results are shown in Table 
6. Figure 11 shows the closed-loop step responses resulting from the SPM and APH methods. As shown in Figure 11, the 
setpoint response of the SPM controller can easily be improved using the setpoint weight. For these methods, the 
comparison results are summarised in Table 7. 

The SPM controller for a FOPDT plant is given by solving Equation (42) and inserting the resulting   into Equations 
(39), (40) and (22). A plant with dead time and a single pole at origin is a special case of a FOPDT plant when the time 
constant becomes infinite. Such a plant can be described by Equation (63). 

.
1

lim)(
'

int s

eK

Ts

eK
sG

s
p

s
p

T

dd  





  (63) 

where '
pK  is given by Equation (64). 

.'

T

K
K

p
p   (64) 

For the plant in Equation (63), Equation (42) is simplified to Equation (65). 

).cot(
2

md
d




   (65) 

Controller parameters are given by inserting the resulting   into Equations (66) and (67). 

.
)sin(

'
p

md
c

K
K

 
  (66) 

 

.
)tan(


 md

iT


  (67) 

Using Equations (65)-(67), results shown in Table 6 for )(7 sG are obtained in a simpler manner. 

Results of applying the SGM method to )(6 sG and )(7 sG are shown in Table 4. Comparing to the corresponding 

SPM controller, the SGM controller does not have a large enough integral time, resulting in a low phase margin and a 
high maximum sensitivity. 

6. Conclusions 

To consider both performance and robustness requirements, this paper presented a PI tuning method for the optimization 
of load disturbance rejection with a constraint either on the GM or on the PM. The design method resulted in the SGM and 
SPM tuning formulae that could be adapted for the type of system required. Using dimensional analysis and curve-fitting 
techniques, a simplified form of tuning formulae for FOPDT models was also determined. Simulation results for a variety 
of examples including integrating, non-minimum phase and long dead time plants showed that the proposed tuning method 
was effective in dealing with a wide range of plants.  
For industrial applications, it is often required that GM and PM specifications fall into desirable ranges. Future research 
will attempt to minimize the IE criterion subject to simultaneously satisfying predefined constraints on gain and phase 
margins. 
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Fig. 1. Optimal values of mcp AKK  and the values of mcp AKK  given by Equation (51) versus 
T
d  

 

Fig. 2. Optimal values of 
d

iT


 and the values of 

d

iT


 given by Equation (52) versus 

T
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Fig. 3. Values of cpKK  given by Equation (55) versus 
T
d  



 12 

 

Fig. 4. Values of 
d

iT


 given by Equation (56) versus 

T
d  

 
Fig. 5. Closed-loop step responses for different values of GM 

 
Fig. 6. Closed-loop step responses for different values of PM 
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Fig. 7. Closed-loop step responses resulting from the SGM, SPM and APH design methods 
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Fig. 8. Closed-loop step responses for different values of GM 
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Fig. 9. Closed-loop step responses resulting from the SGM and APH methods 
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Fig. 10. Closed-loop step responses for different values of PM 
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Fig. 11. Closed-loop step responses resulting from the SPM and APH methods 
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Table 1. Comparison results of the SGM controllers to control )(1 sG  

GM 3.000 4.000 5.000 6.000 

cK  1.167 0.875 0.700 0.583 

iT  1.556 

sM  2.153 1.783 1.599 1.486 

PM 37.45 47.52 54.72 60.01 

IAE

IE
 0.658 0.783 0.870 0.928 

Table 2. Comparison results of the SPM controllers to control )(1 sG  

PM 40 45 50 55 60 
  0.697 0.650 0.606 0.565 0.523 

cK  1.476 1.374 1.287 1.215 1.154 

iT  2.020 2.123 2.241 2.380 2.541 

sM  2.112 1.947 1.818 1.715 1.633 

GM 2.963 3.296 3.646 4.006 4.374 

2

2

d

Kd i  -5.527 -4.949 -4.442 -3.994 -3.599 

IAE

IE
 0.812 0.894 0.965 1.000 1.000 

Table 3. Comparison results of the SGM, SPM and APH methods to control )(1 sG  

Method SGM SPM APH 

cK  0.700 1.154 0.862 

iT  1.556 2.541 1.870 

b  1.000 1.000 0.930 

sM  1.599 1.633 1.600 
GM 5.000 4.374 4.789 
PM 54.72 60.00 56.90 

IAE

IE
 0.870 1.000 0.952 
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Table 4. Comparison results of the SGM controllers 

Plant   cK  iT  sM  GM PM 
2

2

d

Kd i  
IAE

IE
 

)(2 sG  0.491 

0.268 

1.319 

2.225 2.000 46.18 

-3.368 

0.571 
0.214 1.825 2.500 55.19 0.737 
0.179 1.624 3.000 61.12 0.841 
0.153 1.502 3.500 65.31 0.888 

)(3 sG  2.029 

0.177 

0.243 

1.772 2.500 57.84 

-5.482 

0.856 
0.147 1.584 3.000 63.35 0.974 
0.126 1.470 3.500 67.23 1.000 
0.111 1.394 4.000 70.12 1.000 

)(4 sG  0.114 

0.231 

4.486 

2.156 2.000 48.94 

-4.933 

0.641 
0.185 1.778 2.500 57.48 0.845 
0.154 1.589 3.000 63.05 0.972 
0.132 1.474 3.500 66.98 1.000 

1

),(5

a

sG
 2.236 

0.056 

0.040 

2.090 2.000 37.55 

-3.192 

0.493 
0.037 1.649 3.000 48.52 0.721 
0.028 1.479 4.000 55.70 0.792 
0.022 1.384 5.000 60.86 0.884 

2

),(5

a

sG
 2.345 

0.417 

0.248 

2.221 2.000 37.04 

-14.37 

0.521 
0.278 1.671 3.000 47.77 0.705 
0.208 1.489 4.000 54.58 0.799 
0.167 1.391 5.000 59.54 0.858 

)(6 sG  0.707 
0.500 

4.000 
5.115 2.000 11.81 

-2.83 
0.324 

0.400 4.203 2.500 14.24 0.352 
0.333 3.788 3.000 15.64 0.357 

)(7 sG  1.077 
0.474 

1.726 
5.235 2.000 11.19 

-3.656 
0.223 

0.374 4.832 2.500 12.00 0.221 
0.316 4.744 3.000 12.15 0.214 
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Table 5. Comparison results of the SGM and APH controllers 

Plant Method SGM APH 

)(2 sG  

cK  0.214 0.265 

iT  1.319 1.640 

b  1.000 0.870 

sM  1.825 1.797 

GM 2.500 2.476 
PM 55.19 57.93 

IAE

IE
 0.737 0.798 

)(3 sG  

cK  0.111 0.158 

iT  0.243 0.335 

b  1.000 1.000 

sM  1.394 1.400 

GM 4.000 3.846 
PM 70.12 71.71 

IAE

IE
 1.000 1.000 

)(4 sG  

cK  0.154 0.208 

iT  4.486 5.870 

b  1.000 1.000 

sM  1.589 1.599 

GM 3.000 2.888 
PM 63.05 64.70 

IAE

IE
 0.972 1.000 

1

),(5

a

sG
 

cK  0.056 0.090 

iT  0.040 0.065 

b  1.000 1.000 

sM  2.090 2.002 

GM 2.000 2.005 
PM 37.55 39.24 

IAE

IE
 0.493 0.510 

2

),(5

a

sG
 

cK  0.167 0.313 

iT  0.248 0.373 

b  1.000 0.880 

sM  1.391 1.400 

GM 5.000 3.843 
PM 59.54 59.16 

IAE

IE
 0.858 0.867 
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Table 6. Comparison results of the SPM controllers 

)(2 sG  

PM 30 45 60 
  0.360 0.306 0.258 

cK  0.560 0.594 0.639 

iT  1.951 2.506 3.337 

sM  4.280 3.347 3.090 
GM 1.339 1.457 1.500 

2

2

d

Kd i  -2.797 -2.501 -2.202 

IAE

IE
 0.319 0.519 0.722 

)(3 sG  

PM 30 45 60 
  1.605 1.404 1.213 

cK  0.529 0.580 0.636 

iT  0.388 0.507 0.680 

sM  5.042 3.945 3.702 
GM 1.288 1.373 1.392 

2

2

d

Kd i  -3.880 -3.234 -2.678 

IAE

IE
 0.260 0.400 0.541 

)(4 sG  

PM 30 45 60 
  0.090 0.078 0.068 

cK  0.543 0.591 0.644 

iT  7.086 9.211 12.30 

sM  4.904 3.800 3.512 
GM 1.284 1.379 1.412 

2

2

d

Kd i  -4.727 -4.262 -3.624 

IAE

IE
 0.283 0.425 0.589 

)(6 sG  

PM 30 40 50 
  0.396 0.317 0.246 

cK  0.439 0.338 0.255 

iT  8.372 11.93 18.54 

sM  2.258 1.782 1.505 
GM 3.467 4.925 7.005 

2

2

d

Kd i  -0.902 -0.584 -0.354 

IAE

IE
 1.000 1.000 1.000 

)(7 sG  

PM 30 45 60 
  0.707 0.528 0.350 

cK  0.667 0.510 0.345 

iT  3.998 7.187 16.30 

sM  2.429 1.742 1.395 
GM 2.068 2.899 4.464 

2

2

d

Kd i  -1.533 -0.845 -0.367 

IAE

IE
 0.998 1.000 1.000 
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Table 7. Comparison results of the SPM and APH controllers 

Plant Method SPM APH 

)(6 sG  

cK  0.338 0.286 

iT  11.934 9.000 

b  1.000 0.570 

sM  1.782 1.801 

GM 4.925 5.436 
PM 40.00 36.92 

IAE

IE
 1.000 0.989 

)(7 sG  

cK  0.345 0.282 

iT  16.30 6.746 

b  1.000 0.660 

sM  1.395 1.400 

GM 4.464 5.218 
PM 60.00 46.71 

IAE

IE
 1.000 0.897 

 


