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Abstract

In this paper, a simple and effective PI controller tuning method is peesdro take both performance requirements and
robustness issues into consideration, the design technique is based on optirofzZltmh disturbance rejection with a
constraint either on the gain margin or phase margin. In additisim@ified form of the resulting tuning formulae is
obtained for first order plus dead time models. To demonstrate the ability proposed tuning technique in dealing with
a wide range of plants, simulation results for several examples, includéggating, non-minimum phase and long dead
time modes, are provided

Keywords: Constrained optimization, Gain margin, Load disturbance rejection, Phase ridrgdmtrol
1. Introduction

In spite of the recent advances in control theory, PID controlligreisnost widespread form of feedback compensation.
This is mainly due to its noticeable effectiveness and simple structatréstbonceptually easy to understand. PID is a
simple and useful controller, which gives a powerful solution tocthrgtrol of a huge number of industrial plants
According to the literature, more than 95% of industrial controllers HdecBntrollers[1-5]. The key reason for this
popularity is that a well-designed PID controller can meet most control eesmis [6]. In fact, most of the industrial
controllers are Pl because the derivative action is very often not usedeggltagood Pl tuning methods are extremely
desirable due to their widespread use.

Since the 1940s, a large number of analytical and numerical methods,ambiokually different in complexity and
flexibility, have been proposed for tuning of PID controllers 87-1n addition, several well-known control books bav
chapters on tuning PID controllers [14}17

Generally, an efficient design method should satisfy the design specificatidroe able to deal with a wide range of
plants A satisfactory load disturbance response is often the first goal inotamiplications. This paper presents a Pl
tuning method resulting in a set of tuning formulae. To consideiopnance and robustness requirements, the design
objective is the optimization of load disturbance rejection with a constrdietr @t the gain margin (GM) or the phase
margin (PM). As the first order plus dead time (FOPDT) modelsapgnoximately modeh huge number of industrial
plants, the resulting tuning formulae are then applied to these plants to olitapleaset of tuning formulae.

Nomenclature

An desired gain margin L(s) loop transfer function

d load disturbance signal PID proportional-integral-derivative
G,(s) plant transfer function PM phase margin

G.(9 controller transfer function Om desired phase margin

FOPDT | first order plus dead time r reference signal

GM gain margin SGM specified gain margin

IAE integral of absolute error SPM specified phase margin

IE integral of error T time constant of FOPDT model
K. proportional gain 7, time delay of FOPDT model

K; integral gain o frequency

Ko gain of FOPDT model y output signal




The paper is organised as follows. In section 2, an analytical methoetetanthe the optimal parameters of Pl
controllers in terms of minimizing an objective function and satisfgi®@M or PM constraint is developed. The method is
applied to FOPDT plants in section 3. In section 4, the simplified tuningufae for FOPDT plants are presented, using
dimensional analysis and curve-fitting techniques. In Section Se#udting tuning formulae are applied to a variety of
control examples. Moreover, a comparison between the performancepbfiesed tuning formulae and that of one of
the most prevalent design methods is given for each example. Finally, thesoams of the whole study are drawn.

2. Theory
The plant G, (s), is controlled by the PI controller in Equation (1).
K.
Go(s) =K +-L. M

where K, and K; are proportional and integral gains, respectively. The aim of contral isjéct load disturbance
signals, which are the most common and most important disturbanoestiol that drive systems away from their desired
operating points [3]. The output signal of a closed-loop systeheipriesence of an input load disturbance signal is given
by Equation (2).

G,G G
=P P _d @)

1+G,G, 1+G,G,

wherer, d andy refer to the reference, load disturbance and output signals, respe@teglydisturbances are applied

at the input to the plant. A commonly chosen performance metrie igwtbgral of absolute error (IAE). A significant
drawback of this criterion is that it is not suitable for analytical appesmas the evaluation requires computation of time
functions [3]. However, the IAE is equivalent to the integral of gfiy if the error signal is positive. Moreover, the IE
may be a good approximation for the IAE for well-damped closed-$yspems. The reason for using IE is that it is
appropriate for analytical approaches as its value is directly related to thalig@gr as shown in Equation (3) [3].

1
= 3)

1
In addition, robustness is a key issue in control systems. It is m@rkthat GM and PM are used as measures of
robustness. In order to ensure the robustness of the closedystem, the optimization problem is constrained so that a
desired GM or a required PM is guaranteed. Moreover, the PM acts as aen@gserformance as it is related to the
damping of the system [18]. Therefore, the design objective is tomizaxK; subject to satisfying the robustness

constraint.

y

2.1. Tuning formulae for a constraint on GM

Assume that the model of the plant is given by Equation (4).

Gp(jo) =a(w)+ (). (4)
where a(w) and S(w) are real and imaginary parts of the plant. The loop transfer functiberiswritten as shown in
Equation (5).

. . K
L(jo) = (a(@)+ (@) (K. - ] ;‘)- (5)
In order to determine the controller parameters that obtain a desired GM, Eq(&itiand (7) should be solved.
Im[L(j@)] = 0. (6)
RelL(jo)] = — @
An

where A, is the value of the desired GM. Inserting Equation (5) in Equationsir@ (7) results in the controller
parameters given by Equations (8) and (9).

_ —a(w) g
T A @i (@)1 B (@) ©)
_ —opw)

@@+ @) ©)



The necessary and sufficient conditions for maximizijgand satisfying the GM constraint are given by Equations (10)
and (11), respectively.

dK;
—=0. 10
o (10)
d?K,
<0. (12)
do?
Equation (9) can be written as shown in Equation (12).
K, =o f (o). (12)
where f(w) is given by Equation (13).
—B(@)
f(w) = . 13
An(@® (@) + B2 (@) (13)
Inserting Equation (12) into Equation (10) gives the necessary conslitamn in Equation (14).
dK = f () + of '(w) = 0. (14)
dw

where f'(w) is the derivative of f (w) with respecttow. @ can be determined by insertinf(w) from Equation (13)
and f'(w) into Equation (14), resulting in Equation (15).
e 1
ya@a'(@)+p@)p'(@) Bl (15
az(a))+ﬂ2(a)) B(w)
wherea'(w) and B'(w) are the derivatives ak(w) and S(w) with respect taw , respectively. Inserting Equation (14)
into Equation (11), the sufficient condition is obtained as shown in EquAl&).
2
d—KZ‘ =-2f(w)+w?f"(w) < 0. (16)
dw
The maximizing @ is given by Equation (15) subject to satisfying Equation (16@. dgtimal controller parameters
are given by inserting the maximizing into Equations (8) and (9). This analytical tuning method is refaress

specified gain margin (SGM) because the closed-loop system satisfieiseal @d&l. An iterative technique, such as the
Newton-Raphson method is required to solve Equation (15).

2.2. Tuning formulae for a constraint on PM

Assuming the loop transfer function in Equation (5), Equationsgfd@)(18) should be solved to determine the controller
parameters that obtain a desired PM.

L(je)|=1. (17)

7+ A (jo)= ¢ (18)
where ¢,, is the value of the desired PM. Inserting Equation (5) into Equafiof)sand (18) results in Equations (19) and
(20).

K2 1
[ H . —
ot ®* az(a))+ﬁ2(w) (19)
L B@) 1 Ki
7 +tan (m) tan (ch) = P, (20)
Equation (20) can be written as shown in Equation (21).
r @) cos@y) + () singy,) 21
T a@singn) + f@)osty) )
whereT; is given by Equation (22).
KC
T = e (22)

Considering Equations (19), (21) and (22), Pl parameters carittenvas shown in Equations (23) and (24).



K __a(@)cos@y) + f(@)singy)

‘ a?(w) + (@)

(23)

K _ o 2@)SiNGn) — f(@) COSE)
j =@ > > .
a®(w)+ p°(v)
Writing Equation (24) in the form of Equation (12) with(w) shown in Equation (25)
_ a(w)Sin@m) _ﬂ(a)) COS@m)
f(w) = > 5 .
a®(w)+ p°(o)
and applying the necessary condition for maximizig, represented in Equation (14), to Equation (25) results in
Equation (26).

(24)

(25)

1
O d@a (@) + f@f @) @)sinGm) ~F @)xoskm)  (26)
() + 2 (0) a(@)sin¢m) - B @)cosm)
whereas the sufficient condition is again given by Equation (1@helfmaximizing @ given by Equation (26) satisfies
Equation (16), the optimal Pl parameters are given by Equationsa@3}24). This tuning method is referred to as
specified phase margin (SPM).

3. Tuning formulae for FOPDT plants

In this section, the SGM and SPM methods are applied to an important catégadustrial plants and simplified
versions of Equations (8), (9), (15), (23), (24) and gt&)presented.

3.1. SGM tuning formulae for FOPDT plants

A huge number of industrial plants can be modelled by a FOPDT model, sh&guation (27).

-74S
Kpe

. (27)
Ts+1

Gy(9) =

To design PI controllers for this class of plants, the SGM design mettaggblied to the FOPDT models. The real and
imaginary parts of the plant are given by Equations (28) and (29)

K
a(w) = M—‘;Tz (cosry)— T sinzy)). (28)

—K
B(w) = ﬁ Sinzy) + wTcosry)).  (29)

Inserting Equations (28) and (29) into Equations (8), (9)(4Bfresults in Equations (30)-(32).
_ —CoSry) + T sinl@zy)

KC
K, = o(sin(@ty) + @T cosy)) .
(o) = sinzy) + @T COS@Td). (32)

AnKp

Maximizing @ shown in Equation (33) is given by insertini(w) from Equation (32) andf (@) into Equation (14).

o sin@ry) + @T cosfry) .

— (T +174)cosfpry) + wlrySinery)

The sufficient condition for maximizindS;, shown in Equation (34), is determined by insertif¢o) and f"(w)into
Equation (16).

(33)

Asin(@zy) + Bcos@zy) > 0. (34)
where A and B are given by Equations (35) and (36).



A=2+w%ry (2T +174). (35)

B = o 2+ w?c3). (36)
Finding cos@ry) from Equation (33) and substituting it into Equation (34), tliécgent condition is given by Equation
(37).

Csinfwzy) > 0. (37)

where C is given by Equation (38).
T+ 0?T?)+T
T
C>0 and it can easily be investigated that, <z holds for the SGM method. As a result, the sufficient condition is
always satisfied.

C=Q2+w%3) +20°Try.  (38)

3.2. SPM tuning formulae for FOPDT plants

Substituting Equations (28) and (29) into Equations (23), (2 25) results in Equation (39)-(41).
—COS@1y + Py) + @OT SiN@ 7y + Pyy)

K. = <, (39)

K, - w(sinzy + ¢) + ©T COSE 74 +¢m)). (40)
Kp

(@) = sin@zy + ¢y, + @T COSE 74 +¢m)' 1)

Kp

Maximizing @ shown in Equation (42) is given by insertin(w) from Equation (41) andf '(w) into Equation (14).
P sin(wry + ¢m) + @T cosEry + Pm) .
—(T +7g)cosry + ¢m) + @T g sin(@zg + dm)
Inserting f(w) and f"(w) into Equation (16), results in the sufficient condition shown in Equ#i8).
Csinzy +¢y,) > 0. (43)
w7y + ¢, <z holds for the SPM method, therefore, the sufficient condition is alsatisfied.

(42)

4. Simplified tuning formulae for FOPDT models

Although simpler versions of Equations (15) and (26) for FORINts are presented in Equations (33) and (42), an
iterative method is still required to solve these nonlinear equations. Usingsitim&l analysis and curve-fitting methods,
simple PI tuning formulae are presented in this section.

The PI controller in Equation (1) can be written as shown in Equatin (4

1
G.(8) =K. 1+ —).
c(8) =K ( Tis) (44)
To obtain the optimal PI tuning formulae for a FOPDT model given inatimu (27), the Pl parameters can be
defined based on the model parameters, as shown in Equations (459)and (4

Ke = f1(Kp 79, T). (45)

Ti = fz(Kp,Td,T). (46)
Functions f; and f, should be determined to optimize the objective function and salishiGM or PM constraint.
Obviously, it is a challenging task to obtain these funct@seach controller parameter is a function of three model
parameters. To cope with this issuee use dimensional analysis to simplify the procedure for detergnifii and f,
[19].
To simplify a problem through reducing the number of its variabletheéosmallest number of essential variables,
dimensional analysis can be employ&d][ Without any change in a given physical system behaviour, nedaietween
variables in the system are defined as relations between dimensionlabgrsiwsing dimensional analysiA
dimensionless numbdes no physical unit and is formexbsa product or ratio of quantities that have units.
Consider a system expressed by Equation (47)



% = f(Xz,X%3,... %) (47)

with non-zeroxy, X,,... X, . According toBuckingham’s pi-theorem 0], this equation can be substituted with Equation
(48)

7y =9(7m2, 30 T em)- (48)
where 7,,...7,,, are independent dimensionless numbers amds the minimum number ofx,,Xs,...X,, which
includes all the units i, X,,... X,
For the model given by Equation (27), the unit of the dead tirg¢ &nd the time constant (T) is the second. The unit of
the plant gain K,) depends on the nature of the systémthe plant gain along with either the dead time or the time

constant cover all the units in Equations (45) and (46)s equal to 2. HenceTTi , hamed dimensionless dead time, is

the only dimensionless number in the modielthe PI controller shown in Equation (44), the unit of integral {9 is
the second. The unit of controller gain is the inverse of the unit of péant §hereforethe remaining dimensionless
. . . . . . T T .
numbers are dimensionless gaik (K.) and dimensionless integral time{ or ?'). According toBuckingham’s pi-
Td
theorem, these dimensionless numbers are functions of the dimensaeddssme, as shown in Equations (49) and (50)
[19].

Kch = gl(T?d)- (49)
IR
. —gz(T : (50)

d
4.1. Simplified SGM tuning formulae for FOPDT models

Having a constraint on GM, the following procedure is proposed for gmgiformulae for PI controller tuning.

Step 1. A range of values of_l_i is selected.
Step 2. Using Equation (33)w is determined for each selected valuezTgf.

Step 3. For each value o{l_i, the optimal values oK. andT, are obtained by inserting the resultingfrom step 2 into
Equations (30), (31) and (22).

. T,
Step 4. The optimal values oK K A, and — versus%d are drawn.
Td

Step 5. Functionsg; and g, in Equations (49) and (50) are determined by using curve-fittigitnoc.

: : . T;
Assuming the values of_l_i range from 0.1 to 2, Figures 1 and 2 show the optimal valués &€ A, and — across the
Td

selected values of_I% respectively. It can be seen from Figure 1 thgiK A, is a function ofr?d, as shown in

Equation (51).

B,
K K = —.
T
- T . . .
Similarly, the values of- are determined from the valuesf%_i, using Equation (52).
Td
Ti_ A
T T 52
T

Using the least-squares minimization approagh B,, A, and B, are determined for the best match with Figures 1 and
2. As aresult, the optimal values 8§, B,, A, and B, are 0.4331, 1.1191, 1.8095 and 0.8344, respectively.



After simplification, the Pl parameters can explicitly be determined usingtiegs (53) and (54).

1 101 3
KoKe =—(—+2).
pKe Am(9rd 2) (53)
9
T 2
-5 (54)
fg fd
T 6

4.2. Smplified SPM tuning formulae for FOPDT models

Having a constraint on PM, the procedure mentioned in section 4.1 isvisedEquation (33) in step 2 and Equations
(30) and (31) in step (3) are substituted by Equations (42) af®d (40), respectively. Alsd{ ;K A, in step 4 should be
replaced byK /K. Having obtained the optimal values Kf K and:—; for each value of_l_—d, the dimensionless gain
and dimensionless integral time are given by Equations (55) andugg, cure-fitting techniques.

KoK= A+ 20

T
T (55)

- Agn) By (0n)

I
E %‘+cz(¢m) (56)
% < < %
where
A = 2+ 2. 57)
B (fn) =~ 2 + 2o (58)
Ao(gm) = b2~ Lobm = (59)
By () =~ 242+ 2+ 2. (60
Colfm) =~ b+ (61)

. T;
Figures 3 and 4 show values Kf K, and — acrossr?d.
Tq

5. Simulation results

Tuning is a trade-off between conflicting design objectives. Both tobss and setpoint regulation are design objestiv
in conflict with load disturbance rejection [8]. In this section, the SGM arld 8htrollers are compared with the
Astrom-Panagopoulos-Hagglund (APH) controlldr [dke the proposed method, the APH technique ahuptimal load
disturbance rejectiorgimilarly, this is done by minimizing the IE criterion. Robustriegguaranteed by requiring that the
maximum sensitivity is less than a specified value.



Example 1:
1

Gals)= (s+1)°

Insertings= jw into G;(s) results in

G(jo) = a(w) + jp(@)

where
_ 1-30°
(@)= 1+ w?)3
B o(w? -3)
Blw) = Lro)?

For a constraint on GM, optimal Pl parameters are determined by sBlyiragion (15) and inserting the resulting into
Equations (8), (9) and (22). Solving Equation (15) by a trialeanok method results iw = 1.2251. Applying Equation
s

(62)
£"(w) = lim f(w+2A)—2f2(w+A)+f(w)_
A—0 A
. . . _d?K, . L
to f(w) in Equation (13), Equation (16) g|veg—2 =-14.71. Hence, the sufficient condition is satisfied. Pl parameters
[0}

(62)

are given byK, = % andT, = 134 Closed-loop step responses for different values of GM are shokigure 5. The

comparison results are shown in Table 1.
An interesting property of the SGM tuning formulae is that the valueMfcan be indicated as a parameter to
compromise between performance and robustness. Figure 5 clearly tiladva higher value of GM results in an inferior

. L . . . IE . .
load disturbance rejection but a better setpoint regulation. It should be notbkigjtieatvalues ofE are associated with

less oscillatory systems.

For a constraint on PM, optimal Pl parameters are determined by solvilatjdfg(26) and inserting the resultirg
into Equations (23), (24) and (22). Considerin@w) in Equation (25) and foPM = 40", the SPM method results in

2
w=0697, K. =1476 and T, = 202. The sufficient condition in Equation (16) is also SatISerd%aSZ—'=—5.527.
(0]

Table 2 summarises the comparison results for different values of PM.

It can be seen from Table 2 that the sufficient condition is satisfiethdoselected values of PM. Closed-loop step
responses for different values of PM are shown in Figure 6. Clearlgttartsetpoint regulation but an inferior load
disturbance rejection is provided by a higher value of PM.

To compare the performance of the SGM, SPM and APH methods, closestdpagsponses are drawn in Figure 7.
A slightly better setpoint regulation is given by the SPM due to a higilee of PM. The setpoint response given by the
APH controller is improved using a two-degree of freedom strucliatde 3 shows the comparison results.

An advantage of the SGM and SPM methods is that as soaniagletermined and subject to satisfying the sufficient
condition, the controller parameters are directly given. However, the APtrbllen parameters cannot be resulted from
an explicit set of tuning formulae. They should be computed @sim@cedure, which may lead to complicated situations

[7].
Example 2:

In this example, the SGM method is applied to a non-minimum phase glpate time delay unit, a long dead time
plant and a plant with complex poles.

_1-2s Gi(s)=¢€>.
G = . 3
2() (s+1)°




e—lSs G ( ) 9
G,(s) = . S) = .
4(s) (s+1)3 ° (s+1)(s® +as+9)
G,(s) and G5(s) are not common in control, however, they are included to demonsteaigidba applicability of the
design procedure. Closed-loop step responses for different values afé&Gshown in Figure 8. The comparison results
are shown in Table 4. Figure 9 show the fairly similar closed-loopresgmnses provided by the SGM and APH methods.
Results of comparison of the SGM and APH methods are summari§abl@ 5. Results of applying the SPM
methods t0G, (s) , G;(s) and G,(s) are shown in Table 6. Comparing to each SGM controller, the corresgondin

SPM controller has a too high gain, resulting in a low gain margin andhartagimum sensitivity.

Example 3:

In this example, the SPM method is applied to the following integratingsplant
1 e s

Gs(s) = . ==

6(S) 511)? G,(9= ~
Closed-loop step responses for different values of PM are smokigtre 10. The comparison results are shown in Table
6. Figure 11 shows the closed-loop step responses resulting from thar@PMPH methods. As shown in Figure 11, the
setpoint response of the SPM controller can easily be improved using tlntsetpight. For these methods, the
comparison results are summarised in Table 7.

The SPM controller for a FOPDT plant is given by solving Equation (42)naedting the resultingo into Equations
(39), (40) and (22). A plant with dead time and a single pole anasiga special case of a FOPDT plant when the time
constant becomes infinite. Such a plant can be described by Equation (63).

—74S ' \—T4S
G (9) = lim Koo = _Ke® : (63)
Too Ts+1 S

where K'p is given by Equation (64).
K

: p
Kp= Eo (64)
For the plant in Equation (63), Equation (42) is simplified to Equ&@6n
2
= - cot(@y + Py, )- (65)
d

Controller parameters are given by inserting the resuléinipto Equations (66) and (67).
osin@ty +¢n)

Ke = "

(66)
p

T - tan(w 4 +¢m).
9]

Using Equations (65)-(67), results shown in Table 63g(s) are obtained in a simpler manner.
Results of applying the SGM method @ (s) and G, (s) are shown in Table 4. Comparing to the corresponding

SPM controller, the SGM controller does not have a large enough integral timdénges a low phase margin and a
high maximum sensitivity.

(67)

6. Conclusions

To consider both performance and robustness requirementsagias fresented a Pl tuning method for the optimization
of load disturbance rejection with a constraint either on the GM or on th&fRMdesign method resulted in the SGM and
SPM tuning formulae that could be adapted for the type of system redugied. dimensional analysis and curve-fitting
techniques, a simplified form of tuning formulae for FOPDT models was atsondined. Simulation results for a variety
of examples including integrating, non-minimum phase and longttreaglants showed that the proposed tuning method
was effective in dealing with a wide range of plants

For industrial applications, it is often required that GM and PM specifications taltasirable range Future research
will attempt to minimize the IE criterion subject to simultaneously satigfpredefined constraints on gain and phase
margins.
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Table 1. Comparison results of the SGM controllers to coi@;dk)

GM 3.000 4.000 5.000 6.000
Ke 1.167 0.875 0.700 0.583
T; 1.556

Mg 2.153 1.783 1.599 1.486
PM 37.45 47.52 54.72 60.01
% 0.658 0.783 0.870 0.928

Table 2. Comparison results of the SPM controllers to cox@y¢s)

PM 40 45 50 55 60
® 0.697 0.650[ 0.606| 0.565 0.523
Ke 1.476| 1.374] 1.287| 1.215] 1.154
T; 2.020[ 2.123| 2.241] 2.380] 2.541

Mg 2.112) 1.947 1.818] 1.715] 1.633
GM 2.963] 3.296] 3.646/ 4.006] 4.374

d?K;

-5.527 -4.949 -4.442 -3.994 -3.599
dew?
% 0.812| 0.894| 0.965( 1.000, 1.000

Table 3. Comparison results of the SGM, SPM and APH methods to c@;(s)

Method SGM SPM APH
Ke 0.700 1.154 0.862
Ti 1.556 2.541 1.870

b 1.000 1.000 0.930
Ms 1.599 1.633 1.600
GM 5.000 4.374 4.789
PM 54.72 60.00 56.90
% 0.870 1.000 0.952
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Table 4. Comparison results of the SGM controllers

2. IE
Plant ® K¢ T; Mg GM PM d°K; _—
daov? IAE
0.268 2.225 2.000 46.18 0.571
0.214 1.825 2.500 55.19 0.737
G .
2(9) 0.491 0.179 1.319 1.624 3.000 61.12 3.368 0.841
0.153 1.502 3.500 65.31 0.888
0.177 1.772 2.500 57.84 0.856
0.147 1.584 3.000 63.35 0.974
G .
3() 2.029 0.126 0.243 1.470 3.500 67.23 5.482 1.000
0.111 1.394 4.000 70.12 1.000
0.231 2.156 2.000 48.94 0.641
0.185 1.778 2.500 57.48 0.845
G .
4(9) 0.114 0.154 4.486 1.589 3.000 63.05 4.933 0.972
0.132 1.474 3.500 66.98 1.000
0.056 2.090 2.000 37.55 0.493
Gs(9), 0.037 1.649 3.000 48.52 0.721
a=1 2.236 0.028 0.040 1.479 4.000 55.70 -3.192 0.792
0.022 1.384 5.000 60.86 0.884
0.417 2.221 2.000 37.04 0.521
Gs(9), 0.278 1.671 3.000 47.77 0.705
a=2 2345 0.208 0.248 1.489 4.000 54.58 -14.37 0.799
0.167 1.391 5.000 59.54 0.858
0.500 5.115 2.000 11.81 0.324
Gg(9) 0.707 0.400 4.000 4.203 2.500 14.24 -2.83 0.352
0.333 3.788 3.000 15.64 0.357
0.474 5.235 2.000 11.19 0.223
Gy (9) 1.077 0.374 1.726 4.832 2.500 12.00 -3.656 0.221
0.316 4.744 3.000 12.15 0.214
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Table 5. Comparison results of the SGM and APH controllers

Plant Method SGM APH
K¢ 0.214 0.265
T, 1.319 1.640
b 1.000 0.870
GM 2.500 2.476
PM 55.19 57.93
IE
— 0.737 0.798
IAE
K¢ 0.111 0.158
T, 0.243 0.335
b 1.000 1.000
GM 4.000 3.846
PM 70.12 71.71
1E 1.000 1.000
IAE
K¢ 0.154 0.208
T, 4.486 5.870
b 1.000 1.000
G4(s) Mg 1.589 1.599
GM 3.000 2.888
PM 63.05 64.70
1E 0.972 1.000
IAE
K¢ 0.056 0.090
T, 0.040 0.065
b 1.000 1.000
Gs(s), Mg 2.090 2.002
a=1 GM 2.000 2.005
PM 37.55 39.24
1E 0.493 0.510
IAE
K¢ 0.167 0.313
T, 0.248 0.373
b 1.000 0.880
Gs(s), Mg 1.391 1.400
a=2 GM 5.000 3.843
PM 59.54 59.16
1E 0.858 0.867
IAE
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Table 6. Comparison results of the SPM controllers

PM 30 45 60
) 0.360 0.306 0.258
Ke 0.560 0.594 0.639
T 1.951 2.506 3.337
G Mg 4.280 3.347 3.090
2(9) GM 1.339 1.457 1.500
2 .
d7K; 2.797| -2501| -2.202
dw?
1E 0.319 0.519 0.722
IAE
PM 30 45 60
) 1.605 1.404 1.213
Ke 0.529 0.580 0.636
T 0.388 0.507 0.680
G Mg 5.042 3.945 3.702
3(9) GM 1.288 1.373 1.392
2 .
d7K; -3.880| -3.234| -2.678
dw?
IE
— 0.260 0.400 0.541
IAE
PM 30 45 60
) 0.090 0.078 0.068
Ke 0.543 0.591 0.644
Ti 7.086 9.211 12.30
G Mg 4.904 3.800 3.512
4(9) GM 1.284 1.379 1.412
2 .
d7K; -4.727|  -4.262| -3.624
dw?
IE
— 0.283 0.425 0.589
IAE
PM 30 40 50
) 0.396 0.317 0.246
Ke 0.439 0.338 0.255
T 8.372 11.93 18.54
G Mg 2.258 1.782 1.505
6(S) GM 3.467 | 4.925| 7.005
2 .
d7K; -0.902| -0.584| -0.354
dw?
IE
— 1.000 1.000 1.000
IAE
PM 30 45 60
) 0.707 0.528 0.350
Ke 0.667 0.510 0.345
T 3.998 7.187 16.30
G Mg 2.429 1.742 1.395
7(9) GM 2.068 | 2899 | 4.464
2 .
d7K; -1533| -0.845| -0.367
dw?
IE
— 0.998 1.000 1.000
IAE
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Table 7. Comparison results of the SPM and APH controllers

Plant Method SPM APH
K¢ 0.338 0.286
T; 11.934 9.000

b 1.000 0.570
GM 4.925 5.436
PM 40.00 36.92
£ 1.000 0.989
IAE
K¢ 0.345 0.282
T; 16.30 6.746

b 1.000 0.660
GM 4.464 5.218
PM 60.00 46.71
£ 1.000 0.897
IAE
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